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Abstract: This paper describes a study of the barycentric interpolation collocation method for the
optimal control problem governed by a nonlinear convection-diffusion equation. Using Lagrangian
multipliers, we obtain the continuous optimality system which is composed of state equations, adjoint
equations and optimality conditions. Then, barycentric interpolation collocation methods are applied to
discretize the optimality system and the nonlinear term is treated by Newton’s iteration. Furthermore,
the corresponding consistency analyses of discrete schemes are demonstrated. Finally, the validity of
the proposed schemes is demonstrated through several numerical experiments. Compared with the
classical finite difference method, collocation schemes can yield the higher-order accurate solutions
with fewer nodes.
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1. Introduction

Optimal control problems governed by convection-diffusion equations arise in many real-world
problems such as wastewater treatment problems [1] and air pollution problems [2]. Especially it is
also an important step toward optimal control problems of the fluid. Such problems have profound
application prospects, which simulate some chemical or biological process between different species.
It is difficult or impossible to obtain their analytical solutions, and the only way to solve them is
to seek approximate solutions by using numerical methods. Thus, the extraction of their numerical
algorithms is of great practical significance for scholars. In this paper, we will propose the barycentric
interpolation collocation methods for optimal control problems governed by the nonlinear convection-
diffusion equation, which can be written as
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min J (v, u) =
1
2

∫
Ω

(v − v̂)2dΩ +
w
2

∫
Ω

u2dΩ,

s.t − α∆v + β · ∇v + γv + ϕ(v) = f + u, v ∈ Ω,
v = 0, v ∈ ∂Ω.

(1.1)

where ∆ is the Laplace operator, ∇ is the gradient operator and v and u are the state variable and
control variable, respectively. v̂ is the desired variable, and ϕ(v) represents the nonlinear term. w is the
so-called regularization parameter. J (v, u) stands for the cost function. Ω is a bounded domain with
the boundary ∂Ω.

In recent years, a large number of numerical methods have been presented for optimal control
problems. Weng et al. [3] presented a stabilized finite element method for optimal control problems
governed by a convection dominated diffusion equation. Sandilya and Kumar [4] proposed a
discontinuous interpolated finite volume approximation of semilinear elliptic optimal control
problems. Yücel et al. [5] applied a discontinuous Galerkin method for optimal control problems
governed by a system of convection-diffusion PDEs with nonlinear reaction terms. Lu et al. [6]
presented a priori error estimates of interpolation coefficients mixed finite element methods for
semilinear Dirichlet boundary optimal control problems. Lin et al. [7] developed Galerkin spectral
methods for optimal control problem governed by elliptic equations. Porwal and Shakya [8] presented
a finite element method for an elliptic optimal control problem with integral state constraints. In [9], a
bilinear pseudo-spectral method based on Chebyshev polynomials was used for convection-diffusion
optimal control problems, and the coupled Sylvester system was solved by some direct and iterative
methods. Wang et al. [10] investigated a spectral Galerkin approximation of an optimal control
problems governed by a fractional advection-diffusion-reaction equation with an integral fractional
Laplacian. Casanova et al. [11] adopted radial basis function techniques for optimal constrained
optimization problems governed by linear convection-diffusion PDEs.

Recently, many researchers have developed a variety of meshless methods [12–14] for convection-
diffusion problems. In particular, the barycentric interpolation collocation is a novel meshless method,
which is different from the traditional element-based numerical method. It can effectively avoid the
cumulative error caused by the difference scheme. Additionally, it can handle irregular domains. This
method has attracted the attention of scholars due to its high precision, fast speed, good stability and
convenient program execution. It was extended to solve various PDEs including linear optimal control
problems [15,16], Sine-Gordon equations [17], high-dimensional Fredholm integral equations [18],
telegraph equations [19], viscoelastic wave equations [20], the Allen-Cahn equation [21], nonlinear
parabolic partial differential equations [22], etc. Lately, Yi and Yao [23] presented error analysis of a
barycentric Lagrange interpolation (BLI) collocation scheme.

To the best of our knowledge, there are few studies about using the barycentric interpolation
collocation method for the nonlinear optimal control problem described by Eq (1.1). Based on the
above work, we proposed two numerical schemes for the nonlinear optimal control in two-dimensions
by using BLI collocation or barycentric rational interpolation (BRI) collocation. Moreover,
consistency analysis of discrete schemes is presented.

The rest of this paper is organized as follows: First, we obtain the continuous optimality system
using Lagrangian multipliers in Section 2. Then, barycentric interpolation collocation methods are
briefly introduced in Section 3. Two barycentric interpolation collocation schemes are proposed in
Section 4, and we also provide the consistency analysis of discrete schemes. In Section 5, numerical
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simulations are presented to verify the accuracy and efficiency of the proposed collocation methods.
Finally, conclusions are drawn in Section 6.

2. Optimality conditions

In this section, we consider the optimize-then-discretize approach based on the Lagrangian
multiplier method for solving Eq (1.1). First, we define the Lagrangian multiplier p on Ω as follows

L =
1
2

∫
Ω

(v − v̂)2dΩ+
w
2

∫
Ω

u2dΩ +
∫
Ω

(−α∆v + β · ∇v + γv + ϕ(v) − f − u) pdΩ +
∫
∂Ω

vpds . (2.1)

Then, the state equations are obtained by differentiating the derivative of L with respect to p{
−α∆v + β · ∇v + γv + ϕ(v) = f + u, v ∈ Ω,
v = 0, v ∈ ∂Ω.

(2.2)

Similarly, the adjoint equations are gained by calculating the Fréchet derivative of L with respect
to v {

−α∆p − β · ∇p + γp + ϕ′(v)p = v − v̂, p ∈ Ω,
p = 0, p ∈ ∂Ω.

(2.3)

Finally, by differentiating with respect to u, the optimality equation is written as follows

wu − p = 0, on Ω. (2.4)

Combining Eqs (2.2)–(2.4), Eq (1.1) can be transformed into a continuous optimality system

−α∆v + β · ∇v + γv + ϕ(v) = f + u, v ∈ Ω,
v = 0, v ∈ ∂Ω,
−α∆p − β · ∇p + γp + ϕ′(v)p = v − v̂, p ∈ Ω,
p = 0, p ∈ ∂Ω,
wu − p = 0, on Ω.

(2.5)

3. Barycentric interpolation collocation method

In this section, we mainly introduce BLI and BRI collocation.

3.1. Barycentric Lagrange interpolation collocation method

This part presents a novel meshless method named BLI to solve nonlinear optimal control problems.
Suppose that m+1 distinct nodes xk(k = 0, 1, · · · ,m) are given together with a set of functional values
hk at the discrete nodes xk correspondingly. Let q (x) denote the approximate interpolation polynomial
of h(x), satisfying q (xk) = hk (k = 0, 1, · · · ,m).

As q (x) is unique, we can rewrite it in the Lagrange interpolation polynomial form

h(x) ≈ q(x) =
m∑

k=0

Lk (x)hk, k = 0, 1, · · · ,m, (3.1)
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where Lk(x) is the Lagrange basis function, and Lk(x) =

m∏
i,k

(x − xi)

m∏
i,k

(xk − xi)
, i = 0, 1, · · · ,m.

Define L̃ (x) = (x − x0) (x − x1) · · · (x − xm); thus, the basis function Lk (x) can be expressed as

Lk (x) = L̃(x)
ωk

x − xk
, k = 0, 1, · · · ,m, (3.2)

where ωk =
1∏

k,i
(xk − xi)

is the barycentric weight.

Supposing that q(x) = 1 in Eq (3.1) and inserting Eq (3.2) into Eq (3.1), the results are shown as


1 = L̃(x)

m∑
k=0

ωk

x − xk
, (3.3a)

q(x) = L̃(x)
m∑

k=0

ωk

x − xk
hk. (3.3b)

By dividing Eq (3.3b) by Eq (3.3a) and canceling the common polynomial L̃(x), the BLI formula
for v(x) can be expressed as

q (x) =

m∑
k=0

ωk

x − xk
hk

M∑
k=0

ωk

x − xk

:=
m∑

k=0

ψk(x)hk. (3.4)

As a matter of fact, the BLI formula has excellent numerical stability when Chebyshev points are
selected, so the nodes selected in this article and the corresponding barycentric weights are

xk = cos(
k
m
π), k = 0, 1, · · · ,m. (3.5)

ωk = (−1)kδk, δk =


1
2
, k = 0 or m,

1, else.
(3.6)

3.2. Barycentric rational interpolation collocation method

In this subsection, we consider the derivation process of the BRI collocation method. Suppose
that (x0, h0), (x1, h1), · · · (xm, hm) are given m + 1 interpolation nodes of the interval [a, b], and that the
function h(x) satisfies h(xk) = hk, k = 0, 1, 2 · · ·m. Additionally, d(0 ≤ d ≤ m) is a chosen integer; We
define the following BRI formula:

r (x) =

m∑
k=0

wk

x − xk
hk

m∑
k=0

wk

x − xk

=

m∑
k=0

rk (x) hk, (3.7)
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where rk (x) =

wk

x − xk
m∑

k=0

wk

x − xk

is the basic function and the interpolation weight wk =
∑

i∈Jk

(−1)i
i+d∏

l=i,l,k

1
xk − xl

,

Jk = {i ∈ J|k − d ≤ i ≤ k}, J = {0, 1, · · · ,m − d}. More details about the BRI formula are available
[24,25].

Similarly, the BRI formula for the binary function h(x, y) with rM,N(x, y) can be obtained. Let
us partition the domain Ω = [a, b] × [c, d] into Ωh = (xk, y j), k = 0, 1, · · ·M, j = 0, 1, 2, · · ·N. Then
d1 and d2 are two integers, where 0 ≤ d1 ≤ M, 0 ≤ d2 ≤ N, h(xk, y j) = hk j. Thus, rM,N(x, y) can be
expressed as

h(x, y) :≈ rM,N(x, y) =
M∑

k=0

N∑
j=0

rk(x)r j(y)hk j, (3.8)

where rk(x) and r j(y) are basis functions, which can be expressed as

rk (x) =

w̄k

x − xk
M∑

s=0

w̄s

x − xs

, w̄k =
∑
i∈Jk

(−1)i
i+d1∏

l=i,l,k

1
xk − xl

, Jk = {k ∈ 0, 1, · · · ,M − d1 : k − d1 ≤ i ≤ k} , (3.9)

r j (y) =

v̄ j

y − x j

N∑
s=0

v̄s

y − ys

, v̄ j =
∑
i∈J j

(−1)i
i+d2∏

l=i,l, j

1
y j − yl

, J j = {i ∈ 0, 1, · · · ,N − d2 : j − d2 ≤ i ≤ j} . (3.10)

3.3. Differential matrix

In order to solve the optimal control problem, derivatives expressions of the barycentric
interpolation formula should be derived. Obviously, the µ-order derivative of q(x) at the different
nodes xi (i = 0, 1, · · · ,M) can be obtained as follows:

q(µ) (xi) =
M∑

k=0

ψ(µ)
k

(xi) hk :=
M∑

k=0

D(µ)
ik hk, µ = 1, 2, · · · , (3.11)

where D(µ)
ik denotes the element of the differential matrix D(µ), the recursive formula of which [26,27]

is as follows according to the principles of mathematical induction
D(1)

ik =
wi

wk

1
(xi − xk)

, i , k,

D(1)
ii = −

M∑
k=0,k,i

D(1)
ik .

(3.12)


D(µ)

ik = µ

D(1)
ik D(µ−1)

ii −
D(µ−1)

ik

xi − xk

 , i , k,

D(µ)
ii = −

M∑
k=0,k,i

D(µ)
ik .

(3.13)
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4. Discrete system and consistency analysis

4.1. Discrete scheme based on barycentric interpolation collocation method

In this part, we will establish numerical schemes for Eq (1.1) by discretizing x and y directions with
barycentric interpolation formulae. We consider the domain Ω = [0, 1]× [0, 1], and that the x direction
is discretized by M + 1 nodes with N + 1 nodes along the y direction. Supposing that β = (β1, β2), the
optimality conditions of Eq (1.1) are as follows

−α
∂2v
∂x2 − α

∂2v
∂y2 + β1

∂v
∂x
+ β2

∂v
∂y
+ γv + ϕ(v) −

1
w

p = f , v ∈ Ω,

v(0, y) = 0, v(1, y) = 0, y ∈ [0, 1],
v(x, 0) = 0, v(x, 1) = 0, x ∈ [0, 1].

(4.1)


−α

∂2 p
∂x2 − α

∂2 p
∂y2 − β1

∂p
∂x
− β2

∂p
∂y
+ γp + ϕ′(v)p − v = −v̂, p ∈ Ω,

p(0, y) = 0, p(1, y) = 0, y ∈ [0, 1],
p(x, 0) = 0, p(x, 1) = 0, x ∈ [0, 1].

(4.2)

According to the barycentric interpolation formula, v(x, y) and p(x, y) can be written as follows

v (x, y) =
M∑

k=0

N∑
j=0

Ck (x) D j (y)vk j, p (x, y) =
M∑

k=0

N∑
j=0

Ck (x) D j (y)pk j, (4.3)

where Ck(x) and D j(y) represent basis functions of the barycentric interpolation method along the x
and y directions. And vk j = v(xk, y j) and pk j = p(xk, y j).

Consider the λ+ µ order partial derivative of v (x, y) with respect to the spatial variables x and y; we
have

∂λ+µv(x, y)
∂xλ∂yµ

:= v(λ,µ) (x, y) =
M∑

k=0

N∑
j=0

C(λ)
k (x) D(µ)

j (y) vk j, λ, µ = 0, 1, 2, · · · . (4.4)

Thus, the approximate values of the partial derivatives of v(x, y) at the node
(
xq, ys

)
can be written

as

v(λ,µ)
(
xq, ys

)
=

M∑
k=0

N∑
j=0

C(λ)
k

(
xq

)
D(µ)

j (ys) vk j, q = 0, 1, 2, · · · ,M, s = 0, 1, 2, · · · ,N. (4.5)

Similarly, we consider the λ+µ order partial derivative of p(x, y) with respect to the variables x and
y, and its approximate value at the node

(
xq, ys

)
is

p(λ,µ) (x, y) =
M∑

k=0

N∑
j=0

C(λ)
k (x) D(µ)

j (y) pk j, λ, µ = 0, 1, 2, · · · ,

p(λ,µ)
(
xq, ys

)
=

M∑
k=0

N∑
j=0

C(λ)
k

(
xq

)
D(µ)

j (ys) pk j, q = 0, 1, · · · ,M, s = 0, 1, · · · ,N.
(4.6)
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Selecting a suitable λ and µ and then substituting Eqs (4.4)–(4.6) into Eqs (4.1) and (4.2), is implied
that

−α
M∑

k=0

N∑
j=0

C(2)
k (xq)D(0)

j (ys)vk j − α
M∑

k=0

N∑
j=0

C(0)
i (xq)D(2)

j (ys)vk j + β1

M∑
k=0

N∑
j=0

C(1)
k (xq)D(0)

j (ys)vk j

+β2

M∑
k=0

N∑
j=0

C(0)
k (xq)D(1)

j (ys)vk j + γvk j + ϕ(vk j) −
1
w

pk j = fk j,

−α
M∑

k=0

N∑
j=0
ϕC(2)

k (xq)D(0)
j (ys)pk j − α

M∑
k=0

N∑
j=0

C(0)
i (xq)D(2)

j (ys)pk j − β1

M∑
k=0

N∑
j=0

C(1)
k (xq)D(0)

j (ys)pk j

−β2

M∑
k=0

N∑
j=0

C(0)
k (xq)D(1)

j (ys)pk j + γpk j + ϕ
′(vk j)pk j − vk j = −v̂k j,

(4.7)

with the following boundary conditions
v0 j = v(x0, y j) = 0, vM j = v(xM, y j) = 0, j = 1, · · ·N − 1,
vk0 = v(xk, y0) = 0, vkN = v(xk, yN) = 0, k = 1, · · ·M − 1,
p0 j = p(x0, y j) = 0, pM j = p(xM, y j) = 0, j = 1, · · ·N − 1,
pk0 = p(xk, y0) = 0, pkN = p(xk, yN) = 0, k = 1, · · ·M − 1.

(4.8)

This system can be derived by applying the matrix form
diag(−α) · (C(2) ⊗ IN + IM ⊗ D(2))V + diag(β1) · (C(1) ⊗ IN)V + diag(β2) · (IM ⊗ D(1))V

+diag(γ) · V + ϕ(V) −
1
w

P = F,
diag(−α) · (C(1) ⊗ IN + IM ⊗ D(2))P − diag(β1) · (C(1) ⊗ IN)P − diag(β2) · (IM ⊗ D(1))P
+diag(γ) · P − V + ϕ′(V)P = −V̂,

(4.9)

where ⊗ stands for the Kronecker product of the matrix, C(i),D(i)(i = 1, 2) are differentiating matrices
of order i and V,P,F, and V̂ are column vectors, which can be respectively expressed as follows


V = [v00, · · · , v0N , v10, · · · , v1N · · · , vM0, · · · , vMN]T ,

P = [p00, · · · , p0N , p10, · · · , p1N · · · , pM0, · · · , pMN]T ,

F = [ f00, · · · , f0N , f10, · · · , f1N , · · · , fM0, · · · , fMN]T ,

V̂ = [v̂00, · · · , v̂0N , v̂10, · · · , v̂1N , · · · , v̂M0, · · · , v̂MN]T .

(4.10)

4.2. Consistency analysis

In this section, we present consistency estimates of proposed schemes based on the approximation
properties of the BLI or BRI. For the unknown function v(x, y), the corresponding barycentric Lagrange
interpolation is vh(x, y), so the error ζ(x, y) can be defined as

ζ(x, y) = v(x, y) − vh(x, y). (4.11)

The approximation properties of BLI have been presented [23] as follows
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Lemma 1. If ζ (x, y) ∈ C(n+1) (Ω), Ω = [a, b] × [c, d] is a smooth and bounded domain, it holds that

|ζ(x, y)| ≤∥ v(n+1) ∥∞ (cx(
eLx

2M
)M + cy(

eLy

2N
)N),

|
∂ζ (x, y)
∂x

| ≤∥ v(n+1) ∥∞ (ċx(
eLx

2(M − 1)
)M−1 + cy(

eLy

2N
)N),

|
∂ζ (x, y)
∂y

| ≤∥ v(n+1) ∥∞ (cx(
eLx

2M
)M + ċy(

eLy

2(N − 1)
)N−1),

|
∂2ζ (x, y)
∂x2 | ≤∥ v(n+1) ∥∞ (c̈x(

eLx

2(M − 2)
)M−2 + cy(

eLy

2N
)N),

|
∂2ζ (x, y)
∂y2 | ≤∥ v(n+1) ∥∞ (cx(

eLx

2M
)M + c̈y(

eLy

2(N − 2)
)N−2),

(4.12)

where e is the natural logarithm, cx, cy, ċx, ċy, c̈x and c̈y are positive constants, Lx =
b − a

2
and Ly =

d − c
2

.

Suppose that v(xq, ys) and p(xq, ys) are the corresponding BLIs of v(x, y) and p(x, y), and we define
the differential operators G1 and G2 as follows

G1v(x, y) = f (x, y),
G2 p(x, y) = −v̂(x, y),

(4.13)

and
lim

(M,N)→+∞
G1v(x, y) = f (x, y),

lim
(M,N)→+∞

G2 p(x, y) = −v̂(x, y).
(4.14)

Next, the consistency analysis of the BLI scheme is presented.

Theorem 1. If v(x, y), p(x, y) and u(x, y) ∈ C(n+1) (Ω), Ω = [a, b] × [c, d] and the nonlinear term
ϕ(v) ∈ W2,∞(Ω) satisfies the Lipschitz condition, it holds that∣∣∣∣v (x, y) − v

(
xq, ys

)∣∣∣∣ ≤ C ∥ v(n+1) ∥∞ ((
eLx

2(M − 2)
)M−2 + (

eLy

2(N − 2)
)N−2), (4.15)

∣∣∣∣p (x, y) − p
(
xq, ys

)∣∣∣∣ ≤ Ĉ ∥ p(n+1) ∥∞ ((
eLx

2(M − 2)
)M−2 + (

eLy

2(N − 2)
)N−2), (4.16)∣∣∣∣u (x, y) − u

(
xq, ys

)∣∣∣∣ ≤ C̃ ∥ p(n+1) ∥∞ ((
eLx

2(M − 2)
)M−2 + (

eLy

2(N − 2)
)N−2). (4.17)

where C, Ĉ and C̃ are positive constants and W2,∞(Ω) = {v ∈ L∞(Ω) | ∂αv ∈ L∞(Ω), |α| ≤ 2} is the
Sobolev space.

Proof. The definitions of the operators G1 and G2 lead to the following result

G1v(x, y) + G2 p(x, y) = −α[vxx(x, y) + vyy(x, y)] + β1vx(x, y) + β2vy(x, y) + ϕ(v(x, y))

+ (γ − 1)v(x, y) −
1
w

p(x, y) − α[pxx(x, y) + pyy(x, y)] − β1 px(x, y)

− β2 py(x, y) + γp(x, y) + ϕ′(v(x, y))p(x, y)
= f (x, y) − v̂(x, y).

(4.18)
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The discrete equation corresponding to Eq (4.18) is as follows

G1v(xq, ys) + G2 p(xq, ys) = −α[vxx(xq, ys) + vyy(xq, ys)] + β1vx(xq, ys) + β2vy(xq, ys) + ϕ(v(xq, ys))

+ (γ − 1)v(xq, ys) −
1
w

p(xq, ys) − α[pxx(xq, ys) + pyy(xq, ys)]

− β1 px(xq, ys) − β2 py(xq, ys) + γp(xq, ys) + ϕ′(v(xq, ys))p(xq, ys)
= f (xq, ys) − v̂(xq, ys).

(4.19)
To simplify the analysis process, we first consider the terms related to the state variable v(x, y).

Combining Eq (4.18) with Eq (4.19), we obtain

G1[v(x, y) − v(xq, ys)] = −α[vxx(x, y) − vxx(xq, ys)] − α[vyy(x, y) − vyy(xq, ys)] + β1[vx(x, y) − vx(xq, ys)]
+ β2[vy(x, y) − vy(xq, ys)] + ϕ(v(x, y)) − ϕ(v(xq, ys)) + (γ − 1)[v(x, y) − v(xq, ys)]

: = ζ1 + ζ2 + ζ3 + ζ4 + ζ5 + ζ6,
(4.20)

where ζ1, ζ2, ζ3, ζ4, ζ5 and ζ6 represent

ζ1 := −α[vxx(x, y) − vxx(xq, ys)], ζ2 := −α[vyy(x, y) − vyy(xq, ys)],
ζ3 := β1[vx(x, y) − vx(xq, ys)], ζ4 := β2[vy(x, y) − vy(xq, ys)],
ζ5 := ϕ(v(x, y)) − ϕ(v(xq, ys)), ζ6 := (γ − 1)[v(x, y) − v(xq, ys)].

(4.21)

Similarly, we have

G2[p(x, y) − p(xq, ys)] = −α[pxx(x, y) − pxx(xq, ys)] − α[pyy(x, y) − pyy(xq, ys)] − β1[px(x, y) − px(xq, ys)]

− β2[py(x, y) − py(xq, ys)] + (γ −
1
w

)[p(x, y) − p(xq, ys)]

+ ϕ′(v(x, y))p(x, y) − ϕ′(v(xq, ys))p(xq, ys)
: = R1 + R2 + R3 + R4 + R5 + R6,

(4.22)
where R1,R2,R3,R4,R5 and R6 represent

R1 := −α[pxx(x, y) − pxx(xq, ys)], R2 := −α[pyy(x, y) − pyy(xq, ys)],
R3 := −β2[px(x, y) − px(xq, ys)], R4 := −β2[py(x, y) − py(xq, ys)],

R5 := (γ −
1
w

)[p(x, y) − p(xq, ys)], R6 := ϕ′(v(x, y))p(x, y) − ϕ′(v(xq, ys))p(xq, ys).

(4.23)

Applying Lemma 1, it holds that

|ζ1| = α
∣∣∣vxx(x, y) − vxx(xq, y) + vxx(xq, y) − vxx(xq, ys)

∣∣∣
≤ α
[∣∣∣vxx(x, y) − vxx(xq, y)

∣∣∣ + ∣∣∣vxx(xq, y) − vxx(xq, ys)
∣∣∣]

≤ C̃1α ∥ v(n+1) ∥∞ (c̈x(
eLx

2(M − 2)
)M−2 + cy(

eLy

2N
)N)

≤ C1 ∥ v(n+1) ∥∞ ((
eLx

2(M − 2)
)M−2 + (

eLy

2N
)N),

(4.24)
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|ζ2| = α
∣∣∣vyy(x, y) − vyy(x, ys) + vyy(x, ys) − vyy(xq, ys)

∣∣∣
≤ C2 ∥ v(n+1) ∥∞ ((

eLx

2M
)M + (

eLy

2(N − 2)
)N−2),

(4.25)

|ζ3| = β1

∣∣∣vx(x, y) − vx(xq, y) + vx(xq, y) − vx(xq, ys)
∣∣∣

≤ C3 ∥ v(n+1) ∥∞ ((
eLx

2(M − 1)
)M−1 + (

eLy

2N
)N),

(4.26)

|ζ4| = β2

∣∣∣vx(x, y) − vx(x, ys) + vx(x, ys) − vx(xq, ys)
∣∣∣

≤ C4 ∥ v(n+1) ∥∞ ((
eLx

2M
)M + (

eLy

2(N − 1)
)N−1).

(4.27)

Since ϕ(v) satisfies the Lipschitz condition, assuming a positive constant K, we obtain

|ζ5| ≤ K | v(x, y) − v(xq, ys) | ≤ C5 ∥ v(n+1) ∥∞ ((
eLx

2M
)M + (

eLy

2N
)N). (4.28)

As for the ζ6, we have

|ζ6| ≤| γ − 1 || v(x, y) − v(xq, ys) | ≤ C6 ∥ v(n+1) ∥∞ ((
eLx

2M
)M + (

eLy

2N
)N). (4.29)

Taking C = max{C1,C2,C3,C4,C5,C6}, and substituting Eqs (4.24)–(4.29) into Eq (4.20), we
complete the proof of Eq (4.15).

Similarly, the approximation errors of R1,R2,R3 and R4 can be straightforwardly proved. Now we
consider the derivation process of R5 and R6. Applying the Lemma 1, we derive

|R5| =

∣∣∣∣∣(γ − 1
w

)[p(x, y) − p(xq, ys)]
∣∣∣∣∣ ≤ C̃5 ∥ p(n+1) ∥∞ ((

eLx

2M
)M + (

eLy

2N
)N). (4.30)

As ϕ(v(x, y)) ∈ W2,∞(Ω), we have

|R6| = |ϕ
′(v(x, y))p(x, y) − ϕ′(v(xq, ys))p(xq, ys)|

= |ϕ′(v(x, y))p(x, y) − ϕ′(v(xq, ys))p(x, y) + ϕ′(v(xq, ys))p(x, y) − ϕ′(v(xq, ys))p(xq, ys)|
≤ |[ϕ′(v(x, y)) − ϕ′(v(xq, ys))]p(x, y)| + |ϕ′(v(xq, ys))[p(x, y) − p(xq, ys)]|
≤ |[ϕ′′(v(xγ, yξ))(v(x, y) − v(xq, ys))]||p(x, y)| + Ċ6[p(x, y) − p(xq, ys)]|

≤ C̃6 ∥ v(n+1) ∥∞ ((
eLx

2M
)M + (

eLy

2N
)N).

(4.31)

Finally, substituting the error results of R1,R2,R3,R4,R5 and R6 into Eq (4.22), the proof of
Eq (4.16) can be completed.

As for the variable u(x, y), it can be proved that∣∣∣u (x, y) − u(xq, ys)
∣∣∣ = 1

w

∣∣∣p (x, y) − p(xq, ys)
∣∣∣

≤ C̃ ∥ p(n+1) ∥∞ ((
eLx

2(M − 2)
)M−2 + (

eLy

2(N − 2)
)N−2).

(4.32)

This completes the proof of Eq (4.17). □
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In the following part, we present the error analysis of Eq (1.1), as solved by the BRI scheme. The
compatibility errors of two-dimensional nonlinear optimal control problems solved by the BRI method
are as follows based on Theorem 1 in [19]

Theorem 2. If v(x, y), p(x, y) and u(x, y) ∈ Cd1+4[a, b] × Cd1+4[c, d], v(xq, ys) and p(xq, ys) are
corresponding numerical solutions solved by BRI. The nonlinear term ϕ(v) ∈ W2,∞(Ω) satisfies the
Lipschitz condition, so we have ∣∣∣∣v (x, y) − v

(
xq, ys

)∣∣∣∣ ≤ C(hd1−1
x + hd1−1

y ), (4.33)

∣∣∣∣p (x, y) − p
(
xq, ys

)∣∣∣∣ ≤ C(hd1−1
x + hd1−1

y ), (4.34)∣∣∣∣u (x, y) − u
(
xq, ys

)∣∣∣∣ ≤ C(hd1−1
x + hd1−1

y ). (4.35)

where C is the positive constant independent of the grid size hx and hy; hxandhy are step sizes of the
discretized grids in the x and y directions, respectively.

4.3. Fully discrete scheme based on Newton’s iteration

The nonlinear term ϕ(Vk+1) is expanded by using Taylor’s formula at Vk, and ϕ′(Vk+1)Pk+1 is treated
with

ϕ(Vk+1) ≈ ϕ(Vk) + ϕ′(V
k
)(V − VK),

ϕ′(Vk+1)Pk+1 ≈ ϕ′(Vk)Pk+1.
(4.36)

Thus, we derive the numerical scheme of Eq (1.1) based on Eq (4.9) as follows


{diag(−α) · (C(2) ⊗ IN + IM ⊗ D(2)) + diag(β1) · (C(1) ⊗ IN) + diag(β2) · (IM ⊗ D(1))}Vk+1

+diag(γ + ϕ′(Vk))Vk+1 −
1
w

Pk+1 = −ϕ(Vk) + ϕ′(Vk)Vk + Fk+1,

{diag(−α) · (C(2) ⊗ IN + IM ⊗ D(2)) − diag(β1) · (C(1) ⊗ IN) − diag(β2) · (IM ⊗ D(1))}Pk+1

+diag(γ + ϕ′(Vk))Pk+1 − Vk+1 = −V̂k+1.

(4.37)

Rewrite Eq (4.37) in matrix formA + B + C diag(−
1
w

)

−I A − B + C

 [Vk+1

Pk+1

]
=

[
−ϕ(Vk) + ϕ′(Vk)Vk + Fk+1

−V̂k+1

]
, (4.38)

where A = diag(−α) · (C(2) ⊗ IN + IM ⊗ D(2), B = diag(β1) · (C(1) ⊗ IN) + diag(β2) · (IM ⊗ D(1))} and
C = diag(γ + ϕ′(Vk)).

5. Numerical experiments

We will present two numerical examples to illustrate the accuracy and stability of our proposed
methods in this section.
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5.1. Problem 1

Consider Ω = [0, 1] × [0, 1]; the exact solutions of the state and adjoint functions are as follows{
v(x, y) = sin(πx) sin(πy),
p(x, y) = π2 sin(πx) sin(πy), (5.1)

with
f = (1 + 2απ2 −

π2

w
) sin(πx) sin(πy) + β1π cos(πx) sin(πy) + β2π sin(πx) cos(πy) + (sin(πx) sin(πy))3,

v̂ = (1− 2απ4 −π2) sin(πx) sin(πy)+ β1π
3 cos(πx) sin(πy)+ β2π

3 sin(πx) cos(πy)− 3π2(sin(πx) sin(πy))3.

Take the simulation parameters as follows: α = 0.3, β = [1, 1], γ = 1, w = 0.5, d1 = [
3M
4

], d2 = [
3N
4

],
and vary the numbers of mesh nodes M,N, ϕ(v(x, y)) = (v(x, y))3. The L∞ norm errors of different
variables v, p, u solved by a BLI, BRI or five-point finite difference (FD) scheme are shown in Tables
1–3. The computational results in Tables 1,2 show that. Obviously, both BLI and BRI schemes for
Eq (1.1) produce the higher-order accurate solutions when selecting fewer nodes. Furthermore, it is
observed that the accuracy of the BLI method is slightly higher than that of the BRI method when
taking the same mesh nodes. In Table 3, the obtained results illustrate that the convergence rates of FD
scheme are almost second order, and thus are in line with the theoretical analysis. It can be seen that
the barycentric interpolation collocation method achieves a high accuracy on the order of 10−7 with
8 × 8 mesh nodes, while the five-point FD approach can only achieve an accuracy on the order of 10−4

using 64×64 mesh nodes. This shows that the barycentric interpolation collocation method possesses
higher accuracy than the FD approach.

Table 1. The L∞ errors of different variables v, p, u solved by the BLI scheme.

(N,M) E∞(v) E∞(p) E∞(u)
(4,4) 4.3856 ×10−3 9.0961×10−4 9.0961×10−4

(8,8) 1.7191×10−7 1.0134×10−7 1.0134×10−7

(12,12) 1.6189×10−12 1.1602×10−12 1.1602×10−12

(16,16) 9.0836×10−14 4.8873×10−14 4.8873×10−14

Table 2. The L∞ errors of different variables v, p, u solved by the BRI scheme.

(N,M) E∞(v) E∞(p) E∞(u)
(4,4) 4.3856 ×10−3 9.0691×10−4 9.0691×10−4

(8,8) 2.1043×10−6 1.1426×10−6 1.1426×10−6

(12,12) 1.4114×10−10 9.5459×10−11 9.5459×10−11

(16,16) 2.0288×10−13 1.0036×10−13 1.0036×10−13

Table 3. The L∞ errors, convergence rates of different variables v, p, u solved by FD scheme.

(N,M) E∞(v) Order E∞(p) Order E∞(u) Order
(8,8) 1.6718 ×10−2 – 6.6866×10−3 – 6.6866×10−3 –
(16,16) 4.2523×10−3 1.9751 1.7503×10−3 1.9336 1.7503×10−3 1.9336
(32,32) 1.0727×10−3 1.9869 4.3889×10−4 1.9957 4.3889×10−4 1.9957
(64,64) 2.6842×10−4 1.9988 1.0996×10−4 1.9969 1.0996×10−4 1.9969
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(a) ve (b) vc (c) error(v)

(d) pe (e) pc (f) error(p)

Figure 1. Exact solution images, numerical solution images and error images of v, p solved
by BLI scheme for Example 1 (M = N = 16).

(a) ve (b) vc (c) error(v)

(d) pe (e) pc (f) error(p)

Figure 2. Exact solution images, numerical solution images and error images of v, p solved
by BRI scheme for Example 1 (M = N = 16).
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4 6 8 10 12 14 16

(M,N)

10-15

10-10

10-5

100

e(
v)

          Difference Method
Barycentric Lagrange Interpolation
Barycentric Rational Interpolation
        Convergence Rate = 2

Figure 3. Comparison results of convergence rates in space solved by different schemes for
Problem 1.

Select the nodes M = N = 16 to obtain the exact solution images, numerical solution images and
error images of v, p , as shown in Figures 1 and 2. We can conclude that numerical solution images
solved by the BLI and BRI schemes are all consistent with analytical solution images, indicating that
collocation schemes are stable. Figure 3 shows that BLI and BRI schemes have exponential
convergence effect when choosing different nodes. In addition, the five-point FD scheme has a
second-order convergence rate.

5.2. Problem 2

In this simulation, we consider the following exact solutions
v(x, y) = (x2 − x)(y2 − y)ex+y,

p(x, y) = 4π(x2 − x)(y2 − y)ex+y,

with
ϕ(v(x, y)) = (v(x, y))3.

We consider Eq (1.1) on the computational domain Ω = [0, 1] × [0, 1] with homogeneous Dirichlet

boundary condition and set the parameters α = 0.1, β = [1, 1], γ = 1,w = 0.3 respectively, d1 = [
3M
4

],

d2 = [
3N
4

]. The simulation has confirmed the high accuracy and efficiency of the proposed schemes
through the calculated errors in Tables 4,5. Furthermore, the convergence rate of the FD method is
almost second order in Table 6.

Table 4. The L∞ errors of different variables v, p, u solved by BLI scheme.

(N,M) E∞(v) E∞(p) E∞(u)
(4,4) 3.9671 ×10−2 3.7965×10−3 3.7965×10−3

(8,8) 2.6812×10−8 7.9556×10−9 7.9556×10−9

(12,12) 1.3786×10−13 3.9897×10−14 3.9897×10−14

(16,16) 8.8305×10−14 1.4051×10−14 1.4051×10−14
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Table 5. The L∞ errors of different variables v, p, u solved by BRI scheme.

(N,M) E∞(v) E∞(p) E∞(u)
(4,4) 3.9671 ×10−2 3.7965×10−3 3.7965×10−3

(8,8) 1.8400×10−6 5.3447×10−7 5.3447×10−7

(12,12) 4.3919×10−12 1.3874×10−12 1.3874×10−12

(16,16) 1.5009×10−13 2.2794×10−14 2.2794×10−14

Table 6. The L∞ errors, convergence rates of different variables v, p, u solved by FD scheme.

(N,M) E∞(v) Order E∞(p) Order E∞(u) Order
(8,8) 4.3345 ×10−1 – 2.4250 ×10−2 – 2.4250 ×10−2 –
(16,16) 1.0308×10−1 2.0721 5.7603×10−3 2.8271 5.7603×10−3 2.8271
(32,32) 2.5497×10−2 2.0154 1.4259×10−3 2.0738 1.4259×10−3 2.0738
(64,64) 6.3546×10−3 2.0045 3.5574×10−4 2.0030 3.5574×10−4 2.0030

Figures 4,5 show the exact solutions, numerical solutions and error estimates for the state and
adjoint functions when selecting Chebyshev nodes M = N = 48. From these images, it is obvious
that two barycentric interpolation collocation schemes are effective and stable with higher accuracy
compared with the FD method.

(a) ve (b) vc (c) error(v)

(d) pe (e) pc (f) error(p)

Figure 4. Exact solution images, numerical solution images and error images of v, p solved
by BLI scheme for Problem 2 (M = N = 48).
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(a) ve (b) vc (c) error(v)

(d) pe (e) pc (f) error(p)

Figure 5. Exact solution images, numerical solution images and error images of v, p solved
by BRI scheme for Problem 2 (M = N = 48).

4 6 8 10 12 14 16

(M,N)

10-15

10-10

10-5

100

e(
v)

          Difference Method
Barycentric Lagrange Interpolation
Barycentric Rational Interpolation
        Convergence Rate = 2

Figure 6. Comparing results for space accuracy as solved by different schemes for Problem
2.

Figure 6 illustrates the convergence rates of different schemes and shows that both the BLI and BRI
schemes can achieve exponential convergence.
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6. Conclusion

In this paper, we proposed two barycentric interpolation collocation schemes for optimal control
problems governed by the nonlinear convection-diffusion equation. The consistency analyses of the
two collocation schemes have been derived. The numerical examples show that the efficiency of our
proposed schemes which can achieve the higher-oder accurate solutions with fewer nodes compared
with the FD method. Our future work will focus on other kinds of PDE-constrained optimal control
problems such as parabolic equations, fluid equations and so on.
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