Research article Special Issues

Distributed pinning controllers design for set stabilization of $ k $-valued logical control networks

  • Received: 23 September 2022 Revised: 28 January 2023 Accepted: 07 February 2023 Published: 15 February 2023
  • Design of distributed pinning controllers for set stabilization of $ k $-valued logical control networks is investigated in this paper. Firstly, by analyzing the coupling correlations among nodes, pinned node set is determined. Secondly, based on the solvability of a class of matrix equations, sufficient conditions which resort to local information are put forward for the design of pinning controllers. Furthermore, an algorithm for designing pinning feedback controllers is presented, where the designed controllers are related to part of state variables instead of all variables. Finally, two illustrative examples are presented to verify the effectiveness of the main results.

    Citation: Yanfei Wang, Changxi Li, Jun-e Feng. Distributed pinning controllers design for set stabilization of $ k $-valued logical control networks[J]. Mathematical Modelling and Control, 2023, 3(1): 61-72. doi: 10.3934/mmc.2023006

    Related Papers:

  • Design of distributed pinning controllers for set stabilization of $ k $-valued logical control networks is investigated in this paper. Firstly, by analyzing the coupling correlations among nodes, pinned node set is determined. Secondly, based on the solvability of a class of matrix equations, sufficient conditions which resort to local information are put forward for the design of pinning controllers. Furthermore, an algorithm for designing pinning feedback controllers is presented, where the designed controllers are related to part of state variables instead of all variables. Finally, two illustrative examples are presented to verify the effectiveness of the main results.



    加载中


    [1] S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol., 22 (1969), 437–467. https://doi.org/10.1016/0022-5193(69)90015-0 doi: 10.1016/0022-5193(69)90015-0
    [2] Z. Liu, Y. Wang, H. Li, New approach to derivative calculation of multi-valued logical functions with application to fault detection of digital circuits, IET Control Theory Appl., 8 (2014), 554–560. https://doi.org/10.1049/iet-cta.2013.0104 doi: 10.1049/iet-cta.2013.0104
    [3] C. M. Files, M. A. Perkowski, Multi-valued functional decomposition as a machine learning method, Proceedings of the 28th International Symposium on Multiple-Valued Logic, (1998), 173–178. https://doi.org/10.1109/ISMVL.1998.679331 doi: 10.1109/ISMVL.1998.679331
    [4] D. Cheng, Semi-tensor product of matrices and its application to Morgan's problem, Sci. China Ser. Inf. Sci., 44 (2001), 195–212. https://doi.org/10.1007/BF02714570 doi: 10.1007/BF02714570
    [5] D. Cheng, H. Qi, A linear representation of dynamics of Boolean networks, IEEE Trans. Autom. Control, 55 (2010), 2251–2258. https://doi.org/10.1109/TAC.2010.2043294 doi: 10.1109/TAC.2010.2043294
    [6] X. Zhao, S. Fu, Trajectory tracking approach to logical (control) networks, AIMS Mathematics, 7 (2022), 9668–9682. https://doi.org/10.3934/math.2022538 doi: 10.3934/math.2022538
    [7] Q. Zhang, J. Feng, P. Zhao, Controllability of Markovian jump Boolean control networks: A graphical approach, Neurocomputing, 498 (2022), 89–97. https://doi.org/10.1016/j.neucom.2022.04.119 doi: 10.1016/j.neucom.2022.04.119
    [8] F. Li, Y. Tang, Pinning controllability for a Boolean network with arbitrary disturbance inputs, IEEE Trans. Cybern., 51 (2021), 3338–3347. https://doi.org/10.1109/TCYB.2019.2930734 doi: 10.1109/TCYB.2019.2930734
    [9] Y. Zhao, Y. Liu, Output controllability and observability of mix-valued logic control networks, Mathematical Modelling and Control, 1 (2021), 145–156. https://doi.org/10.3934/mmc.2021013 doi: 10.3934/mmc.2021013
    [10] Y. Guo, Y. Wu, W. Gui, Stability of discrete-time systems under restricted switching via logic dynamical generator and STP-based mergence of hybrid states, IEEE Trans. Autom. Control, 67 (2022), 3472–3483. https://doi.org/10.1109/TAC.2021.3105319 doi: 10.1109/TAC.2021.3105319
    [11] H. Li, X. Ding, A control Lyapunov function approach to feedback stabilization of logical control networks, SIAM J. Control Optim., 57 (2019), 810–831. https://doi.org/10.1137/18M1170443 doi: 10.1137/18M1170443
    [12] Y. Zhang, J. Zhong, W. Xiong, J. Cao, Stabilization and oscillations design for a family of cyclic Boolean networks via nodes connection, Neurocomputing, 369 (2019), 61–68. https://doi.org/10.1016/j.neucom.2019.08.062 doi: 10.1016/j.neucom.2019.08.062
    [13] L. Lin, J. Zhong, S. Zhu, J. Lu, Sampled-data general partial synchronization of Boolean control networks, J. Franklin Inst., 359 (2022), 1–11. https://doi.org/10.1016/j.jfranklin.2020.08.047 doi: 10.1016/j.jfranklin.2020.08.047
    [14] Y. Li, H. Li, P. Duan, Synchronization of switched logical control networks via event-triggered control, J. Franklin Inst., 355 (2018), 5203–5216. https://doi.org/10.1016/j.jfranklin.2018.04.028 doi: 10.1016/j.jfranklin.2018.04.028
    [15] J. Feng, Y. Li, S. Fu, H. Lyu, New method for disturbance decoupling of Boolean networks, IEEE Trans. Autom. Control, 67 (2022), 4794–4800. https://doi.org/10.1109/TAC.2022.3161609 doi: 10.1109/TAC.2022.3161609
    [16] Y. Li, J. Zhu, Necessary and sufficient vertex partition conditions for input-output decoupling of Boolean control networks, Automatica, 137 (2022), 110097. https://doi.org/10.1016/j.automatica.2021.110097 doi: 10.1016/j.automatica.2021.110097
    [17] Y. Wang, H. Li, Output trackability of Boolean control networks via ledley antecedence solution, IEEE Trans. Circuits Syst. Ⅱ, Exp. Briefs, 69 (2022), 1183–1187. https://doi.org/10.1109/TCSII.2021.3095487 doi: 10.1109/TCSII.2021.3095487
    [18] Y. Guo, P. Wang, W. Gui, C. Yang, Set stability and set stabilization of Boolean control networks based on invariant subsets, Automatica, 61 (2015), 106–112. https://doi.org/10.1016/j.automatica.2015.08.006 doi: 10.1016/j.automatica.2015.08.006
    [19] Y. Li, H. Li, W. Sun, Event-triggered control for robust set stabilization of logical control networks, Automatica, 95 (2018), 556–560. https://doi.org/10.1016/j.automatica.2018.06.030 doi: 10.1016/j.automatica.2018.06.030
    [20] H. Li, X. Ding, Finite-time time-variant feedback stabilization of logical control networks with Markov jump disturbances, IEEE Trans. Circuits Syst. Ⅱ, Exp. Briefs, 67 (2020), 2079–2083. https://doi.org/10.1109/TCSII.2019.2949558 doi: 10.1109/TCSII.2019.2949558
    [21] Y. Ding, Y. Guo, Y. Xie, C. Yang, W. Gui, Time-optimal state feedback stabilization of switched Boolean control networks, Neurocomputing, 237 (2017), 265–271. https://doi.org/10.1016/j.neucom.2016.12.044 doi: 10.1016/j.neucom.2016.12.044
    [22] J. Lu, J. Zhong, C. Huang, J. Cao, On pinning controllability of Boolean control networks, IEEE Trans. Autom. Control, 61 (2016), 1658–1663. https://doi.org/10.1109/TAC.2015.2478123 doi: 10.1109/TAC.2015.2478123
    [23] Y. Li, J. Feng, X. Li, S. Xu, Pinning controller design for set reachability of state-dependent impulsive Boolean networks, IEEE Trans. Neural Netw. Learn. Syst., (2022), 35536802. https://doi.org/10.1109/TNNLS.2022.3171576 doi: 10.1109/TNNLS.2022.3171576
    [24] H. Li, P. Song, Q. Yang, Pinning control design for robust output tracking of k-valued logical networks, J. Franklin Inst., 354 (2017), 3039–3053. https://doi.org/10.1016/j.jfranklin.2017.02.009 doi: 10.1016/j.jfranklin.2017.02.009
    [25] Y. Liu, B. Li, J. Lu, J. Cao, Pinning control for the disturbance decoupling problem of Boolean networks, IEEE Trans. Autom. Control, 62 (2017), 6595–6601. https://doi.org/10.1109/TAC.2017.2715181 doi: 10.1109/TAC.2017.2715181
    [26] F. Li, H. Li, L. Xie, Q. Zhou, On stabilization and set stabilization of multivalued logical systems, Automatica, 80 (2017), 41–47. https://doi.org/10.1016/j.automatica.2017.01.032 doi: 10.1016/j.automatica.2017.01.032
    [27] S. Zhu, J. Lu, L. Sun, J. Cao, Distributed pinning set stabilization of large-scale Boolean networks, IEEE Trans. Autom. Control, https://doi.org/10.1109/TAC.2022.3169178 doi: 10.1109/TAC.2022.3169178
    [28] D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks: A Semi-tensor Product Approach, London: Springer, 2011.
    [29] D. Cheng, Disturbance decoupling of Boolean control networks, IEEE Trans. Autom. Control. 56 (2011), 2–10. https://doi.org/10.1109/TAC.2010.2050161 doi: 10.1109/TAC.2010.2050161
    [30] Z. Li, D. Cheng, Algebraic approach to dynamics of multivalued networks, Int. J. Bifurcat. Chaos, 20 (2010), 561–582. https://doi.org/10.1142/S0218127410025892 doi: 10.1142/S0218127410025892
    [31] D. Cheng, H. Qi, Y. Zhao, An Introduction to Semi-tensor Product of Matrices and Its Applications, Singapore: World Scientific, 2012.
    [32] D. Cheng, Z. Liu, H. Qi, Completeness and normal form of multi-valued logical functions, J. Franklin Inst., 357 (2020), 9871–9884. https://doi.org/10.1016/j.jfranklin.2020.06.026 doi: 10.1016/j.jfranklin.2020.06.026
    [33] A. Veliz-Cuba, D. Murrugarra, R. Laubenbacher, Structure and dynamics of acyclic networks, Discret. Event Dyn. Syst.-Theory Appl., 24 (2014), 647–658. https://doi.org/10.1007/s10626-013-0174-2 doi: 10.1007/s10626-013-0174-2
    [34] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, New York: Springer, 2008.
    [35] G. Even, J. Naor, B. Schieber, M. Sudan, Approximating minimum feedback sets and multicuts in directed graphs, Algorithmica, 20 (1998), 151–174. https://doi.org/10.1007/PL00009191 doi: 10.1007/PL00009191
    [36] Y. Wang, T. Liu, D. Cheng, Some notes on semi-tensor product of matrices and swap matrix, Journal of Systems Science and Mathematical Sciences, 36 (2016), 1367–1375. https://doi.org/10.12341/jssms12892 doi: 10.12341/jssms12892
    [37] C. Campbell, R. Albert, Stabilization of perturbed Boolean network attractors through compensatory interactions, BMC Syst. Biol., 8 (2014), 53. https://org/10.1186/1752-0509-8-53 doi: 10.1186/1752-0509-8-53
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1641) PDF downloads(119) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog