Robustness of finite element simulations in densely packed random particle composites

  • Received: 01 July 2011 Revised: 01 October 2011
  • Primary: 35B65, 65N15; Secondary: 65N30, 74Q20.

  • This paper presents some weighted $H^2$-regularity estimates for a model Poisson problem with discontinuous coefficient at high contrast. The coefficient represents a random particle reinforced composite material, i.e., perfectly conducting circular particles are randomly distributed in some background material with low conductivity. Based on these regularity results we study the percolation of thermal conductivity of the material as the volume fraction of the particles is close to the jammed state. We prove that the characteristic percolation behavior of the material is well captured by standard conforming finite element models.

    Citation: Daniel Peterseim. Robustness of finite element simulations in densely packed random particle composites[J]. Networks and Heterogeneous Media, 2012, 7(1): 113-126. doi: 10.3934/nhm.2012.7.113

    Related Papers:

    [1] Daniel Peterseim . Robustness of finite element simulations in densely packed random particle composites. Networks and Heterogeneous Media, 2012, 7(1): 113-126. doi: 10.3934/nhm.2012.7.113
    [2] Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523
    [3] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [4] Zhangxin Chen . On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1(4): 689-706. doi: 10.3934/nhm.2006.1.689
    [5] Martin Heida . Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains. Networks and Heterogeneous Media, 2023, 18(4): 1410-1433. doi: 10.3934/nhm.2023062
    [6] Wen Dong, Dongling Wang . Mittag-Leffler stability of numerical solutions to linear homogeneous time fractional parabolic equations. Networks and Heterogeneous Media, 2023, 18(3): 946-956. doi: 10.3934/nhm.2023041
    [7] Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev . Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks and Heterogeneous Media, 2008, 3(3): 413-436. doi: 10.3934/nhm.2008.3.413
    [8] Valerii Maksimov, Luca Placidi, Francisco James León Trujillo, Chiara De Santis, Anil Misra, Dmitry Timofeev, Francesco Fabbrocino, Emilio Barchiesi . Dynamic strain gradient brittle fracture propagation: comparison with experimental evidence. Networks and Heterogeneous Media, 2024, 19(3): 1058-1084. doi: 10.3934/nhm.2024047
    [9] Arianna Giunti . Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16(3): 341-375. doi: 10.3934/nhm.2021009
    [10] Xavier Litrico, Vincent Fromion, Gérard Scorletti . Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2(4): 717-731. doi: 10.3934/nhm.2007.2.717
  • This paper presents some weighted $H^2$-regularity estimates for a model Poisson problem with discontinuous coefficient at high contrast. The coefficient represents a random particle reinforced composite material, i.e., perfectly conducting circular particles are randomly distributed in some background material with low conductivity. Based on these regularity results we study the percolation of thermal conductivity of the material as the volume fraction of the particles is close to the jammed state. We prove that the characteristic percolation behavior of the material is well captured by standard conforming finite element models.


    [1] I. Babuška and B. Q. Guo, Regularity of the solution of elliptic problems with piecewise analytic data. II: The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions, SIAM J. Math. Anal., 20 (1989), 763-781. doi: 10.1137/0520054
    [2] L. Berlyand and A. Kolpakov, Network approximation in the limit of small interparticle distance of the effective properties of a high-contrast random dispersed composite, Arch. Ration. Mech. Anal., 159 (2001), 179-227. doi: 10.1007/s002050100142
    [3] L. Berlyand and A. Novikov, Error of the network approximation for densely packed composites with irregular geometry, SIAM J. Math. Anal., 34 (2002), 385-408. doi: 10.1137/S0036141001397144
    [4] L. Borcea and G. C. Papanicolaou, Network approximation for transport properties of high contrast materials, SIAM J. Appl. Math., 58 (1998), 501-539. doi: 10.1137/S0036139996301891
    [5] G. A. Chechkin, Yu. O. Koroleva and L.-E. Persson, On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure, J. Inequal. Appl., 2007, Art. ID 34138, 13 pp.
    [6] L. C. Evans, "Partial Differential Equations,'' 2nd edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.
    [7] J. M. Melenk, "$hp$-Finite Element Methods for Singular Perturbations,'' Lecture Notes in Mathematics, 1796, Springer-Verlag, Berlin, 2002.
    [8] D. Peterseim, Generalized delaunay partitions and composite material modeling, preprint, DFG Research Center Matheon Berlin, 690 (2010).
    [9] D. Peterseim, Triangulating a system of disks, in "Proc. 26th European Workshop on Computational Geometry,'' (2010), 241-244.
    [10] D. Peterseim and C. Carstensen, Finite element network approximation of conductivity in particle composites, preprint, DFG Research Center Matheon Berlin, 807 (2010).
  • This article has been cited by:

    1. Daniel Peterseim, Carsten Carstensen, Finite element network approximation of conductivity in particle composites, 2013, 124, 0029-599X, 73, 10.1007/s00211-012-0509-1
    2. Daniel Peterseim, Composite finite elements for elliptic interface problems, 2014, 83, 0025-5718, 2657, 10.1090/S0025-5718-2014-02815-9
    3. Patrick Henning, Axel Målqvist, Daniel Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems, 2014, 48, 0764-583X, 1331, 10.1051/m2an/2013141
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3344) PDF downloads(60) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog