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1. Introduction

This paper studies the following system of balance law arising in traffic flow

ρt + (ρv)x = 0,

vt + (
1
2

v2 + g(ρ))x +
v − ve(ρ)
τ

= 0
(1.1)

with initial data
(ρ(x, 0), v(x, 0)) = (ρ0(x), v0(x)), (1.2)

where x ∈ R, t > 0, ρ is the density, v is the velocity, ve(ρ) is the equilibrium velocity, and ρ0, v0 are
initial data. We assume that the relaxation time, τ > 0,

ρ0(x) ≥ δ1 > 0, (1.3)

where δ1 > 0 is a constant. In Eq (1.1), g is the anticipation factor which satisfies

g′(ρ) = ρ(
v′e(ρ)
θ

)2, (1.4)
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where
0 < θ < 1. (1.5)

We study the global existence and asymptotic behavior of bounded variation (BV) solutions to
Eq (1.1) in the framework of Dafermos [6, 7]. Our goal is to verify conditions in [6, 7] that are needed
to find admissible BV solutions to the Cauchy problem (1.1) and (1.2). In particular, we will find a
convex entropy-entropy flux pair and verify the Kawashima condition, the sub-characteristic condition,
and the partial dissipative inequality. Previously, constructing global BV solutions have been studied
in [1–6, 22, 24, 25].

A traffic system can exhibit complicated behavior since it is based on interactions between
roadways, vehicles, and drivers. Factors that need to be considered in analyzing such a system include
nonlinear dynamics and human behavior. Microscopic [8], mesoscopic [27] and macroscopic models
[4, 10, 13–21, 23, 26, 28, 31] have been utilized to deal with this phenomenon. Constructing global
solutions and finding zero relaxation limits of traffic flow models have been a recent focus of study
[10, 16–19, 21]. This paper is concerned with a specific macroscopic model (1.1).

The following macroscopic models have been important in the study of traffic flow: Lighthill-
Whitham-Richards (LWR) model [23, 28], Payne-Whitham (PW) model [26, 30], viscous models by
Kuhne, Li [14, 15, 22], and Aw-Rascle [4] and Zhang’s higher continuum models [31] (ARZ).

When the state is in equilibrium, v = ve(ρ), the model (1.1) reduces to the LWR model

ρt + (ρve(ρ))x = 0, (1.6)

where x ∈ R, t > 0, and ve(ρ) is a decreasing function of ρ. The fundamental diagram is defined as

R(ρ) = ρve(ρ). (1.7)

In the current paper, we study Eqs (1.1) and (1.2) with nonconcave R(ρ). Nonconcave flux arises
naturally from traffic flow. We will solve the important problem of studying global BV solutions
to nonconcave fundamental diagrams as suggested from traffic experiment data [12, 13]. In systems
with nonconcave flux functions, the characteristic fields are neither linearly degenerate nor genuinely
nonlinear [29].

In our model (1.1), g(ρ) is a pseudo-pressure function accounting for drivers’ anticipation of
downstream density changes with 0 < θ < 1 from Eq (1.5), whereas θ = 1 in the ARZ model [4, 31].
While ARZ model adopted a relative wave propagating speed to the car speed at equilibrium [18], we
adopt a larger relative speed. Larger relative speed implies quicker reaction time, which leads to safer
and smoother traffic conditions on highways.

The plan of the paper is as follows. We first display preliminaries in Section 2. In Section 3, we
introduce symmetrizable system of balance laws and entropy-entropy flux pair. Then we find a convex
entropy-entropy flux pair in Section 3 and Section 4. In Section 5, we will verify that the conditions
from [6, 7] indeed hold true. We then transform our system into an equivalent form in Section 6 as
required in [6, 7]. Lastly, we prove an a priori estimate in Section 7. We will then present our main
result in Section 8 and elaborate on the implications in the conclusion, Section 9.

2. Preliminaries

In this section, we present the preliminaries.
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For this study, we take the equilibrium velocity ve(ρ) in Eq (1.1) satisfying

ve(0) = b, (2.1)
v′e(0) = −a, (2.2)
ve(1) = 0, (2.3)

where a, b > 0 and ve(ρ) is a decreasing function i.e.

v′e(ρ) < 0. (2.4)

The equilibrium characteristic speed is the characteristic speed of Eq (1.6)

λ∗(ρ) = R′(ρ) = ve(ρ) + ρv′e(ρ). (2.5)

We consider general inhomogeneous, strictly hyperbolic system of balance laws as in [7] (Chpt.
16, Eq (16.6.1))

Ut + F(U)x + P(U) = 0 (2.6)

with initial data
U(x, 0) = U0(x), (2.7)

where x ∈ R, t > 0, U is a vector in R2,U0 is initial data, and F(U), P(U) are vector fields in R2. Let O
be an open subset of R2 containing the origin. In [7], it was assumed that

P(0) = 0 (2.8)

so that U ≡ 0 is an equilibrium solution. In order to satisfy Eq (2.8), we make the following change of
variables in Eq (1.1)

U = (ρ, v − b)T = (ρ, u)T , (2.9)

where b is from Eq (2.1). Under Eq (2.9), system (1.1) is reduced to

ρt + (ρ(u + b))x = 0,

ut + (
1
2

(u + b)2 + g(ρ))x +
u + b − ve(ρ)

τ
= 0,

(2.10)

where x ∈ R, t > 0. Due to Eq (2.9), Eq (2.10) satisfies Eq (2.8). The initial data of Eq (1.2) is reduced
to

(ρ(x, 0), u(x, 0)) = (ρ0(x), u0(x)) = (ρ0(x), v0(x) − b) (2.11)

after change of variables (2.9).
We identify F and P in Eq (2.10) as

F(U) = (ρ(u + b),
1
2

u2 + ub + g(ρ))T , (2.12)

P(U) = (0,
u + b − ve(ρ)

τ
)T . (2.13)
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From Eq (2.12), we compute the Jacobian of F as

DF(U) =
[
u + b ρ

g′(ρ) u + b

]
. (2.14)

The eigenvalues of Eq (2.14) are

λ1,2 = u + b ± ρ
v′e(ρ)
θ
. (2.15)

Hence, the system is strictly hyperbolic for ρ > 0 since λ1 , λ2. The corresponding right eigenvectors
are

r1,2 = (±
θ

v′e(ρ)
, 1)T . (2.16)

The ith characteristic field is said to be genuinely nonlinear (GNL) if ∇λi · ri , 0 for i = 1, 2. We
calculate ∇λi · ri as follows

∇λi · ri =
2v′e(ρ) + ρv

′′
e (ρ)

v′e(ρ)
=

R′′(ρ)
v′e(ρ)

, i = 1, 2, (2.17)

where nonconcave R is defined in Eq (1.7). Since R′′(ρ) changes signs, the characteristic fields are not
genuinely nonlinear.

3. Entropy-entropy flux pairs

First we introduce symmetrizable system of balance laws and entropy entropy flux pairs from
Dafermos [7] (Chpts. 1 and 3). We will then apply the theory to Eq (2.10) to find an entropy-entropy
flux pair.

3.1. Definition of entropy-entropy flux

Now we present the definition of entropy-entropy flux pair from Dafermos [7] (Chpts. 1 and 3).
Let K be an open subset of Rk, k > 0. A system of balance laws is given by

div G(U(X), X) = Π(U(X), X), (3.1)

where G and Π are given smooth functions defined on O×K taking values inMn×k and Rn respectively.
Finding entropy-entropy flux pairs is important in the study of balance laws. Our goal is find

a smooth entropy-entropy flux pair (η, q)(U) with η convex, normalized by η(0) = 0,Dη(0) = 0.
Admissible solutions U satisfy the entropy inequality [7]

∂tη(U(x, t)) + ∂xq(U(x, t)) + Dη(U(x, t))P(U(x, t)) ≤ 0. (3.2)

One way to derive entropy-entropy flux pairs is by considering the companion of G. A smooth
function Q, defined on O × K taking values in M1×k is called a companion of G if there is a smooth
function B, defined on O × K and taking values in Rn such that for all U ∈ O and X ∈ K ,

DQα(U, X) = B(U, X)T DGα(U, X), α = 1, ..., k, (3.3)
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where D = [∂/∂U1, ..., ∂/∂Un] and Gα(U, X) denotes the α-the column vector of the matrix G(U, X).
The significance of companion balance laws is that any classical solution U of Eq (3.1) is automatically
a classical solution of the companion balance law

div Q(U(X), X) = H(U(X), X), (3.4)

where
H(U, X) = B(U, X)TΠ(U, X) + ∇ · Q(U, X) − B(U, X)T∇ ·G(U, X). (3.5)

Eq (3.1) is called symmetric when the n× n matrices DGα(U, X), α = 1, ..., k, are symmetric, for U ∈ O
and X ∈ K . In [7], it was proved that a system of balance laws is endowed with nontrivial companion
balance laws if and only if it is symmetrizable. When a system of balance laws (3.1) is endowed with
a companion balance law (3.4), we can find an entropy-entropy flux pair.

3.2. Deriving the equation for entropy

Now we apply the theory from Subsection 3.1 to Eq (2.10) to find an entropy-entropy flux pair.
For Eq (2.10), where n = k = 2, we have

η(U) = Q1(U), q(U) = Q2(U), (3.6)

where η is called the entropy for the system and q is the entropy flux associated with η. Now we solve
for an entropy-entropy flux pair (η, q) for Eq (2.10). Evaluating Eq (3.3) at Eq (2.10), we get

DQ1(U) = B(U)T DG1(U),
DQ2(U) = B(U)T DG2(U),

(3.7)

where G1 = U,G2 = F(U) from Eqs (2.9) and (2.12), and D = [∂/∂U1, ∂/∂U2]. Then we have

G1(ρ, u) =
[
ρ

u

]
,

G2(ρ, u) =

 ρ(u + b)
1
2

u2 + ub + g(ρ)

 . (3.8)

Then, DG1 and DG2 are as follows

DG1 =

[
1 0
0 1

]
,

DG2 =

[
u + b ρ

g′(ρ) u + b

]
.

(3.9)

From Eqs (3.7) and (3.9), we have

DQ1(U) = B(U)T DG1(U)

[Q1,ρ,Q1,u] = [B1, B2]
[
1 0
0 1

]
.
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Therefore
Q1,ρ = B1,Q1,u = B2. (3.10)

Next we plug Eq (3.10) into the second equation of Eq (3.7) to get

[Q2,ρ,Q2,u] = [B1, B2]
[
u + b ρ

g′(ρ) u + b

]
= [Q1,ρ,Q1,u]

[
u + b ρ

g′(ρ) u + b

]
=

[
Q1,ρ(u + b) + Q1,ug′(ρ), Q1,ρρ + Q1,u(u + b)

]
.

Hence, we have the two equations for Q2

Q2,ρ = Q1,ρ(u + b) + Q1,ug′(ρ), (3.11)
Q2,u = Q1,ρρ + Q1,u(u + b). (3.12)

Taking partial derivatives of Eq (3.11) with respect to u and partial derivatives of Eq (3.12) with
respect to ρ and subtracting the latter from the former, we get

0 = g′(ρ)Q1,uu − ρQ1,ρρ. (3.13)

By Eq (1.4), we can rewrite Eq (3.13) as

Q1,uu − s2(ρ)Q1,ρρ = 0, (3.14)

where we define
s(ρ) = −

θ

v′e(ρ)
> 0 (3.15)

due to Eq (1.5) and Eq (2.4).

3.3. Solving Eq (3.14)

Since Eq (3.14) is a second order hyperbolic partial differential equations in two variables, we
follow Evans’ method in Partial differential equations (Chpt. 7.2.5) [9]. Consider

2∑
i, j=1

ai juxi x j +

2∑
i=1

biuxi + cu = 0, (3.16)

a11a22 − (a12)2 < 0, (3.17)

where the coefficients ai j, bi, c (i, j = 1, 2) with ai j = a ji and the unknown u are functions for x1 and x2

in some region inD ⊂ R2. In order to solve Eq (3.14) in Evans’ framework, define

Q̃1(u, ρ) = Q1(ρ, u). (3.18)

Letting u = Q̃1, Eq (3.16) becomes

a11Q̃1,uu + a12Q̃1,uρ + a21Q̃1,ρu + a22Q̃1,ρρ + b1Q̃1,u + b2Q̃1,ρ + cQ̃1 = 0. (3.19)
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In Eq (3.19), if we choose

a11 = 1, a12 = a21 = 0, a22 = −s2(ρ), b1 = b2 = c = 0, (3.20)

then we arrive at Eq (3.14). In particular, Eq (3.17) is satisfied since

a11a22 − (a12)2 = −s2(ρ) < 0 inD, (3.21)

where s(ρ) is defined in Eq (3.15).
Next, we will do the following transformation. Sety1 = Φ1(u, ρ)

y2 = Φ2(u, ρ).
(3.22)

Let
Q̃1(u, ρ) = h(y1, y2) (3.23)

for some smooth function h(y1, y2).With the change of variables (3.22), we have

Q̃1,uu = hy1y1(Φ
1
u)2 + hy2y2(Φ

2
u)2 + 2hy1y2Φ

1
uΦ

2
u + hy1Φ

1
uu + hy2Φ

2
uu, (3.24)

Q̃1,ρρ = hy1y1(Φ
1
ρ)

2 + hy2y2(Φ
2
ρ)

2 + 2hy1y2Φ
1
ρΦ

2
ρ + hy1Φ

1
ρρ + hy2Φ

2
ρρ. (3.25)

Now we substitute Eqs (3.24) and (3.25) in Eq (3.14) to get

0 = hy1y1((Φ
1
u)2 − s2(ρ)(Φ1

ρ)
2) + hy2y2((Φ

2
u)2 − s2(ρ)(Φ2

ρ)
2)

+ hy1(Φ
1
uu − s2(ρ)Φ1

ρρ) + hy2(Φ
2
uu − s2(ρ)Φ2

ρρ)

+ 2hy1y2(Φ
1
uΦ

2
u − s2(ρ)Φ1

ρΦ
2
ρ).

(3.26)

In order to simplify the first two terms in Eq (3.26), we choose (Φ1,Φ2) satisfying

(Φ1
u)2 − s2(ρ)(Φ1

ρ)
2 = 0, (3.27)

(Φ2
u)2 − s2(ρ)(Φ2

ρ)
2 = 0. (3.28)

This will only be possible if Φ1 and Φ2 solve the following

(wu)2 − s2(ρ)(wρ)2 = 0 inD, (3.29)

where w is a solution of Eq (3.29). Note that Eq (3.29) is a product of two linear first-order PDE,
namely

wu + s(ρ)wρ = 0 inD, (3.30)

wu − s(ρ)wρ = 0 inD. (3.31)

Now we calculate the third and fourth terms in Eq (3.26)

∂2
uw − s(ρ)∂2

ρw − s′(ρ)s(ρ)∂ρw = (∂u + s(ρ)∂ρ)(∂u − s(ρ)∂ρ)w = 0 (3.32)

by Eqs (3.30) and (3.31). From Eqs (3.27), (3.28), and (3.32), we calculate(Φ1)uu − s2(ρ)(Φ1)ρρ = s(ρ)s′(ρ)Φ1
ρ,

(Φ2)uu − s2(ρ)(Φ2)ρρ = s(ρ)s′(ρ)Φ2
ρ,

(3.33)

where s(ρ) is defined in Eq (3.15). Then by Eqs (3.27), (3.28), and (3.33), Eq (3.26) becomes

2hy1y2(Φ
1
uΦ

2
u − s2(ρ)Φ1

ρΦ
2
ρ) + hy1(s(ρ)s′(ρ)Φ1

ρ) + hy2(s(ρ)s′(ρ)Φ2
ρ) = 0. (3.34)
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3.4. Solving for Φ1,Φ2

We now solve for Φ1 and Φ2 from Eqs (3.30) and (3.31) respectively. We want a smooth solution
Φ1 of Eq (3.30) satisfying ∇Φ1 , 0. Φ1 is constant along trajectories x = (x1, x2) of Eq (3.30)ẋ1 = 1

ẋ2 = s(ρ).
(3.35)

Then we have

∇Φ1 ⊥

(
1

s(ρ)

)
.

Thus,

∇Φ1||

(
−s(ρ)

1

)
.

Hence, for some α1(u, ρ), we have

∇Φ1 = α1(u, ρ)
(
−s(ρ)

1

)
. (3.36)

Indeed, we find an exact solution for Eq (3.36),

Φ1 = n1(u + b +
ve(ρ)
θ

), (3.37)

where n1 > 0 and b > 0 from Eq (2.1). From Eqs (3.36) and (3.37), we see that α1(u, ρ) =
−n1

s(ρ)
.

Similarly, we want a smooth solution Φ2 of Eq (3.31) satisfying ∇Φ2 , 0. Φ2 is constant along
trajectories x = (x1, x2) of Eq (3.31) ẋ1 = 1

ẋ2 = −s(ρ).
(3.38)

Then we have

∇Φ2 ⊥

(
1
−s(ρ)

)
,

∇Φ2||

(
s(ρ)

1

)
.

Hence,

∇Φ2 = α2(u, ρ)
(
−s(ρ)
−1

)
(3.39)

for some α2(u, ρ). From Eq (3.39), we find an exact solution

Φ2 = n2(u + b −
ve(ρ)
θ

), (3.40)

where n2 > 0 and b > 0 from Eq (2.1). From Eqs (3.39) and (3.40), we see that α2(u, ρ) =
−n2

s(ρ)
.
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4. Solving for entropy-entropy flux pairs

In this section, we solve for Q1 by integrating factor method. Then we solve for a special case,
estimate the solution of Q1 by perturbation analysis, prove convexity, and finalize the entropy-entropy
flux pair for Eq (2.10).

4.1. Solving for Q1

In this subsection, we solve for Q1(ρ, u) by integrating factor method.
Plugging Eqs (3.37) and (3.40) into Eq (3.34), then Eq (3.34) reduces to

4n1n2hy1y2 − n1s′(ρ)hy1 + n2s′(ρ)hy2 = 0, (4.1)

where y1, y2 are defined in Eq (3.22) and h(y1, y2) is defined in Eq (3.23). Since 4n1n2 > 0, (4.1)
becomes

hy1y2 −
s′(ρ)
4n2

hy1 +
s′(ρ)
4n1

hy2 = 0. (4.2)

Solving Eq (4.2) by integrating factor method and from Eq (3.18), we get

Q1(ρ, u) = Q̃1(u, ρ) = h(y1, y2) = µ−1
2 (

∫
µ2(µ−1

1 f (y1)) dy1 +G(y2)), (4.3)

where f ,G are C2 functions and

µ1 = e
∫
−s′(ρ)

4n2
dy2 , (4.4)

µ2 = e
∫ s′(ρ)

4n1
dy1 , (4.5)

under the assumption

s′′(ρ)s(ρ) + (
s′(ρ)

2
)2 = 0. (4.6)

4.2. A special case

In this subsection, we consider the special case

s′(ρ) = 0, (4.7)

where s(ρ) is defined in Eq (3.15). Eq (4.7) is equivalent to v′′e (ρ) = 0. Indeed, we take

v̂e(ρ) = −aρ + b, (4.8)

where a, b > 0 from Eqs (2.1) and (2.2). In particular, v̂e(ρ) satisfies Eqs (2.1) and (2.2). Then, the
fundamental diagram is

R̂(ρ) = ρv̂e(ρ). (4.9)

Note that R̂′′(ρ) < 0. R̂(ρ) in Eq (4.9) is an actual fundamental diagram observed in traffic flow, see
[11].
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Denote ˜̂Q1 as a solution to Eq (3.14)

˜̂Q1(u, ρ) = ĥ(Φ̂1(u, ρ), Φ̂2(u, ρ)), (4.10)

where ĥ is a smooth function. Due to Eqs (4.7) and (4.8), Eq (4.1) reduces to

4n1n2ĥŷ1ŷ2 = 0. (4.11)

From Eqs (3.37) and (3.40), 4n1n2 > 0. Then, Eq (4.11) reduces to

ĥŷ1ŷ2 = 0. (4.12)

Solving Eq (4.12), we get
ĥ(ŷ1, ŷ2) = β̂(ŷ1) + Ĝ(ŷ2), (4.13)

where β̂ and Ĝ are arbitrary C2 functions and ŷ1, ŷ2 are defined in Eq (3.22).
Therefore, from Eqs (3.18), (4.7), (4.8) and (4.10), the solution to Eq (3.14) is

Q̂1(ρ, u) = ˜̂Q1(u, ρ) = β̂(Φ̂1(u, ρ)) + Ĝ(Φ̂2(u, ρ)), (4.14)

where

Φ̂1 = n1(u + b +
v̂e(ρ)
θ

), (4.15)

Φ̂2 = n2(u + b −
v̂e(ρ)
θ

), (4.16)

and b > 0 as defined in Eq (2.1).

4.3. The perturbation analysis

In this subsection, we estimate Q1(ρ, u), the solution of Eq (3.14), by Q̂1(ρ, u). From Eq (3.15),
we have

s′(ρ) =
θv′′e (ρ)
(v′e(ρ))2 . (4.17)

Assume that
|s′(ρ)| ≤ γ << 1, (4.18)

where γ > 0 is a small constant.
From Eqs (4.17) and (4.18), we derive that

|v′′e (ρ)| ≤ Cγ, (4.19)

where C > 0 is a universal constant. Eq (4.19) means that the equilibrium velocity ve(ρ) is close to
v̂e(ρ) defined in Eq (4.8). Hence, the fundamental diagram R(ρ) in Eq (1.7) is close to R̂(ρ) defined in
Eq (4.9).
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By [29] (Chpt. 19, Sec. B), ||(ρ, u)||L∞ ≤ |(ρ, u)(∞, t)| + |(ρ, u)(−∞, t)| + T.V.(ρ, u). Since we are
looking for solutions to Eq (2.10) in bounded variation space, we assume a priori that ||(ρ, u)||L∞ is
bounded.

We first estimate

Φ1 − Φ̂1 =
n1

θ
(ve(ρ) − v̂e(ρ)), (4.20)

Φ2 − Φ̂2 =
−n2

θ
(ve(ρ) − v̂e(ρ)), (4.21)

where v̂e(ρ) is as in Eq (4.8) and Φ1,Φ2, Φ̂1, Φ̂2 are from Eqs (3.37), (3.40), (4.15), and (4.16)
respectively.

We now estimate the right hand side of Eqs (4.20) and (4.21). By Taylor expansion and Eq (4.19),
there is a ξ ∈ (0, ρ) such that

|ve(ρ) − v̂e(ρ)| = |ve(0) − v̂e(0) + (v′e(0) − v̂′e(0))ρ +
1
2

(v′′e (ξ) − v̂′′e (ξ))ρ2|

=
1
2
|v′′e (ξ)|ρ2 ≤ Cγ, (4.22)

where ρ is bounded, ve(0) = b = v̂e(0), v′e(0) = −a = v̂′e(0) are from Eqs (2.1) and (2.2), and v̂′′e (ρ) = 0
due to Eq (4.8).

Plugging Eq (4.22) into Eqs (4.20) and (4.21), we conclude that

|Φ1 − Φ̂1| ≤ Cγ, (4.23)

|Φ2 − Φ̂2| ≤ Cγ. (4.24)

Next, we estimate Q1. From Eq (4.3) and under condition Eq (4.18), we derive

Q1(ρ, u) = β(Φ1(u, ρ)) +G(Φ2(u, ρ)) + O(γ), (4.25)

where γ > 0 is small and β(y1) =
∫

f (y1) dy1, G are C2 functions. In Eq (4.25), we choose β = β̂,G = Ĝ
as defined in Eq (4.14).

Now we estimate Q1 − Q̂1. From Eqs (4.14), (4.25), and under the condition (4.18), by the mean
value theorem, there is a ξ1 ∈ (0, ρ) such that

Q1(ρ, u) − Q̂1(ρ, u) = β̂′(ξ1)(Φ1 − Φ̂1) + Ĝ′(ξ1)(Φ2 − Φ̂2) + O(γ), (4.26)

where γ > 0 is small. Then from Eqs (4.23) and (4.24) under the condition Eq (4.18), we can estimate
Eq (4.26) as

|Q1(ρ, u) − Q̂1(ρ, u)| ≤ Cγ, (4.27)

where γ > 0 is small and C is a universal constant.

4.4. Convexity

In this subsection, we will prove convexity for Q̂1(ρ, u) and Q1(ρ, u). In order for Q1 to be convex,
we need

Q1,ρρ > 0, (4.28)
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D = det
[
Q1,ρρ Q1,ρu

Q1,uρ Q1,uu

]
> 0. (4.29)

From Eq (4.14), we calculate Q̂1,ρρ as

Q̂1,ρρ = (
v̂′e(ρ)
θ

)2(β̂′′n2
1 + Ĝ′′n2

2) +
v̂′′e (ρ)
θ

(β̂′n1 − Ĝ′n2)

= (
v̂′e(ρ)
θ

)2(β̂′′n2
1 + Ĝ′′n2

2), (4.30)

where we used v̂′′e (ρ) = 0 due to Eq (4.8). Next, we calculate the determinant D̂ defined in Eq (4.29)
for Q̂1

D̂ = 4(
v̂′e(ρ)
θ

)2β̂′′Ĝ′′n2
1n2

2 +
v̂′′e (ρ)
θ

(n3
1β̂
′β̂′′ − n3

2Ĝ
′Ĝ′′ + n1n2

2β̂
′Ĝ′′ − n2

1n2β̂
′′Ĝ′)

= 4(
v̂′e(ρ)
θ

)2β̂′′Ĝ′′n2
1n2

2, (4.31)

where we used v̂′′e (ρ) = 0 due to Eq (4.8). For Q̂1 to satisfy Eqs (4.28) and (4.29), we require

β̂′′, Ĝ′′ ≥ m > 0, (4.32)

where m > 0 is a constant. Under condition Eq (4.32), we derive from Eq (4.30) that there is m1 > 0
constant such that

Q̂1,ρρ ≥ m1 > 0. (4.33)

Similarly, we derive from Eq (4.31) that

D̂ ≥ m1 > 0. (4.34)

This proves the convexity conditions Eqs (4.28) and (4.29) for Q̂1.
Now we prove Eq (4.28) for Q1(ρ, u). Under conditions Eq (4.18), from Eqs (4.27) and (4.33) we

have

Q1,ρρ ≥ Q̂1,ρρ −Cγ ≥ m1 −Cγ > 0 (4.35)

by choosing γ > 0 small enough.
Similarly, we prove Eq (4.29) for Q1(ρ, u). Under conditions Eq (4.18), from Eqs (4.27) and (4.34)

we have

D ≥ D̂ −Cγ ≥ m1 −Cγ > 0 (4.36)

by choosing γ > 0 small enough. Hence, we proved the convexity for Q̂1(ρ, u) and Q1(ρ, u) under
conditions Eqs (4.18) and (4.32).
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4.5. Finalizing the entropy-entropy flux pair

In this subsection, we finalize the entropy-entropy flux pair for Eq (2.10).
We choose β̂(Φ̂1) = (Φ̂1)2, Ĝ(Φ̂2) = (Φ̂2)2 in Q̂1 defined in Eq (4.14) which satisfy Eq (4.32) with

m = 2. Then by Eq (3.6)

η̂(ρ, u) = Q̂1(ρ, u) = (Φ̂1(ρ, u))2 + (Φ̂2(ρ, u))2. (4.37)

From Eqs (4.15) and (4.16), we have

η̂(ρ, u) = (n1(u +
v̂e(ρ)
θ
+ b))2 + (n2(u −

v̂e(ρ)
θ
+ b))2. (4.38)

Under Eq (4.8), if we integrate Eq (3.11) with respect to ρ, we get

q̂(ρ, u) = Q̂2(ρ, u) = Q̂1(ρ, u)(u + b) +
∫

Q̂1,u ρ(
v̂′e(ρ)
θ

)2 dρ + j(u), (4.39)

where Q̂1 from Eq (4.38) and j(u) is a smooth function of u. We can solve for j(u) by using Eq (3.12).
Now we derive Q1(ρ, u) and Q2(ρ, u). By Eqs (3.6), (4.18), and (4.27), we have the following

entropy-entropy flux pair

Q1(ρ, u) = (n1(u +
ve(ρ)
θ
+ b))2 + (n2(u −

ve(ρ)
θ
+ b))2 + O(γ), (4.40)

Q2(ρ, u) = Q1(ρ, u)(u + b) +
∫

Q1,u ρ(
v′e(ρ)
θ

)2 dρ + j(u) + O(γ), (4.41)

where γ > 0 is small.

5. Verifying assumptions for main results

In this section, we verify the partial dissipative inequality, the Kawashima condition, and the
sub-characteristic condition.

5.1. The entropy inequality and partial dissipative inequality

We want to show that the partial dissipative inequality is satisfied for Q1.
According to [6, 7], assume that P in Eq (2.13) is dissipative semidefinite relative to η, i.e.,

Dη(U)P(U) ≥ α|P(U)|2, U ∈ O (5.1)

with α > 0.
For Eq (5.1) to be satisfied by Q̂1, we need to show that[

∂η̂

∂ρ

∂η̂

∂u

]  0
u + b − v̂e(ρ)

τ

 ≥ α(
u + b − v̂e(ρ)

τ
)2, (5.2)

where η̂ is defined in Eq (4.37). From Eq (4.38), we calculate

∂η̂

∂u
= 2(n2

1 + n2
2)(u + b) + 2(n2

1 − n2
2)

v̂e(ρ)
θ
. (5.3)
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Since 0 < θ < 1 from Eq (1.5), we can choose n2
2 > n2

1 such that

n2
1 + n2

2 =
1
θ

(n2
2 − n2

1) > 0. (5.4)

Define
Γ = n2

1 + n2
2. (5.5)

Then, Eq (5.3) becomes
∂η̂

∂u
= 2Γ(u + b − v̂e(ρ)). (5.6)

Plugging Eq (5.6) into Eq (5.2), we get

2Γ
(u + b − v̂e(ρ))2

τ
≥ α(

u + b − v̂e(ρ)
τ

)2.

Hence in order to satisfy Eq (5.2), we require

0 < α ≤ 2Γτ, (5.7)

where Γ is as in Eq (5.5). Therefore partial dissipative condition Eq (5.1) is satisfied by Q̂1.
Now we prove Eq (5.1) for η = Q1(ρ, u) defined in Eq (4.40). We need to show[

∂η

∂ρ

∂η

∂u

]  0
u + b − ve(ρ)

τ

 ≥ α(
u + b − ve(ρ)

τ
)2. (5.8)

For u + b − ve(ρ) = 0, Eq (5.8) is satisfied. Now assume u + b − ve(ρ) , 0.
Under condition Eq (4.18), we derive from Eqs (4.40) and (5.5)

∂η

∂u
− 2Γ(u + b − ve(ρ)) ≥ −Cγ, (5.9)

where γ > 0 is small and C is a universal constant. To satisfy Eq (5.8), by utilizing Eq (5.9), we require

2Γ
(u + b − ve(ρ))2

τ
−Cγ(

u + b − ve(ρ)
τ

) ≥ α(
u + b − ve(ρ)

τ
)2. (5.10)

By choosing γ > 0 small enough in Eq (4.18), we have

Γ
(u + b − ve(ρ))2

τ
−Cγ

u + b − ve(ρ)
τ

> 0. (5.11)

By using Eq (5.11), we require

Γ(u + b − ve(ρ))2

τ
≥ α(

u + b − ve(ρ)
τ

)2 (5.12)

for Eq (5.10) to be satisfied. We require
0 < α ≤ Γτ, (5.13)

so Eq (5.12) is satisfied. Hence, partial dissipative condition (5.1) for Q1(ρ, u) is satisfied under
conditions (4.18) and (5.13).

Therefore, if γ > 0 small enough in Eq (4.18), then the estimates for perturbation analysis,
convexity, and partial dissipative inequality in Subsections 4.3, 4.4, and 5.1 are established
respectively.
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5.2. The Kawashima condition

Now we verify that the Kawashima condition is satisfied for Eq (2.10).
The Kawashima condition guarantees that the system resulting from linearizing Eq (2.10) does

not admit solutions representing undamped traveling waves [6]. From [6,7], the Kawashima condition
is given by

DP(0)ri(0) , 0, i = 1, ..., n. (5.14)

For Eq (5.14) to be satisfied, from Eqs (2.2), (2.13) and (2.16), we need

DP(0)ri(0) =

0 0
a
τ

1
τ


± θv′e(0)

1

 =
 0

∓
θ

τ
+

1
τ

 , [
0
0

]
(5.15)

since 0 < θ < 1 from Eq (1.5). Hence, the Kawashima condition (5.14) is satisfied.

5.3. The subcharacteristic condition

To get linear stability, we check if sub-characteristic inequality [7] is satisfied for Eq (2.10) i.e.,

λ1 ≤ λ∗ ≤ λ2, (5.16)

where λ∗ is given in Eq (2.5). Recall that u = ve(ρ) − b. Then for v = ve(ρ), from Eqs (2.5) and (2.15)
the subcharacteristic condition is satisfied since

ve(ρ) +
ρv′e(ρ)
θ
< ve(ρ) + ρv′e(ρ) < ve(ρ) −

ρv′e(ρ)
θ
. (5.17)

Eq (5.17) is true since 0 < θ < 1 and v′e(ρ) < 0 due to Eqs (1.5) and (2.4) respectively.

6. The equivalent form

In this section, we convert Eq (2.10) to the general form according to [7] (Chpt. 16, Eq. (16.6.10)).

∂tV + ∂xG(V,W) = 0,
∂tW + ∂xH(V,W) +C(V,W)W = 0,

(6.1)

where x ∈ R, t > 0 and
ηWW(0, 0)C(0, 0) > 0. (6.2)

From Eq (2.13), we calculate

DP(0) =
1
τ

[
0 0
a 1

]
=

[
1 0
−a 1

] 0 0

0
1
τ

 [1 0
a 1

]
= S −1ΓS .

We are going to do the following change of variables.

Û = S U =
[
1 0
a 1

] [
ρ

u

]
=

[
ρ

aρ + u

]
.
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Let V and W be

V = ρ, (6.3)
W = aρ + u. (6.4)

Under Eqs (6.3) and (6.4), system (2.10) is transformed to

Vt + [V(W − aV + b)]x = 0, (6.5)

Wt + [
1
2

(W2 − a2V2) + bW + g(V)]x +C(V,W)W = 0. (6.6)

The systems (6.5) and (6.6) is in the form of Eq (6.1) if we let

G(V,W) = V(W − aV + b) = VW − aV2 + bV, (6.7)

H(V,W) =
1
2

(W2 − a2V2) + bW + g(V), (6.8)

C(V,W) =
1
W

(
W − aV + b − ve(V)

τ
). (6.9)

Since ve(0) = b and τ > 0, C(0,W) =
1
W

(
W + b − ve(0)

τ
) =

1
τ
> 0. Consequently, C(0, 0) =

1
τ
> 0.

Since we have a convex entropy η (4.40), we have that ηWWC(0, 0) > 0.
Let Z = (V,W) = (ρ, aρ + u). From Eq (2.11), the corresponding initial conditions for (6.5), (6.6)

are
Z0 = (V0,W0) = (ρ0, aρ0 + u0). (6.10)

7. An a priori estimate

In this section, we show that ρ ≥
1
2
δ1 > 0 for all t under condition (1.3).

We first derive estimates for V and W. From Eq (6.6)

dW
dt
+

1
τ

W = 0, t > 0, (7.1)

where
d
dt

is the derivative along trajectory of Eq (6.6). Therefore,

|W | = |W0|e
−

1
τ

t
, t > 0, (7.2)

along trajectory of Eq (6.6).
If W = 0, (6.5) is a scalar conservation law. Thus, by Theorem 16.1 in [29], we have

V0,inf ≤ V ≤ V0,sup, t > 0, (7.3)

where V0,inf and V0,sup are infimum and supremum of V0 respectively. Since Z0 is of bounded variation,
V0,inf ,V0,sup, and ||V ||L∞ are bounded.
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In the general case, W is present in Eq (6.5) and |W | decays exponentially with respect to t, see
Eq (7.2). By modifying the proof of Lemma 16.2 in [29] and using Eq (7.2), we obtain

V0,inf − K||W0||L∞ ≤ V ≤ V0,sup + K||W0||L∞ , t > 0 (7.4)

for some K > 0.
By Eqs (1.3) and (6.3), we have V0 = ρ0 ≥ δ1 > 0. Hence,

V0,inf ≥ δ1 > 0. (7.5)

Choose ||W0||L∞ small such as

||W0||L∞ ≤
1

2K
δ1. (7.6)

Then we have from Eqs (6.3), (7.4), and (7.6) that

ρ = V ≥ V0,inf − K||W0||L∞ ≥ δ1 − K||W0||L∞ ≥
1
2
δ1 > 0, t > 0. (7.7)

8. Main result

We verified all assumptions in Dafermos theory [6, 7] for Eq (2.10). Now we present the main
result of this paper. We show the global existence and asymptotic behavior of BV solutions to the
Cauchy problem (6.5), (6.6) and (6.10) for a nonconcave fundamental diagram in traffic flow.

Theorem 8.1 (Admissible BV Solution to the Cauchy Problem). Under the conditions (1.3), (1.5),
(4.6), (4.18), (5.13) and (7.6), the system of balance laws (6.5) and (6.6) is endowed with a convex
entropy-entropy flux pair (η, q) (4.40) and (4.41), satisfies the partial dissipative inequality (5.1), and
satisfies the Kawashima condition (5.15). Consider the Cauchy problem (6.5), (6.6) and (6.10). For
δ0, σ0 > 0, suppose that Z0 decays, as |x| → ∞, sufficiently fast to render the integral∫ ∞

−∞

(x2 + 1)|Z0(x)|2 dx = σ2 < σ2
0, (8.1)

with bounded variation
TV(−∞,∞)Z0(·) = δ < δ0, (8.2)

and ∫ ∞

−∞

V0(x) dx = 0, (8.3)

then there exist positive constants c0, c1, c2, ν > 0 so that the Cauchy problem (6.5), (6.6) and (6.10)
possesses a unique admissible BV solution Z defined on (−∞,∞) × [0,∞) and∫ ∞

−∞

|Z(x, t)| dx ≤ c0σ, 0 ≤ t < ∞, (8.4)

TV(−∞,∞)Z(·, t) ≤ c1σ + c2δe−νt, 0 ≤ t < ∞, (8.5)∫ ∞

−∞

|Z(x, t)| dx→ 0, as t → ∞, (8.6)

TV(−∞,∞)Z(·, t)→ 0, as t → ∞. (8.7)
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The above results are in Z = (V,W) defined in Eqs (6.5) and (6.6). Using Eqs (2.9), (6.3) and
(6.4), we can transform our theorems in the original unknowns (ρ, v) satisfying system (1.1) and (1.2).

9. Conclusion

In the framework of Dafermos, we proved the existence and asymptotic behavior of global BV
solutions to the Cauchy problem for a traffic flow model with nonconcave fundamental diagram. The
nonconcave fundmental diagram in Eq (1.7) is close to a concave fundamental diagram in Eq (4.9). We
derived the partial dissipative inequality, the sub-characteristic condition, the Kawashima condition,
and a convex entropy-entropy flux pair to prove our Theorem 8.1.

We adopted the model (1.1) and (1.5) with larger anticipation factors than the ARZ model.
Anticipation factor describes the effect of drivers reacting to conditions downstream. Due to higher
pressure from the traffic, the driver’s anticipation increases, which causes traffic flow to be more
regular. Larger anticipation factors lead to safer and smoother traffic conditions on highways.
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