Review Special Issues

A brief review on stability investigations of numerical methods for systems of stochastic differential equations

  • Received: 20 January 2024 Revised: 13 March 2024 Accepted: 21 March 2024 Published: 01 April 2024
  • A modest review on stability investigations of numerical methods for systems of Itô-interpreted stochastic differential equations (SDEs) driven by $ m $-dimensional Wiener processes $ W = (W^1, W^2, ..., W^m) $ is presented in $ \mathbb{R}^d $. Since the problem of relevance of 1D test equations for multidimensional numerical methods has not completely been solved so far, we suggest to use the Krein-Perron-Frobenius theory of positive operators on positive cones of $ \mathbb{R}^{d \times d} $, instead of classic stability functions with values in $ \mathbb{C}^1 $, which is only relevant for the very restricted case of "simultaneously diagonalizable" SDEs. Our main focus is put on the concept of asymptotic mean square and almost sure (a.s.) stability for systems with state-dependent noise (multiplicative case), and the concept of exact preservation of asymptotic probabilistic quantities for systems with state-independent noise (additive case). The asymptotic exactness of midpoint methods with any equidistant step size $ h $ is worked out in order to underline their superiority within the class of all drift-implicit, classic theta methods for multidimensional, bilinear systems of SDEs. Balanced implicit methods with appropriate weights can also provide a.s. exact, asymptotically stable numerical methods for pure diffusions. The review on numerical stability is based on "major breakthroughs" of research for systems of SDEs over the last 35 years, with emphasis on applicability to all dimensions $ d \ge 1 $.

    Citation: Henri Schurz. A brief review on stability investigations of numerical methods for systems of stochastic differential equations[J]. Networks and Heterogeneous Media, 2024, 19(1): 355-383. doi: 10.3934/nhm.2024016

    Related Papers:

  • A modest review on stability investigations of numerical methods for systems of Itô-interpreted stochastic differential equations (SDEs) driven by $ m $-dimensional Wiener processes $ W = (W^1, W^2, ..., W^m) $ is presented in $ \mathbb{R}^d $. Since the problem of relevance of 1D test equations for multidimensional numerical methods has not completely been solved so far, we suggest to use the Krein-Perron-Frobenius theory of positive operators on positive cones of $ \mathbb{R}^{d \times d} $, instead of classic stability functions with values in $ \mathbb{C}^1 $, which is only relevant for the very restricted case of "simultaneously diagonalizable" SDEs. Our main focus is put on the concept of asymptotic mean square and almost sure (a.s.) stability for systems with state-dependent noise (multiplicative case), and the concept of exact preservation of asymptotic probabilistic quantities for systems with state-independent noise (additive case). The asymptotic exactness of midpoint methods with any equidistant step size $ h $ is worked out in order to underline their superiority within the class of all drift-implicit, classic theta methods for multidimensional, bilinear systems of SDEs. Balanced implicit methods with appropriate weights can also provide a.s. exact, asymptotically stable numerical methods for pure diffusions. The review on numerical stability is based on "major breakthroughs" of research for systems of SDEs over the last 35 years, with emphasis on applicability to all dimensions $ d \ge 1 $.



    加载中


    [1] E. Allen, Modeling With Itô Stochastic Differential Equations, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-5953-7
    [2] L. Arnold, Stochastic Differential Equations: Theory and Applications, 1974, (Reprinted by Dover Publications, 2014).
    [3] S. S. Artemiev, The mean square stability of numerical methods for solving stochastic differential equations, Russ. J. Numer. Anal. Math. Modelling, 9 (1994), 405–416. https://doi.org/10.1515/rnam.1994.9.5.405 doi: 10.1515/rnam.1994.9.5.405
    [4] T. A. Averina, S. S. Artemiev, Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations, Utrecht: De Gruyter, 1997. https://doi.org/10.1515/9783110944662
    [5] K. Burrage, P. Burrage, T. Mitsui, Numerical solutions of stochastic differential equations—implementation and stability issues, J. Comput. Appl. Math., 125 (2000), 171–182. https://doi.org/10.1016/S0377-0427(00)00467-2 doi: 10.1016/S0377-0427(00)00467-2
    [6] K. Burrage, G. Lythe, Accurate stationary densities with partitioned numerical methods for stochastic differential equations, SIAM J. Numer. Anal., 49 (2009), 1601–1618. https://doi.org/10.1137/060677148 doi: 10.1137/060677148
    [7] J. Cui, J. Hong, D. Sheng, Density function of numerical solution of splitting AVF scheme for stochastic Langevin equation, Math. Comput., 91 (2022), 2283–2333. https://doi.org/10.1090/mcom/3752 doi: 10.1090/mcom/3752
    [8] R. D'Ambrosio, M. Moccaldi, B. Paternoster, Numerical preservation of long-term dynamics by stochastic two-step methods, Discrete. Cont. Dyn.-B, 23 (2018), 2763–2773. https://doi.org/10.3934/dcdsb.2018105 doi: 10.3934/dcdsb.2018105
    [9] M. A. Eissa, H. Zhang, Y. Xiao, Mean-square stability of split-step theta Milstein methods for stochastic differential equations, Math. Probl. Eng., 2018 (2018), 1–13. https://doi.org/10.1155/2018/1682513 doi: 10.1155/2018/1682513
    [10] L. C. Evans, An Introduction to Stochastic Differential Equations, Providence: American Mathematical Society, 2014. https://doi.org/10.1090/mbk/082
    [11] D. B. Hernandez, R. Spigler, A-stability of implicit Runge-Kutta methods for systems with additive noise, BIT, 32 (1992), 620–633. https://doi.org/10.1007/BF01994846 doi: 10.1007/BF01994846
    [12] D. B. Hernandez, R. Spigler, Convergence and stability of implicit Runge-Kutta methods for systems with multiplicative noise, BIT, 33 (1993), 654–669. https://doi.org/10.1007/BF01990541 doi: 10.1007/BF01990541
    [13] D. J. Higham, $A$-stability and stochastic mean-square stability, BIT, 40 (2000), 404–409. https://doi.org/10.1023/A:1022355410570 doi: 10.1023/A:1022355410570
    [14] D. J. Higham, Mean-square and asymptotic stability of the stochastic Theta method, SIAM J. Numer. Anal., 38 (2000), 753–769. https://doi.org/10.1137/S003614299834736X doi: 10.1137/S003614299834736X
    [15] D. J. Higham, X. Mao, A. M. Stuart, Exponential mean-square stability of numerical solutions to stochastic differential equations, LMS J. Comput. Math., 6 (2003), 297–313. https://doi.org/10.1112/S1461157000000462 doi: 10.1112/S1461157000000462
    [16] C. Huang, Exponential mean square stability of numerical methods for systems of stochastic differential equations, J. Comput. Appl. Math., 236 (2012), 4016–4026. https://doi.org/10.1016/j.cam.2012.03.005 doi: 10.1016/j.cam.2012.03.005
    [17] S. Kanagawa, On the rate of convergence for Maruyama's approximate solutions of stochastic differential equations, Yokohama Math. J., 36 (1988), 79–85.
    [18] S. Kanagawa, The rate of convergence for approximate solutions of stochastic differential equations, Tokyo J. Math., 12 (1989), 33–48. https://doi.org/10.3836/TJM/1270133546 doi: 10.3836/TJM/1270133546
    [19] S. Kanagawa, Error estimation for the Euler-Maruyama approximate solutions of stochastic differential equations, Monte Carlo Methods Appl., 1 (1995), 165–171. https://doi.org/10.1515/mcma.1995.1.3.165 doi: 10.1515/mcma.1995.1.3.165
    [20] S. Kanagawa, S. Ogawa, Numerical solution of stochastic differential equations and their applications, Sugaku Expositions, 18 (2005), 75–100.
    [21] I. Karatzas, S. E. Shreve, Brownian Motion and Stochastic Calculus, New York: Springer, 1988. https://doi.org/10.1007/978-1-4684-0302-2
    [22] R. Z. Khas'miniskii, Stochastic Stability of Differential Equations, Sijthoff and Noerdhoff, 1980.
    [23] P. E. Kloeden, E. Platen, Numerical Solutions of Stochastic Differential Equations, Berlin: Springer, 1992. https://doi.org/10.1007/978-3-662-12616-5
    [24] M. A. Krasnosel'skii, E. A. Lifshits, A. V. Sobolev, Positive Linear Systems: The Method of Positive Operators (in Russian), 1985.
    [25] A. Lang, A. Petersson, A. Thalhammer, Mean-square stability analysis of approximations of stochastic differential equations in infinite dimensions, BIT, 57 (2017), 963–990. https://doi.org/10.1007/s10543-017-0684-7 doi: 10.1007/s10543-017-0684-7
    [26] Y. Liu, Y. Niu, X. Cheng, Convergence and stability of the semi-tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients, Appl. Math. Comput., 414 (2022), 126680. https://doi.org/10.1016/j.amc.2021.126680 doi: 10.1016/j.amc.2021.126680
    [27] J. C. Mattingly, A. M. Stuart, D. J. Higham, Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise, Stoch. Proc. Appl., 101 (2002), 185–232. https://doi.org/10.1016/S0304-4149(02)00150-3 doi: 10.1016/S0304-4149(02)00150-3
    [28] G. N. Milstein, Numerical Integration of Stochastic Differential Equations, Dordrecht: Springer, 1995. https://doi.org/10.1007/978-94-015-8455-5
    [29] G. N. Milstein, E. Platen, H. Schurz, Balanced implicit methods for stiff stochastic differential equations, SIAM J. Numer. Anal., 35 (1998), 1010–1019. https://doi.org/10.1137/s0036142994273525 doi: 10.1137/s0036142994273525
    [30] T. Mitsui, Stability analysis of numerical solution of stochastic differential equations, Kokyuroku (Res. Inst. Math. Sci., Kyoto Univ.), 850 (1995), 124–138.
    [31] E. Moro, H. Schurz, Boundary preserving semi-analytical numerical algorithms for stochastic differential equations, SIAM J. Sci. Comput., 29 (2007), 1525–1549. https://doi.org/10.1137/05063725X doi: 10.1137/05063725X
    [32] S. Ogawa, Some problems in the simulation of nonlinear diffusion processes, Math. Comput. Simulat., 38 (1995), 217–223. https://doi.org/10.1016/0378-4754(93)E0085-J doi: 10.1016/0378-4754(93)E0085-J
    [33] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, 5 Eds., New York: Springer, 2000.
    [34] W. P. Petersen, Some experiments on numerical simulations of stochastic differential equations and a new algorithm, J. Comput. Phys., 113 (1994), 75–81 https://doi.org/10.1006/jcph.1994.1119 doi: 10.1006/jcph.1994.1119
    [35] E. Platen, An introduction to numerical methods for stochastic differential equations, Acta Numer., 8 (1999), 197–246. http://dx.doi.org/10.1017/S0962492900002920 doi: 10.1017/S0962492900002920
    [36] P. Protter, Stochastic Integration and Differential Equations, Berlin: Springer, 1990. https://doi.org/10.1007/978-3-662-02619-9
    [37] H. Ranjbar, L. Torkzadeh, D. Baleanu, K. Nouri, Simulating systems of Itô SDEs with split-step $(\alpha, \beta)$-Milstein scheme, AIMS Math., 8 (2023), 2576–2590. https://doi.org/10.3934/math.2023133 doi: 10.3934/math.2023133
    [38] V. Reshniak, A. Q. M. Khaliq, D. A. Voss, G. Zhang, Split-step Milstein methods for multi-channel stiff stochastic differential systems, Appl. Numer. Math., 89 (2015), 1–23. https://doi.org/10.1016/j.apnum.2014.10.005 doi: 10.1016/j.apnum.2014.10.005
    [39] A. Rodkina, H. Schurz, Almost sure asymptotic stability of drift-implicit $\theta$-methods for bilinear ordinary stochastic differential equations in $R^1$, J. Comput. Appl. Math., 180 (2005), 13–31. https://doi.org/10.1016/j.cam.2004.09.060 doi: 10.1016/j.cam.2004.09.060
    [40] Y. Saito, T. Mitsui, T-stability of numerical scheme for stochastic differential equations, In: R. P. Agarwal, Contributions in Numerical Mathematics, World Scientific Series in Applicable Analysis, 2 (1993), 333–344. https://doi.org/10.1142/9789812798886_0026
    [41] Y. Saito, T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal., 33 (1996), 2254–2267. https://doi.org/10.1137/S0036142992228409 doi: 10.1137/S0036142992228409
    [42] Y. Saito, T. Mitsui, MS-stability analysis for numerical solutions of stochastic differential equations: Beyond single-step single dim, In: R. Jeltsch, T. T. Li, I. H. Sloan, Some Topics in Industrial and Applied Mathematics, Series in Contemporary Applied Mathematics, 8 (2007), 181–194. https://doi.org/10.1142/9789812709356_0010
    [43] H. Schurz, Asymptotic mean square stability of an equilibrium point of some linear numerical solutions, Stoch. Anal. Appl., 14 (1996), 313–353. https://doi.org/10.1080/07362999608809442 doi: 10.1080/07362999608809442
    [44] H. Schurz, Stability, Stationarity, and Boundedness of Implicit Numerical Methods for Stochastic Differential Equations and Applications, Berlin: Logos-Verlag, 1997.
    [45] H. Schurz, The invariance of asymptotic laws of linear stochastic systems under discretization, ZAMM-Z. Angew. Math. Me., 79 (1999), 375–382. https://doi.org/10.1002/(SICI)1521-4001(199906)79:6 doi: 10.1002/(SICI)1521-4001(199906)79:6
    [46] H. Schurz, Preservation of probabilistic laws through Euler methods for Ornstein-Uhlenbeck process, Stoch. Anal. Appl., 17 (1999), 463–486. https://doi.org/10.1080/07362999908809613 doi: 10.1080/07362999908809613
    [47] H. Schurz, Moment attractivity, stability, contractivity exponents of non-linear stochastic dynamical systems, Discrete Cont. Dyn.-A, 7 (2001), 487–515. https://doi.org/10.3934/dcds.2001.7.487 doi: 10.3934/dcds.2001.7.487
    [48] H. Schurz, On moment-dissipative stochastic dynamical systems, Dynam. Syst. Appl., 10 (2001), 11–44.
    [49] H. Schurz, Numerical analysis of SDEs without tears, In: V. Lakshmikantham, D. Kannan, Handbook of Stochastic Analysis, Boca Raton: CRC Press, 2002. https://doi.org/10.1201/9781482294705
    [50] H. Schurz, Stability of numerical methods for ordinary stochastic differential equations along Lyapunov-type and other functions with variable step sizes, Electron. T. Numer. Ana., 20 (2005), 27–49.
    [51] H. Schurz, An axiomatic approach to numerical approximations of stochastic processes, Int. J. Numer. Anal. Mod., 3 (2006), 459–480.
    [52] H. Schurz, Almost sure asymptotic stability and convergence of stochastic Theta methods applied to systems of linear SDEs in $R^d$, Random Oper. Stoch. Equ., 19 (2011), 111–129. https://doi.org/10.1515/ROSE.2011.007 doi: 10.1515/ROSE.2011.007
    [53] H. Schurz, Basic concepts of numerical analysis of stochastic differential equations explained by balanced implicit theta methods, In: Z. M. Mounir, D. V. Filatova, Stochastic Differential Equations and Processes, Springer Proceedings in Mathematics, Berlin: Springer, 7 (2012), 1–139. https://doi.org/10.1201/9781482294705
    [54] H. Schurz, Numeric and dynamic B-stability, exact-monotone and asymptotic two-point behavior of theta methods for stochastic differential equations, J. Stoch. Anal., 2 (2021), 7. https://doi.org/10.31390/josa.2.2.07 doi: 10.31390/josa.2.2.07
    [55] A. N. Shiryaev, Probability, New York: Springer, 1996. https://doi.org/10.1007/978-1-4757-2539-1
    [56] A. N. Shiryaev, R. Sh. Liptser, Theory of Martingales, Dordrecht: Springer, 1989. https://doi.org/10.1007/978-94-009-2438-3
    [57] D. Talay, Simulation of stochastic differential systems, In: P. Krée, W. Wedig, Probabilistic Methods in Applied Physics, Springer Lecture Notes in Physics, Berlin: Springer, 451 (1995), 54–96. xa https://doi.org/10.1007/978-94-009-2438-3
    [58] D. Talay, Simulation of stochastic processes and applications, In: R. D. Devore, A. Iserles, E. S Süli, Foundations of Computational Mathematics, Cambridge: Cambridge University Press, 284 (2001), 345–360. https://doi.org/10.1017/CBO9781107360198.013
    [59] D. Talay, Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Relat., 8 (2002), 163–198.
    [60] A. Tocino, M. J. Senosiain, Mean-square stability analysis of numerical schemes for stochastic differential systems, J. Comput. Appl. Math., 236 (2012), 2660–2672. https://doi.org/10.1016/j.cam.2012.01.002 doi: 10.1016/j.cam.2012.01.002
    [61] X. Wang, S. Gan, The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients, J. Differ. Equ. Appl., 19 (2013), 466–490. https://doi.org/10.1080/10236198.2012.656617 doi: 10.1080/10236198.2012.656617
    [62] L. Weng, W. Liu, Invariant measures of the Milstein method for stochastic differential equations with commutative noise, Appl. Math. Comput., 358 (2019), 169–176. https://doi.org/10.1016/j.amc.2019.04.049 doi: 10.1016/j.amc.2019.04.049
    [63] Z. Yin, S. Gan, An improved Milstein method for stiff stochastic differential equations, Adv. Differ. Equ.-NY, 2015 (2015), 369. https://doi.org/10.1186/s13662-015-0699-9 doi: 10.1186/s13662-015-0699-9
    [64] R. Yue, Q. Guo, W. Liu, X. Mao, The truncated Milstein method for stochastic differential equations with commutative noise, J. Comput. Appl. Math., 338 (2018), 298–310. https://doi.org/10.1016/j.cam.2018.01.014 doi: 10.1016/j.cam.2018.01.014
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(720) PDF downloads(80) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog