We establish global well-posedness and asymptotic behavior of $ BV $ solutions to a system of balance laws modeling traffic flow with nonconcave fundamental diagram. We prove the results by finding a convex entropy-entropy flux pair and verifying the Kawashima condition, the sub-characteristic condition, and the partial dissipative inequality in the framework of Dafermos. This problem is of specific interest since nonconcave fundamental diagrams arise naturally in traffic flow.
Citation: Tong Li, Nitesh Mathur. Global well-posedness and asymptotic behavior of $ BV $ solutions to a system of balance laws arising in traffic flow[J]. Networks and Heterogeneous Media, 2023, 18(2): 581-600. doi: 10.3934/nhm.2023025
We establish global well-posedness and asymptotic behavior of $ BV $ solutions to a system of balance laws modeling traffic flow with nonconcave fundamental diagram. We prove the results by finding a convex entropy-entropy flux pair and verifying the Kawashima condition, the sub-characteristic condition, and the partial dissipative inequality in the framework of Dafermos. This problem is of specific interest since nonconcave fundamental diagrams arise naturally in traffic flow.
[1] | D. Amadori, A. Corli, Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow, Nonlinear Anal., 72 (2010), 2527–2541. https://10.1016/j.na.2009.10.048 doi: 10.1016/j.na.2009.10.048 |
[2] | D. Amadori, G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1–26. https://10.1017/S0308210500000767 doi: 10.1017/S0308210500000767 |
[3] | F. Ancona, L. Caravenna, A. Marson, On the structure of BV entropy solutions for hyperbolic systems of balance laws with general flux function, PJ. Hyperbolic Differ. Equ., 16 (2019), 333–378. https://10.1142/S0219891619500139 doi: 10.1142/S0219891619500139 |
[4] | A. Aw, M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916–938. https://10.1137/S0036139997332099 doi: 10.1137/S0036139997332099 |
[5] | G. Q. Chen, D. C. Levermore, T. P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787–830. https://10.1002/cpa.3160470602 doi: 10.1002/cpa.3160470602 |
[6] | C. M. Dafermos, Asymptotic behavior of BV solutions to hyperbolic systems of balance laws with relaxation, J. Hyperbolic Differ. Equ., 12 (2015), 277–292. https://10.1142/S0219891615500083 doi: 10.1142/S0219891615500083 |
[7] | C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016. |
[8] | D. C. Gazis, R. Herman, R. W. Rothery, Nonlinear follow-theleader models of traffic flow, Operat. Res., 9 (1961), 545–567. |
[9] | L. C. Evans, Partial differential equations, American Mathematical Society, Providence, 2010. |
[10] | P. Goatin, N. Laurent-Brouty, The zero relaxation limit for the Aw-Rascle-Zhang traffic flow model, Z. Angew. Math. Phys., 70 (2019). https://10.1007/s00033-018-1071-1 doi: 10.1007/s00033-018-1071-1 |
[11] | B. Greenshields, A study of traffic capacity, Highway Research Board Proceedings, 14 (1933), 448–477. |
[12] | D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model, Transportation Res. Part B: Methodol., 35 (2001), 183–211. |
[13] | A. Klar, R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math, 60 (2000), 1749–1766. |
[14] | R. D. Kühne, Macroscopic Freeway Model for dense traffic-stop-start waves and incident detection, 9th Int. Symp. on Transp. and Traffic Theory, VNU Science Press, Delft, (1984), 21–42. |
[15] | R. D. Kühne, Freeway control and incident detection using a stochastic continuum theory of traffic flow, Proc. 1st Int. Conf. on Applied Advanced Technology in Transportation, Engineering, San Diego, (1989), 287–292. |
[16] | C. Lattanzio, P. Marcati, The zero relaxation limit for the hydrodynamic Whitham traffic flow model, J. Differ Equ, 141 (1997), 150–178. https://10.1006/jdeq.1997.3311 doi: 10.1006/jdeq.1997.3311 |
[17] | Y. Lee, Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux, J. Differ Equ, 266 (2019), 580–599. https://10.1016/j.jde.2018.07.048 doi: 10.1016/j.jde.2018.07.048 |
[18] | T. Li, Global solutions and zero relaxation limit for a traffic flow model, SIAM J. Appl. Math., 61 (2000), 1042–1061. https://10.1137/S0036139999356788 doi: 10.1137/S0036139999356788 |
[19] | T. Li, $L^1$ stability of conservation laws for a traffic flow model, Electron. J. Differ Equ, (2001), 14–18. |
[20] | T. Li, H.M. Zhang, The mathematical theory of an enhanced nonequilibrium traffic flow model, Netw. Spat. Econ., 1 (2001), 167–177. https://10.1023/A:1011585212670 doi: 10.1023/A:1011585212670 |
[21] | T. Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow, J. Differ Equ, 190 (2003), 131–149. |
[22] | T. Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Mat. Anal., 40 (2008), 1058–1075. |
[23] | M. J. Lighthill, G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317–345. https://10.1098/rspa.1955.0089 doi: 10.1098/rspa.1955.0089 |
[24] | T. Luo, R. Natalini, T. Yang, Global BV solutions to a $p$-system with relaxation, J. Differ Equ, 162 (2000), 174–198. https://10.1006/jdeq.1999.3697 doi: 10.1006/jdeq.1999.3697 |
[25] | R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math., 49 (1996), 795–823. |
[26] | H. J. Payne, Models of Freeway Traffic and Control, in Simulation Councils Proc. Ser.: Mathematical Models of Public Systems, Simulation Councils, La Jolla, (1971), 51–60. |
[27] | I. Prigogine, R. Herman, Kinetic Theory of Vehicular Traffic, American Elsevier Publishing Company Inc., New York, 1971. |
[28] | P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42–51. https://10.1287/opre.4.1.42 doi: 10.1287/opre.4.1.42 |
[29] | J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1994. https://10.1007/978-1-4612-0873-0 |
[30] | G. B. Whitham, Linear and nonlinear waves, John Wiley & Sons, New York, 1974. |
[31] | H. Zhang, New Perspectives on continuum traffic flow models, Netw. Spat. Econ., 1 (2001), 9–33. https://10.1023/A:1011539112438 doi: 10.1023/A:1011539112438 |