Research article

Global well-posedness and asymptotic behavior of $ BV $ solutions to a system of balance laws arising in traffic flow

  • Received: 15 December 2022 Revised: 27 January 2023 Accepted: 27 January 2023 Published: 01 February 2023
  • We establish global well-posedness and asymptotic behavior of $ BV $ solutions to a system of balance laws modeling traffic flow with nonconcave fundamental diagram. We prove the results by finding a convex entropy-entropy flux pair and verifying the Kawashima condition, the sub-characteristic condition, and the partial dissipative inequality in the framework of Dafermos. This problem is of specific interest since nonconcave fundamental diagrams arise naturally in traffic flow.

    Citation: Tong Li, Nitesh Mathur. Global well-posedness and asymptotic behavior of $ BV $ solutions to a system of balance laws arising in traffic flow[J]. Networks and Heterogeneous Media, 2023, 18(2): 581-600. doi: 10.3934/nhm.2023025

    Related Papers:

  • We establish global well-posedness and asymptotic behavior of $ BV $ solutions to a system of balance laws modeling traffic flow with nonconcave fundamental diagram. We prove the results by finding a convex entropy-entropy flux pair and verifying the Kawashima condition, the sub-characteristic condition, and the partial dissipative inequality in the framework of Dafermos. This problem is of specific interest since nonconcave fundamental diagrams arise naturally in traffic flow.



    加载中


    [1] D. Amadori, A. Corli, Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow, Nonlinear Anal., 72 (2010), 2527–2541. https://10.1016/j.na.2009.10.048 doi: 10.1016/j.na.2009.10.048
    [2] D. Amadori, G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1–26. https://10.1017/S0308210500000767 doi: 10.1017/S0308210500000767
    [3] F. Ancona, L. Caravenna, A. Marson, On the structure of BV entropy solutions for hyperbolic systems of balance laws with general flux function, PJ. Hyperbolic Differ. Equ., 16 (2019), 333–378. https://10.1142/S0219891619500139 doi: 10.1142/S0219891619500139
    [4] A. Aw, M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916–938. https://10.1137/S0036139997332099 doi: 10.1137/S0036139997332099
    [5] G. Q. Chen, D. C. Levermore, T. P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787–830. https://10.1002/cpa.3160470602 doi: 10.1002/cpa.3160470602
    [6] C. M. Dafermos, Asymptotic behavior of BV solutions to hyperbolic systems of balance laws with relaxation, J. Hyperbolic Differ. Equ., 12 (2015), 277–292. https://10.1142/S0219891615500083 doi: 10.1142/S0219891615500083
    [7] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016.
    [8] D. C. Gazis, R. Herman, R. W. Rothery, Nonlinear follow-theleader models of traffic flow, Operat. Res., 9 (1961), 545–567.
    [9] L. C. Evans, Partial differential equations, American Mathematical Society, Providence, 2010.
    [10] P. Goatin, N. Laurent-Brouty, The zero relaxation limit for the Aw-Rascle-Zhang traffic flow model, Z. Angew. Math. Phys., 70 (2019). https://10.1007/s00033-018-1071-1 doi: 10.1007/s00033-018-1071-1
    [11] B. Greenshields, A study of traffic capacity, Highway Research Board Proceedings, 14 (1933), 448–477.
    [12] D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model, Transportation Res. Part B: Methodol., 35 (2001), 183–211.
    [13] A. Klar, R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math, 60 (2000), 1749–1766.
    [14] R. D. Kühne, Macroscopic Freeway Model for dense traffic-stop-start waves and incident detection, 9th Int. Symp. on Transp. and Traffic Theory, VNU Science Press, Delft, (1984), 21–42.
    [15] R. D. Kühne, Freeway control and incident detection using a stochastic continuum theory of traffic flow, Proc. 1st Int. Conf. on Applied Advanced Technology in Transportation, Engineering, San Diego, (1989), 287–292.
    [16] C. Lattanzio, P. Marcati, The zero relaxation limit for the hydrodynamic Whitham traffic flow model, J. Differ Equ, 141 (1997), 150–178. https://10.1006/jdeq.1997.3311 doi: 10.1006/jdeq.1997.3311
    [17] Y. Lee, Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux, J. Differ Equ, 266 (2019), 580–599. https://10.1016/j.jde.2018.07.048 doi: 10.1016/j.jde.2018.07.048
    [18] T. Li, Global solutions and zero relaxation limit for a traffic flow model, SIAM J. Appl. Math., 61 (2000), 1042–1061. https://10.1137/S0036139999356788 doi: 10.1137/S0036139999356788
    [19] T. Li, $L^1$ stability of conservation laws for a traffic flow model, Electron. J. Differ Equ, (2001), 14–18.
    [20] T. Li, H.M. Zhang, The mathematical theory of an enhanced nonequilibrium traffic flow model, Netw. Spat. Econ., 1 (2001), 167–177. https://10.1023/A:1011585212670 doi: 10.1023/A:1011585212670
    [21] T. Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow, J. Differ Equ, 190 (2003), 131–149.
    [22] T. Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Mat. Anal., 40 (2008), 1058–1075.
    [23] M. J. Lighthill, G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317–345. https://10.1098/rspa.1955.0089 doi: 10.1098/rspa.1955.0089
    [24] T. Luo, R. Natalini, T. Yang, Global BV solutions to a $p$-system with relaxation, J. Differ Equ, 162 (2000), 174–198. https://10.1006/jdeq.1999.3697 doi: 10.1006/jdeq.1999.3697
    [25] R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math., 49 (1996), 795–823.
    [26] H. J. Payne, Models of Freeway Traffic and Control, in Simulation Councils Proc. Ser.: Mathematical Models of Public Systems, Simulation Councils, La Jolla, (1971), 51–60.
    [27] I. Prigogine, R. Herman, Kinetic Theory of Vehicular Traffic, American Elsevier Publishing Company Inc., New York, 1971.
    [28] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42–51. https://10.1287/opre.4.1.42 doi: 10.1287/opre.4.1.42
    [29] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1994. https://10.1007/978-1-4612-0873-0
    [30] G. B. Whitham, Linear and nonlinear waves, John Wiley & Sons, New York, 1974.
    [31] H. Zhang, New Perspectives on continuum traffic flow models, Netw. Spat. Econ., 1 (2001), 9–33. https://10.1023/A:1011539112438 doi: 10.1023/A:1011539112438
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1349) PDF downloads(84) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog