This paper describes a study of the barycentric interpolation collocation method for the optimal control problem governed by a nonlinear convection-diffusion equation. Using Lagrangian multipliers, we obtain the continuous optimality system which is composed of state equations, adjoint equations and optimality conditions. Then, barycentric interpolation collocation methods are applied to discretize the optimality system and the nonlinear term is treated by Newton's iteration. Furthermore, the corresponding consistency analyses of discrete schemes are demonstrated. Finally, the validity of the proposed schemes is demonstrated through several numerical experiments. Compared with the classical finite difference method, collocation schemes can yield the higher-order accurate solutions with fewer nodes.
Citation: Rong Huang, Zhifeng Weng. A numerical method based on barycentric interpolation collocation for nonlinear convection-diffusion optimal control problems[J]. Networks and Heterogeneous Media, 2023, 18(2): 562-580. doi: 10.3934/nhm.2023024
This paper describes a study of the barycentric interpolation collocation method for the optimal control problem governed by a nonlinear convection-diffusion equation. Using Lagrangian multipliers, we obtain the continuous optimality system which is composed of state equations, adjoint equations and optimality conditions. Then, barycentric interpolation collocation methods are applied to discretize the optimality system and the nonlinear term is treated by Newton's iteration. Furthermore, the corresponding consistency analyses of discrete schemes are demonstrated. Finally, the validity of the proposed schemes is demonstrated through several numerical experiments. Compared with the classical finite difference method, collocation schemes can yield the higher-order accurate solutions with fewer nodes.
[1] | A. Martínez, C. Rodríguez, M. E. Vázquez-Méndez, Theoretical and numerical analysis of an optimal control problem related to wastewater treatment, SIAM J. Control Optim, 38 (2000), 1534–1553. https://doi.org/10.1137/S0363012998345640 doi: 10.1137/S0363012998345640 |
[2] | J. Zhu, Q. C. Zeng, A mathematical formulation for optimal control of air pollution, Sci. China Earth Sci., 46 (2003), 994–1002. https://doi.org/10.1007/BF02959394 doi: 10.1007/BF02959394 |
[3] | Z. F. Weng, J. Z. Yang, X. L. Lu, A stabilized finite element method for the convection dominated diffusion optimal control problem, Appl. Anal., 95 (2016), 2807–2823. https://doi.org/10.1080/00036811.2015.1114606 doi: 10.1080/00036811.2015.1114606 |
[4] | R. Sandilya, S. Kumar, A discontinuous interpolated finite volume approximation of semilinear elliptic optimal control problems, Numer Methods Partial Differ Equ, 33 (2017), 2090–2113. https://doi.org/10.1002/num.22181 doi: 10.1002/num.22181 |
[5] | H. Yücel, M. Stoll, P. Benner, A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms, Comput. Math. Appl., 70 (2015), 2414–2431. https://doi.org/10.1016/j.camwa.2015.09.006 doi: 10.1016/j.camwa.2015.09.006 |
[6] | Z. L. Lu, L. Z. Cao, L. Li, Interpolation coefficients mixed finite element methods for general semilinear Dirichlet boundary elliptic optimal control problems, Appl. Anal., 97 (2018), 2496–2509. https://doi.org/10.1080/00036811.2017.1376319 doi: 10.1080/00036811.2017.1376319 |
[7] | X. Lin, Y. Chen, Y. Huang, Galerkin spectral methods for an elliptic optimal control problems with $L^2$-norm state constraint, Commun. Math. Sci., 19 (2021), 1247–1267. https://doi.org/10.4310/CMS.2021.v19.n5.a4 doi: 10.4310/CMS.2021.v19.n5.a4 |
[8] | K. Porwal, P. Shakya, A finite element method for an elliptic optimal control problem with integral state constraints, Appl. Numer. Math., 169 (2021), 273–288. https://doi.org/10.1016/j.apnum.2021.07.002 doi: 10.1016/j.apnum.2021.07.002 |
[9] | F. Samadi, A. Heydari, S. Effati, A numerical method based on a bilinear pseudo-spectral method to solve the convection-diffusion optimal control problems, Int. J. Comput. Math., 98 (2021), 28–46. https://doi.org/10.1080/00207160.2020.1723563 doi: 10.1080/00207160.2020.1723563 |
[10] | F. Y. Wang, Z. Q. Zhang, Z. J. Zhou, A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations, J. Comput. Appl. Math., 386 (2021), 113233. |
[11] | P. G. Casanova, C. Gout, J. Zavaleta, Radial basis function methods for optimal control of the convection-diffusion equation: a numerical study, Eng. Anal. Bound. Elem., 108 (2019), 201–209. https://doi.org/10.1016/j.enganabound.2019.08.008 doi: 10.1016/j.enganabound.2019.08.008 |
[12] | F. J. Wang, C. M. Fan, C. Z. Zhang, J. Lin, A localized space-time method of fundamental solutions for diffusion and convection-diffusion problems, Adv. Appl. Math. Mech., 12 (2020), 940–958. https://doi.org/10.4208/aamm.OA-2019-0269 doi: 10.4208/aamm.OA-2019-0269 |
[13] | F. J. Wang, C. Wang, Z. T. Chen, Local knot method for 2D and 3D convection-diffusion-reaction equations in arbitrary domains, Appl. Math. Lett., 105 (2020), 106308. https://doi.org/10.1016/j.aml.2020.106308 doi: 10.1016/j.aml.2020.106308 |
[14] | F. J. Wang, Q. H. Zhao, Z. T. Chen, C. M. Fan, Localized Chebyshev collocation method for solving elliptic partial differential equations in arbitrary 2D domains, Appl. Math. Comput., 397 (2021), 125903. https://doi.org/10.1016/j.amc.2020.125903 doi: 10.1016/j.amc.2020.125903 |
[15] | M. Darehmiraki, A. Rezazadeh, A. Ahmadia, S. Salahshour, An interpolation method for the optimal control problem governed by the elliptic convection-diffusion equation, Numer. Meth. Part. D. E., 38 (2022), 137–159. https://doi.org/10.3917/enje.038.0137 doi: 10.3917/enje.038.0137 |
[16] | M. Darehmiraki, A. Rezazadeh, A new solution for optimal control of fractional convection-reaction-diffusion equation using rational barycentric interpolation, B. Iran. Math. Soc., 46 (2020), 1307–1340. https://doi.org/10.1007/s41980-019-00327-y doi: 10.1007/s41980-019-00327-y |
[17] | R. Jiwari, Barycentric rational interpolation and local radial basis functions based numerical algorithms for multidimensional sine-Gordon equation, Numer Methods Partial Differ Equ, 37 (2021), 1965–1992. https://doi.org/10.1002/num.22636 doi: 10.1002/num.22636 |
[18] | H. Y. Liu, J. Huang, W. Zhang, Y. Y. Ma, Meshfree approach for solving multi-dimensional systems of Fredholm integral equations via barycentric Lagrange interpolation, Appl. Math. Comput., 346 (2019), 295–304. https://doi.org/10.1016/j.amc.2018.10.024 doi: 10.1016/j.amc.2018.10.024 |
[19] | J. Li, X. N. Su, J. Z. Qu, Linear barycentric rational collocation method for solving telegraph equation, Math. Meth. Appl. Sci., 44 (2021), 11720–11737. https://doi.org/10.1002/mma.7548 doi: 10.1002/mma.7548 |
[20] | O. Oruc, Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation, Comput. Math. Appl., 79 (2020), 3272–3288. https://doi.org/10.1016/j.camwa.2020.01.025 doi: 10.1016/j.camwa.2020.01.025 |
[21] | Y. F. Deng, Z. F. Weng, Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation, AIMS Math., 6 (2021), 3857–3873. https://doi.org/10.3934/math.2021229 doi: 10.3934/math.2021229 |
[22] | W. H. Luo, T. Z. Huang, X. M. Gu, Y. Liu, Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations, Appl. Math. Lett., 68 (2017), 13–19. https://doi.org/10.1016/j.aml.2016.12.011 doi: 10.1016/j.aml.2016.12.011 |
[23] | S. C. Yi, L. Q. Yao, A steady barycentric Lagrange interpolation method for the 2D higher-order time fractional telegraph equation with nonlocal boundary condition with error analysis, Numer Methods Partial Differ Equ, 35 (2019), 1694–1716. https://doi.org/10.1002/num.22371 doi: 10.1002/num.22371 |
[24] | M. S. Floater, K. Hormann, Barycentric rational interpolation with no polesand high rates of approximation, Numer. Math., 107 (2007), 315–331. https://doi.org/10.1007/s00211-007-0093-y doi: 10.1007/s00211-007-0093-y |
[25] | J. P. Berrut, M. S. Floater, G. Klein, Convergence rates of derivatives of a family of barycentric rational interpolants, Appl. Numer. Math., 61 (2011), 989–1000. https://doi.org/10.1016/j.apnum.2011.05.001 doi: 10.1016/j.apnum.2011.05.001 |
[26] | G. Klein, J. P. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal., 50 (2012), 643–656. https://doi.org/10.1137/110827156 doi: 10.1137/110827156 |
[27] | W. H. Luo, C. P. Li, T. Z. Huang, X. M. Gu, G. C. Wu, A high-order accurate numerical scheme for the Caputo derivative with applications to fractional diffusion problems, Numer Funct Anal Optim, 39 (2018), 600–622. https://doi.org/10.1055/a-0790-1999 doi: 10.1055/a-0790-1999 |