Research article Special Issues

Reference trajectory output tracking for Boolean control networks with controls in output

  • Received: 05 September 2022 Revised: 29 March 2023 Accepted: 02 May 2023 Published: 15 September 2023
  • This article investigates the reference trajectory output tracking issue of Boolean control networks (BCNs) that have controls in the output. Firstly, to solve the problem, some necessary and sufficient conditions are obtained. The tracking problem is studied from the perspective of set and matrix calculation. Next, an algorithm for determining whether the output tracking issue is solvable is proposed. Furthermore, the controller design algorithm satisfying the solvability condition is given. Using our methods, we can track some trajectories that cannot be tracked in BCNs without controls in output. In addition, for better application in practice, the corresponding changes in the network transition matrix and output matrix under state, transition, and input constraints are considered. Finally, some examples are presented to illustrate the validity of our results.

    Citation: Zejiao Liu, Yu Wang, Yang Liu, Qihua Ruan. Reference trajectory output tracking for Boolean control networks with controls in output[J]. Mathematical Modelling and Control, 2023, 3(3): 256-266. doi: 10.3934/mmc.2023022

    Related Papers:

  • This article investigates the reference trajectory output tracking issue of Boolean control networks (BCNs) that have controls in the output. Firstly, to solve the problem, some necessary and sufficient conditions are obtained. The tracking problem is studied from the perspective of set and matrix calculation. Next, an algorithm for determining whether the output tracking issue is solvable is proposed. Furthermore, the controller design algorithm satisfying the solvability condition is given. Using our methods, we can track some trajectories that cannot be tracked in BCNs without controls in output. In addition, for better application in practice, the corresponding changes in the network transition matrix and output matrix under state, transition, and input constraints are considered. Finally, some examples are presented to illustrate the validity of our results.



    加载中


    [1] S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol., 22 (1969), 437–467. http://doi.org/10.1016/0022-5193(69)90015-0 doi: 10.1016/0022-5193(69)90015-0
    [2] I. Shmulevich, E. Dougherty, S. Kim, W. Zhang, Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002), 261–274. http://doi.org/10.1093/bioinformatics/18.2.261 doi: 10.1093/bioinformatics/18.2.261
    [3] T. Sun, X. Sun, Y. Gao, P. Sun, Stabilizability analysis of logical networks with switching signal and control input, Nonlinear Analysis-Hybrid Systems, 36 (2020), 100875. http://doi.org/10.1016/j.nahs.2020.100875 doi: 10.1016/j.nahs.2020.100875
    [4] D. Cheng, H. Qi, Z. Li, Analysis and control of Boolean networks: a semi-tensor product approach, London: Springer Science & Business Media, 2011.
    [5] J. Zhong, D. Ho, J. Lu, Q. Jiao, Pinning controllers for activation output tracking of Boolean network under one-bit perturbation, IEEE T. Cybernetics, 49 (2019), 3398–3408. http://doi.org/10.1109/tcyb.2018.2842819 doi: 10.1109/tcyb.2018.2842819
    [6] J. Lu, B. Li, J. Zhong, A novel synthesis method for reliable feedback shift registers via Boolean networks, Sci. China Inform. Sci., 64 (2021), 152207. http://doi.org/10.1007/s11432-020-2981-4 doi: 10.1007/s11432-020-2981-4
    [7] D. Cheng, Z. Ji, J. Feng, S. Fu, J. Zhao, Perfect hypercomplex algebras: semi-tensor product approach, Math. Model. Contr., 1 (2021), 177–187.
    [8] D. Cheng, Y. Li, J. Feng, J. Zhao, On numerical/non-numerical algebra: semi-tensor product method, Mathematical Modelling and Control, 2021.
    [9] Y. Li, J. Zhu, Cascading decomposition of Boolean control networks: a graph-theoretical method, Frontiers of Information Technology & Electronic Engineering, 21 (2020), 304–315. http://doi.org/10.1631/fitee.1900422 doi: 10.1631/fitee.1900422
    [10] S. Wang, J. Feng, J. Zhao, J. Xia, Controllability decomposition of dynamic-algebraic Boolean control networks, Int. J. Control, 93 (2020), 1684–1695. http://doi.org/10.1080/00207179.2018.1527040 doi: 10.1080/00207179.2018.1527040
    [11] Y. Zhao, Y. Liu, Output controllability and observability of mix-valued logic control networks, Math. Model. Contr., 1 (2021), 145–156.
    [12] S. Zhu, J. Lu, L. Lin, Y. Liu, Minimum-time and minimum-triggering control for the observability of stochastic Boolean networks, IEEE T. Automat. Contr., 67 (2022), 1558–1565. http://doi.org/10.1109/tac.2021.3069739 doi: 10.1109/tac.2021.3069739
    [13] Y. Yu, M. Meng, J. Feng, G. Chen, Observability criteria for Boolean networks, IEEE T. Automat. Contr., 67 (2022), 6248–6254. http://doi.org/10.1109/tac.2021.3131436 doi: 10.1109/tac.2021.3131436
    [14] J. Zhong, B. Li, Y. Liu, W. Gui, Output feedback stabilizer design of Boolean networks based on network structure, Frontiers of Information Technology & Electronic Engineering, 21 (2020), 247–259. http://doi.org/10.1631/fitee.1900229 doi: 10.1631/fitee.1900229
    [15] X. Yang, H. Li, On state feedback asymptotical stabilization of probabilistic Boolean control networks, Syst. Control Lett., 160 (2022), 105107. http://doi.org/10.1016/j.sysconle.2021.105107 doi: 10.1016/j.sysconle.2021.105107
    [16] Z. Liu, J. Zhong, Y. Liu, W. Gui, Weak stabilization of Boolean networks under state-flipped control, IEEE T. Neur. Net. Lear. Syst., 2021. http://doi.org/10.1109/tnnls.2021.3106918 doi: 10.1109/tnnls.2021.3106918
    [17] J. Liu, L. Li, H. Fardoun, Complete synchronization of coupled Boolean networks with arbitrary finite delays, Frontiers of Information Technology & Electronic Engineering, 21 (2020), 281–293. http://doi.org/10.1631/fitee.1900438 doi: 10.1631/fitee.1900438
    [18] T. Sun, R. Wang, X. Zhao, P. Sun, Partial and global stabilization at an attractor for k-valued logical control networks, Journal of the Franklin Institute-Engineering and Applied Mathematics, 357 (2020), 7003–7019. http://doi.org/10.1016/j.jfranklin.2020.04.054 doi: 10.1016/j.jfranklin.2020.04.054
    [19] A. Yerudkar, C. Del Vecchio, L. Glielmo, Sampled-data set stabilization of switched Boolean control networks, IFAC-PapersOnLine, 53 (2020), 6139–6144. http://doi.org/10.1016/j.ifacol.2020.12.1694 doi: 10.1016/j.ifacol.2020.12.1694
    [20] A. Yerudkar, C. Del Vecchio, L. Glielmo, Control of switched Boolean control networks by state feedback, 18th European Control Conference (ECC), (2019), 1999–2004. http://doi.org/10.23919/ecc.2019.8796149 doi: 10.23919/ecc.2019.8796149
    [21] T. Sun, X. Sun, New results for hybrid delay systems with initial data: Razumikhin-type stability criteria, IEEE Transactions on Circuits and Systems II: Express Briefs, 69 (2022), 3194–3198. http://doi.org/10.1109/tcsii.2021.3136225 doi: 10.1109/tcsii.2021.3136225
    [22] T. Sun, X. Zhao, X. Sun, Switched dynamic systems with logic switching and its stability analysis, SIAM J. Control Optim., 59 (2021), 1188–1217. http://doi.org/10.1137/20m1337958 doi: 10.1137/20m1337958
    [23] Y. Guo, Y. Wu, W. Gui, Stability of discrete-time systems under restricted switching via logic dynamical generator and STP-based mergence of hybrid states, IEEE T. Automat. Contr., 67 (2022), 3472–3483. http://doi.org/10.1109/tac.2021.3105319 doi: 10.1109/tac.2021.3105319
    [24] C. Sun, H. Li, Algebraic formulation and application of multi-input single-output hierarchical fuzzy systems with correction factors, IEEE Transactions on Fuzzy Systems, 2022.
    [25] H. Lyu, W. Wang, X. Liu, Universal approximation of fuzzy relation models by semitensor product, IEEE T. Fuzzy Syst., 28 (2020), 2972–2981. http://doi.org/10.1109/TFUZZ.2019.2946512 doi: 10.1109/TFUZZ.2019.2946512
    [26] C. Sun, H. Li, Parallel fuzzy relation matrix factorization towards algebraic formulation, universal approximation and interpretability of MIMO hierarchical fuzzy systems, Fuzzy Sets and Systems, 450 (2022), 68–86. http://doi.org/10.1016/j.fss.2022.07.008 doi: 10.1016/j.fss.2022.07.008
    [27] H. Li, Y. Wang, L. Xie, Output tracking control of Boolean control networks via state feedback: constant reference signal case, Automatica, 59 (2015), 54–59. http://doi.org/10.1016/j.automatica.2015.06.004 doi: 10.1016/j.automatica.2015.06.004
    [28] Z. Man, M.Palaniswami, Robust tracking control for rigid robotic manipulators, IEEE T. Automat. Contr., 39 (1994), 154–159. http://doi.org/10.1109/9.273355 doi: 10.1109/9.273355
    [29] K. Melhem, W. Wang, Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix, IEEE T. Robot., 25 (2009), 428–437. http://doi.org/10.1109/tro.2009.2012016 doi: 10.1109/tro.2009.2012016
    [30] S. Al-Hiddabi, N. McClamroch, Tracking and maneuver regulation control for nonlinear nonminimum phase systems: application to flight control, IEEE T. Contr. Syst. Tech., 10 (2002), 780–792. http://doi.org/10.1109/tcst.2002.804120 doi: 10.1109/tcst.2002.804120
    [31] Y. Chen, P. Sun, T. Sun, M. Alassafi, A. Ahmad, Optimal output tracking of switched Boolean networks, Asian J. Control, 24 (2021), 1235–1246. http://doi.org/10.1002/asjc.2509 doi: 10.1002/asjc.2509
    [32] X. Zhang, Y. Wang, D. Cheng, Output tracking of Boolean control networks, IEEE T. Automat. Contr., 65 (2020), 2730–2735. http://doi.org/10.1109/tac.2019.2944903 doi: 10.1109/tac.2019.2944903
    [33] Z. Zhang, T. Leifeld, P. Zhang, Finite horizon tracking control of Boolean control networks, IEEE T. Automat. Contr., 63 (2018), 1798–1805. http://doi.org/10.1109/acc.2016.7526770 doi: 10.1109/acc.2016.7526770
    [34] A. Yerudkar, C. Del Vecchio, L. Glielmo, Output tracking control of probabilistic Boolean control networks, IEEE International Conference on Systems, Man and Cybernetics, 2019. https://ieeexplore.ieee.org/document/8914068
    [35] A. Yerudkar, C. Del Vecchio, L. Glielmo, Output tracking control design of switched Boolean control networks, IEEE Control Systems Letters, 4 (2019), 355–360. http://doi.org/10.1109/lcsys.2019.2928474 doi: 10.1109/lcsys.2019.2928474
    [36] T. Cimen, S. Banks, Nonlinear optimal tracking control with application to supertankers for autopilot design, Automatica, 40 (2004), 1845–1863. https://doi.org/10.1016/j.automatica.2004.05.015 doi: 10.1016/j.automatica.2004.05.015
    [37] F. Schreiber, M. Valcher, Formal assessment of some properties of context-aware systems, International Journal of Next-Generation Computing, 10 (2019).
    [38] H. Chen, X. Li, J. Sun, Stabilization, controllability and optimal control of Boolean networks with impulsive effects and state constraints, IEEE T. Automat. Contr., 60 (2015), 806–811. http://doi.org/10.1109/tac.2014.2330432 doi: 10.1109/tac.2014.2330432
    [39] T. Kitson, Stabilization, The effect of cephalosporin antibiotics on alcohol metabolism: a review, Alcohol, 4 (1987), 143–148. http://doi.org/10.1016/0741-8329(87)90035-8 doi: 10.1016/0741-8329(87)90035-8
    [40] X. Jin, S. Tang, Q. Chen, J. Zou, T. Zhang, F. Liu, et al., Furazolidone induced oxidative DNA damage via up-regulating ROS that caused cell cycle arrest in human hepatoma G2 cells, Toxicol. Lett., 201 (2011), 205–212. http://doi.org/10.1016/j.toxlet.2010.12.021 doi: 10.1016/j.toxlet.2010.12.021
    [41] H. Li, L. Xie, Y. Wang, Output regulation of Boolean control networks, IEEE T. Automat. Contr., 62 (2017), 2993–2998. http://doi.org/10.1109/tac.2016.2606600 doi: 10.1109/tac.2016.2606600
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(961) PDF downloads(131) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog