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Abstract: This article investigates the reference trajectory output tracking issue of Boolean control networks (BCNs) that have controls
in the output. Firstly, to solve the problem, some necessary and sufficient conditions are obtained. The tracking problem is studied
from the perspective of set and matrix calculation. Next, an algorithm for determining whether the output tracking issue is solvable
is proposed. Furthermore, the controller design algorithm satisfying the solvability condition is given. Using our methods, we can
track some trajectories that cannot be tracked in BCNs without controls in output. In addition, for better application in practice, the
corresponding changes in the network transition matrix and output matrix under state, transition, and input constraints are considered.
Finally, some examples are presented to illustrate the validity of our results.
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1. Introduction

Since Kauffman introduced a binary network called
Boolean network (BN) to study the evolution behavior in
genetic regulatory networks (GRNs) [1], it has garnered
considerable interest from biologists, systems scientists, and
others. In a BN, variables are used to represent genes with
values of 1 or 0, where 1 implies that the gene is active, and
0 implies that the gene is inactive. When there are external
disturbances regulations, BNs are naturally extended to
BCNs. In addition, probabilistic Boolean networks (PBNs)
and switching Boolean networks (SBNs) are investigated
due to the switching and random phenomena in GRNs [2,3].

In fact, BNs (BCNs) with logical function forms are
nonlinear networks. Thus, traditional discrete-time linear
system theory cannot be used to investigate research
problems. Cheng et al. [4] invented the semi-tensor product

(STP) of matrices to convert the logical dynamical system
into a typical discrete-time linear system. Some methods
and ideas in linear system theory can be applied to BNs
(BCNs) by using the STP, which further helps scientists
analyze and control GRNs for disease intervention [5] or
work on feedback shift registers [6] and so on [7–9]. Since
then, various properties of BNs have been investigated, such
as controllability, observability, stabilization and so on [10–
20]. Furthermore, as a helpful tool, the STP method also is
used in hybrid dynamic systems and fuzzy systems [21–26].

In the practical GRNs, the state evolution is complicated
and the measuring equipment has limitation [27]. Therefore,
it is an effective solution for scientists to measure the
output and render the system output to track the desired
signals to help study the system’s dynamics. It is also of
great significance in the application of robots and flight
control [28–30]. By reviewing the literature, we obtain
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that the current studies on output tracking issues of BCNs
can be mainly divided into the two following categories
according to the objectives of output tracking: track a
constant reference signal and track a time-varying reference
trajectory [27, 31–35]. Methods for designing the state
feedback control law were described in [27] to let the
system’s output track a constant reference signal stably after
a finite time. In [31], the switching sequence is found by
combining the method of set stabilization, so that the SBNs
can track a given a given constant reference signal. [32]
constructed an auxiliary system to help the outputs of a BCN
track the outputs of a reference system. Since it may cost
a lot to control over an infinite horizon, [33] considered
tracking a given reference output trajectory. In summary, the
output tracking problem is an inevitable and crucial issue for
GRNs.

In addition, the output tracking problem has other
practical significance. For example, the motion of
ships carrying heavy cargo needs to track a desired line
reserved before, thereby minimizing financial burden [36].
Furthermore, considering that the output tracking research
might help control the spread of future epidemics, we
mainly care about tracking a given finite length of time-
varying reference output trajectory. Moreover, the idea of
adding controls to the output is motivated by the research
problem investigated in [37]. In the study of a functional
system related to avalanche warning, context-alert of context
model combined with terrain temperature, snow height, and
accelerometer as the total input variables has a specific
effect on the output of functional system [37]. Hence, we
add controls to the system output to describe these system
models. It is worth highlighting that the authors in [33]
studied the output tracking problem of BCNs. Nonetheless,
the method in [33] fails to solve the problem in some cases.
To our knowledge, no study has been done considering the
controls in the output to solve the output tracking problem.
The system considered in this paper has controls in both
state transition and output models. Therefore, to a certain
extent, the method discussed in this paper can realize the
output tracking problem that cannot be realized in [33]. In
the following, we highlight the main contributions of this
paper:

• From the perspectives of set and matrix, for the BCN

system with output having controls, we give some
equivalent conditions to solve the reference trajectory
output tracking issue.
• Based on the obtained theorem, the authors construct

an algorithm to determine whether the output tracking
issue is solvable.
• If the problem can be solved, we develop an algorithm

to obtain a feasible control sequence, allowing the
system to track the reference output trajectory in a
finite range.

The main structure of this paper is as follows. We
introduce the preliminaries in Section 2. The main theorems
for the solvability of output tracking issues are obtained in
Section 3. Finally, some biological examples are proposed
to verify our results in Section 4. A concise conclusion is
shown in Section 5.

2. Preliminaries

First, for the convenience of subsequent description, some
basic notations are given here.

• D := {0, 1}, real numbers are denoted by R and the set
of positive integers is denoted by Z+.
• ∆q := {δiq|1 ≤ i ≤ q}, where δiq represents an q-

dimensional column vector with the ith element being
1 and others are 0.
• The ith column and ith row of matrix Q are denoted by

Coli(Q) and Rowi(Q), respectively.
• We call a matrix Q ∈ Mm×n logical matrix, if each

column vector of it has only one element 1, and the
other elements are 0. In this paper, denote the set of
m × n-dimensional logical matrices by Lm×n. Besides,
Bm×n denotes the set of m × n Boolean matrices, with
all elements taking value fromD.
• For a logical matrix A = [δi1m δ

i2
m · · · δinm], its

abbreviation is A = δm[i1 i2 · · · in].
• [ϵ, ξ] := {ϵ, ϵ + 1, ϵ + 2, · · · , ξ}, where ϵ, ξ ∈ Z+.
• 1k or 0k is the k-dimensional column vector whose

elements are all equal to 1 or 0, respectively.
• If α(t) = m1δ

i1
2n + m2δ

i2
2n + · · · + mkδ

ik
2n , where

m1,m2, · · · ,mk ∈ Z+, Ξ(α(t)) := {δi12n , δ
i2
2n , · · · , δ

ik
2n }.

On the contrary, if one set Ω = {δi12n , δ
i2
2n , · · · , δ

ik
2n },
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then Ψ(Ω) :=
∑k

j=1 δ
i j

2n . To describe concisely, denote
Ψ(Ω) = δi1,i2,··· ,ik2n .
• For two vectors ρ = [ρ1 ρ2 · · · ρs]⊤ ∈ Rs, σ =

[σ1 σ2 · · · σs]⊤ ∈ Rs. We denote the element-wise
multiplication of them by

ρ ⊙ σ := [ρ1σ1 ρ2σ2 · · · ρsσs]⊤.

2.1. Semi-tensor product

In this section, we introduce the definition of the STP
and how to transform BNs from logical expressions to
algebraic forms.

Definition 2.1. [4] For two matrices P ∈ Ma×b and Q ∈

Mc×d, the semi-tensor product of them is defined by

P ⋉ Q = (P ⊗ Il/b)(Q ⊗ Il/c),

where l = lcm(b, c) is the least common multiple of b and c,

and ⊗ is the Kronecker product.

When b = c, the STP of matrix is consistent with ordinary
matrix multiplication. In this article, we will omit “⋉”
without affecting the results to facilitate reading.

Before using the STP to obtain the algebraic expression
of BCNs, we show equivalence between Boolean variables
and their vector forms. Here, 1 is equivalent to δ12 and 0 is
equivalent to δ22.

Lemma 2.1. [4] For a logical function g(x1, · · · , xn) :
Dn → D, after changing all arguments xi to their vector

form xi, i.e., xi ∈ ∆2, i ∈ [1, n], it has an equivalent algebraic

form g(x1, · · · , xn) = Lgx1 · · · xn, where the structure matrix

Lg ∈ L2×2n can be uniquely determined by g.

2.2. Algebraic representation of BCNs

Consider the logical representation of a BCN is
abbreviated as

xi(t + 1) = gi(u1(t), · · · ,um(t), x1(t), · · · , xn(t)), (2.1)

with its output system being

y j(t) = h j(u1(t), · · · ,um(t), x1(t), · · · , xn(t)), (2.2)

where xi(t),uk(t), y j(t) ∈ D, i ∈ [1, n], k ∈ [1,m], j ∈ [1, p]
are logical variables. gi : Dm+n → D, i ∈ [1, n], h j :

Dm+n → D, j ∈ [1, p] are logical functions. Then, after
changing the logical form of variables to the vector form,
we define x(t) = ⋉n

i=1xi(t) ∈ ∆2n , u(t) = ⋉m
k=1uk(t) ∈ ∆2m .

According to Lemma 2.1, we can transform equation (2.1)
into

xi(t + 1) = Miu(t)x(t), (2.3)

where structure matrices are specified as Mi ∈ L2×2m+n , i ∈

[1, n]. Likewise, define y(t) = ⋉p
j=1y j(t). Then the outputs

are

y j(t + 1) = N ju(t)x(t), (2.4)

where N j ∈ L2×2m+n , j ∈ [1, p]. Therefore, we can determine
the algebraic form of BCN (2.1) and its output (2.2) asx(t + 1) = L ⋉ u(t) ⋉ x(t),

y(t) = H ⋉ u(t) ⋉ x(t),
(2.5)

where L, which can be obtained by L = M1 ∗M2 ∗ · · ·∗Mn, is
referred to as the network transition matrix. Similarly, H is
called an output matrix which can be expressed as H = N1 ∗

N2∗· · ·∗Np, where “∗” is the Khatri-Rao product of matrices.

Remark 2.1. Without the loss of generality, in the

equations (2.1) and (2.2), the evolution of the state and the

output, respectively, in the BCN model we give, is related

to the same control sequence. If the state and output are

affected by different control variables, we can still combine

all the control variables with a dummy matrix [4]. Then,

it will make the control sequences the same and larger

dimensional than before for the convenience of subsequent

studies.

3. Main Results

3.1. Problem formulation

Based on the above STP work, we can analyze the
algebraic form of BCNs to study the output tracking
issue. For simplicity, denote a control sequence ut by
ut = {u(0), u(1), · · · , u(t)}. Thus, the output of the
system (2.5) under ut is shown as y(t, x(0), ut). Then, there is
y(t, x(0), ut) = Hu(t)Lu(t−1)Lu(t−2) · · · Lu(0)x(0). Since we
are investigating the problem of reference trajectory output
tracking, there needs to be an assigned reference output
trajectory yP:
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yo(1) = δy1
2p , yo(2) = δy2

2p , · · · , yo(P) = δyP
2p .

Next, we will give the definition of reference trajectory
output tracking and the solvable conditions for the output
tracking issue will be discovered using the properties
of BCNs.

Definition 3.1. [33] Consider BCN (2.5) with a given

initial state x(0) and a reference output trajectory yP. The

(reference trajectory) output tracking issue is solvable, if

we can find a control sequence uP such that y(t; x(0), ut) =
yo(t), ∀t ∈ [1, P].

We first regard u(t)x(t) in (2.5) as a control-state pair. For
convenience of subsequent description, let u(t) = δkt

2m , x(t) =
δit2n . Then u(t)x(t) = δ jt

2m+n , where jt = 2n(kt − 1) + it. For the
output yo(t) = δyt

2p , the set of u(t)x(t) that can realize output
tracking is

Ω(t) = {u(t)x(t) = δ jt
2m+n |Col jt (H) = δyt

2p },∀ t ∈ [1, P].

We construct sets X(t), Λ(t) and Γ(t) alternatively as
shown below to address the output tracking issue, where
t ∈ [1, P].

First, the state set obtained from state x(0) through one
step is X(1) = {x(1)|x(1) = Lu(0)x(0), u(0) ∈ ∆2m }. Define
the set Λ(t) = {ũ(t)x(t), ũ(t) ∈ ∆2m , x(t) ∈ X(t)}, ∀t ∈ [1, P].
Γ(t) represents the intersection of Λ(t) and Ω(t), i.e.,

Γ(t) = Λ(t) ∩Ω(t),∀ t ∈ [1, P]. (3.1)

It is essential to mention that for t ∈ [2, P]

X(t) = {x(t)|x(t) = Lu(t−1)x(t−1), u(t−1)x(t−1) ∈ Γ(t−1)}.
(3.2)

Remark 3.1. Ω(t) is the control-state pairs set whose

elements can produce the desired output according to H.

X(t) is the state set under control sequence which meets

the condition of tracking, from the perspective of network

transition matrix L of dynamical equation. To unify the

dimensions of the two sets, we define the set Λ(t).

3.2. The solvability of the output tracking issue

Following the definition of sets X(t), Λ(t) and Γ(t), a
theorem can be obtained to determine the solvability of the
output tracking issue from the perspective of the set.

Theorem 3.1. Given an initial state x(0) = δi02n , a positive

integer P and a reference output trajectory yP, the output

tracking issue of BCN (2.5) is solvable if and only if

Γ(P) , ∅.

Proof. (Sufficiency) For any t′ ∈ [1, P − 1], if Γ(t′) = ∅,
by calculation it has X(t′ + 1) = {x(t′ + 1)|x(t′ + 1) =
Lu(t′)x(t′), u(t′)x(t′) ∈ Γ(t′)} = ∅. Similarly, it can be
obtained that for any t ∈ [t′ + 1, P], X(t) = {x(t)|x(t) =
Lu(t−1)x(t−1)} = ∅ always holds. It shows thatΛ(t) = ∅ and
Γ(t) = ∅, which is in contradiction to Γ(P) , ∅. Therefore,
the condition Γ(P) , ∅ implies that Γ(t) , ∅, ∀t ∈ [1, P].
Then, we can choose a u(P)x(P) ∈ Γ(P) and denote them
by u(P) = δkP

2m , x(P) = δiP
2n , respectively. Since x(P) ∈ X(P),

there exists u(P − 1)x(P − 1) ∈ Γ(P − 1), where u(P − 1) =
δkP−1

2m , x(P) = δiP−1
2n , such that Lu(P − 1)x(P − 1) = x(P) = δiP

2n

holds. Similarly, we can find a series of control-state pairs
{u(1)x(1), u(2)x(2), · · · , u(P)x(P)}, which satisfies u(t)x(t) ∈
Γ(t) and Lu(t)x(t) = x(t + 1), ∀t ∈ [1, P − 1]. In addition,
for x(0) = δi02n , we only need to determine u(0) = δk0

2m so that
Lu(0)x(0) = x(1). Hence, there exists a control sequence
uP = {u(0) = δk0

2m , u(1) = δk1
2m , · · · , u(P) = δkP

2m } such that for
any t ∈ [1, P], u(t)x(t) ∈ Γ(t), then y(t; x(0), ut) = yo(t) holds.
Thus, the solvable goal can be achieved.

(Necessity) If Γ(P) = ∅, based on (3.1), we have Λ(P) ∩
Ω(P) = ∅. Then, for any x(P) ∈ X(P), ũ(P)x(P) constructed
by ũ(P) ∈ ∆2m does not belong to Ω(P). Therefore, y(P) =
Hũ(P)x(P) , yo(P), which breaks the requirement that the
output tracking issue of BCN (2.5) is solvable. □

Theorem 3.1 shows that ∀t ∈ [1, P], Γ(t) , ∅ means
that there exists u(t)x(t) satisfying both dynamical update
condition and output tracking condition. It determines that
the output tracking goal of BCN (2.5) can be achieved from
the perspective of the set. Next, we consider giving another
theorem to realize the goal through vector expression from
the perspective of matrix calculation.

Denote
w(t) = Ψ

(
Ω(t)
)
∈ B2m+n×1, (3.3)
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which is the vector form of the set Ω(t) including all the
control-state pairs that can produce output yo(t). Define

γ(t) = w(t) ⊙
(
12m ⋉ Lγ(t − 1)

)
, t ∈ [1, P], (3.4)

with γ(0) := 12m ⋉ x(0). Then, we have the following
necessary and sufficient criterion for output tracking using
vector expression.

Theorem 3.2. Given an initial state x(0) = δi02n and a

positive integer P, the output tracking issue of BCN (2.5)
is solvable if and only if γ(P) , 02m+n .

Proof. For sufficiency, if there is t1 ∈ [1, P − 1], such that
γ(t1) = 02m+n , then by (3.4), the equation γ(t) = 02m+n , t ∈

[t1+1, P] holds, which is in contradiction with the condition
γ(P) , 02m+n . Thus, it concludes that γ(t) , 02m+n , t ∈ [1, P].
For γ(P) , 02m+n , we can take u(P)x(P) = δ jP

2m+n ∈ Ξ
(
γ(P)
)
,

and denote them by u(P) = δkP
2m , x(P) = δiP

2n , respectively.
According to the construction of γ(t) in (3.4), it implies that
y(P) = Hu(P)x(P) = yo(P). Then, we can choose u(t −
1)x(t−1) ∈ Ξ(γ(t−1)) satisfying that Lu(t−1)x(t−1) = x(t) =
δit2n , where u(t−1) = δkt−1

2m , x(t−1) = δit−1
2n , t = P, P−1, · · · , 2.

It also holds that y(t) = Hu(t)x(t) = yo(t). For t = 1, u(0)
is determined by satisfying Lu(0)x(0) = x(1) = δi12n . Hence,
there is a uP = {u(0) = δk0

2m , u(1) = δk1
2m , · · · , u(P) = δkP

2m } so
that ∀t ∈ [1, P], y(t; x(0), ut) = yo(t) holds, which means that
there is one way that the output tracking goal of BCN (2.5)
can be resolved. As for necessity, it is removed here since it
is analogous to Theorem 3.1.

□

Theorem 3.1 gives the necessary and sufficient conditions
for the solvability of output tracking problem from the set
viewpoint, which helps us to understand. In Theorem 3.2,
the criterion is given by vector method, which is convenient
for practical calculation and judgment. Then, Algorithm 1
is given below to illustrate the general steps for determining
whether the output tracking issue can be solved.

3.3. Tracking control design

After we investigate whether the output tracking issue for
a reference trajectory in a given finite time can be solved, we
consider finding a control sequence satisfying the condition

Algorithm 1 Determine the solvability of output
tracking issue.

Input: x(0) = δi02n , P, and the reference output trajectory yP

with a known BCN (2.5)

1: Initialize γ(0) = 12m ⋉ δi02n , t = 1.
2: while t = 1, · · · , P do
3: Calculate the corresponding Ω(t) and w(t) based

on yo(t) = δyt
2p .

4: Calculate γ(t) = w(t) ⊙
(
12m ⋉ Lγ(t − 1)

)
.

5: if γ(t) = 02m+n then
6: the output tracking issue is unsolvable.
7: else
8: t ← t + 1.
9: end if

10: else
11: the output tracking issue of BCN (2.5) is solvable.
12: end while

that BCN (2.5) is solvable, such that the outputs can achieve
the given reference output trajectory.

The basic idea to solve the problem is to calculate u(t) and
x(t) backward by γ(t), t ∈ [1, P]. Obviously, the control-state
pairs that can realize output tracking may be not unique at
each time, and our goal is to find a feasible control sequence
so that the output trajectory can track the reference output
trajectory. Algorithm 2 gives the design method of the
controllers.

Remark 3.2. It is worth to note that Algorithm 2 is based

on the Algorithm 1. We need to calculate all γ(t), t ∈

[1, P] and determine that γ(P) , 02m+n . Therefore, Step

3 in Algorithm 2 is a way to select the feasible control u

and x. Finally, the control sequence that can achieve the

output tracking is determined based on the γ(t), t ∈ [1, P],
calculated in Algorithm 1.

Furthermore, it has been proved that solving control

problems of BCNs using the STP is an NP-hard problem

and causes exponential computational burden. In particular,

the worst-case computational complexity involved in

determining the problem’s solvability (Algorithm 1) is

O(2nP), and designing the control sequence (Algorithm 2)

is O(2n+mP).
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Algorithm 2 Get a feasible control
sequence {u⋇(0), u⋇(1), · · · , u⋇(P)}, such that BCN (2.5)
realize the output tracking.

Input: x(0) = δi02n , P, and the reference output trajectory yP

with a known BCN (2.5)

1: Determine that whether the problem can be solved
according to Algorithm 1.

2: if it is solvable then
3: Randomly choose u⋇(P)x⋇(P) = δ jP

2m+n ∈ Ξ(γ(P)), and
denote them by u⋇(P) = δkP

2m , x⋇(P) = δiP
2n .

4: while t = P, P − 1, · · · , 1 do
5: Choose u⋇(t − 1)x⋇(t − 1) ∈ Ξ(γ(t − 1)) satisfying

that Lu⋇(t−1)x⋇(t−1) = x⋇(t) = δit2n . Denote u⋇(t−1) =
δkt−1

2m , x⋇(t − 1) = δit−1
2n .

6: t ← t − 1
7: end while
8: Select u⋇(0) = δk0

2m , which satisfies Lu⋇(0)x(0) =
x⋇(1).

9: else end

Proposition 3.1. Given x(0) = δi02n , under the control

sequence {u⋇(0), u⋇(1), · · · , u⋇(P)} obtained in Algorithm 2,

the state trajectory {x⋇(1) = δi12n , x⋇(2) = δi22n , · · · , x⋇(P) =
δiP

2n } will produce the desired reference output trajectory yP.

Proof. From Algorithm 2, we can find that

x⋇(t) =

Lu⋇(0)x(0) t = 1,

Lu⋇(t − 1)x⋇(t − 1) t ∈ [2, P].
(3.5)

For any t ∈ [1, P], there is

y(t) = Hu⋇(t)x⋇(t)

= Hu⋇(t)Lu⋇(t − 1)x⋇(t − 1)

= Hu⋇(t)Lu⋇(t − 1)Lu⋇(t − 2) · · · Lu⋇(1)Lu⋇(0)x(0).

Since u⋇(t)x⋇(t) ∈ Ξ(γ(t)) holds for all t ∈ [1, P], it implies
that u⋇(t)x⋇(t) ∈ Ω(t). Therefore, it can be obtained that
y(t) = yo(t),∀t ∈ [1, P]. □

In daily life, constraints are everywhere. Taking the
treatment of patients by doctors as an example, the state
of patients or cells can be regarded as the state of the
system, and the prescription drugs issued by doctors can

be regarded as the control of the system. The purpose of
doctors’ treatment of patients is to hope that patients will
enter a continuous healthy state, so some unhealthy and sick
states should be avoided [38]. In some cases, the type of
drugs will be determined according to the state of the patient.
For example, when the patient is in the state of drinking
alcohol, the doctor will not consider taking cephalosporin
anti-inflammatory drugs, which is the transition constraint
considered here [39]. In addition, if some drugs were
developed a long time ago, and with the increase of medical
level, we find the use of these drugs may have undesirable
side effects on the human body, then doctors will not
consider prescribing these types of drugs. For example,
furazolidone as an effective drug, is usually used to treat
gastrointestinal diseases such as dysentery and enteritis
caused by bacteria and protozoa. However, scientists
found that it has potentially carcinogenic properties [40].
Hence, doctors won’t use compound preparation containing
furazolidone now, and it can be one of the examples for the
input control constraints. Therefore, in controllers’ design,
we should also consider changes in state, transition and input
constraints.

(1) State constraint

When solving the output tracking issue of the system and
designing the controllers, if a state x(t) = δi2n should be
avoided, then the ith row of matrix L should be

Rowi(L) = 0⊤2m+n .

At this point, we do not consider any transition from other
states to x(t) = δi2n .

(2) Transition constraint

In a BCN, a transition constraint forbids the control input
u(t) for a state x(t). For example, if the transition from the
state x(t) = δi2n using control input u(t) = δk2m is forbidden,
then we have

Col2n(k−1)+i(L) = 02n , and Col2n(k−1)+i(H) = 02p .

(3) Input constraint

The input constraint means there are some controls that
we cannot take. Suppose that u(t) = δk2m has to be forbidden,
then the k-th block of L and H will be null matrices, that is
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Lk := L ⋉ δk2m = 02n×2n , and Hk := H ⋉ δk2m = 02p×2n .

4. Example

Example 4.1. Consider BCN in [33]:



x1(t + 1) = ¬u1(t) ∧ (x2(t) ∨ x3(t)),
x2(t + 1) = ¬u1(t) ∧ u2(t) ∧ x1(t),
x3(t + 1) = ¬u1(t) ∧ (u2(t) ∨ (u3(t) ∧ x1(t))),
y1(t) = (u1(t) ∧ u3(t)) ∨ (¬u1(t) ∧ u2(t)) ∨ x1(t),
y2(t) = (¬u1(t) ∨ u2(t)) ∨ (u2(t) ∧ u3(t)) ∧ x2(t).

(4.1)

This is a simplified BCN model of lac operon in

Escherichia coli. Applying the STP method, the following

algebraic form can be obtained:

x(t + 1) = Lu(t)x(t),

y(t) = Hu(t)x(t),
(4.2)

where x(t) = ⋉3
i=1xi(t) ∈ ∆8, u(t) = ⋉3

k=1uk(t) ∈ ∆8, y(t) =
⋉2

j=1y j(t) ∈ ∆4. Besides, the network transition matrix and

the output matrix are

L = δ8[8 8 8 8 8 8 8 8 | 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 | 8 8 8 8 8 8 8 8

1 1 1 5 3 3 3 7 | 1 1 1 5 3 3 3 7

3 3 3 7 4 4 4 8 | 4 4 4 8 4 4 4 8],

H = δ4[1 1 1 1 1 1 1 1 | 1 1 1 1 3 3 3 3

2 2 2 2 2 2 2 2 | 2 2 2 2 4 4 4 4

1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1

1 1 1 1 3 3 3 3 | 1 1 1 1 3 3 3 3].

At the beginning, we assume that x(0) = δ28, and give two

reference output trajectories as:
Table 1. Output trajectory 1.

t 1 2 3 4

yo
1 1 0 0 0

yo
2 0 1 0 0

yo δ24 δ34 δ44 δ44

Table 2. Output trajectory 2.

t 1 2 3 4

yo
1 0 1 0 0

yo
2 1 0 0 0

yo δ34 δ24 δ44 δ44

To better simulate the GRNs, we assume that there are

three types of constraints in (4.2):
(1) State constraint: State δ18 should be avoided, which

means that Row1(L) = 0⊤64.

(2) Transition constraint: For state x(t) = δ68, it is

prohibited to use control input u(t) = δ38. Then, the

two matrices become L3 = δ8[8 8 8 8 8 0 8 8], H3 =

δ4[2 2 2 2 2 0 2 2]. With a slight abuse of notation, we

use δ0i here to represent 0i.

(3) Input constraint: Considering the specification about

the concentration of extra cellular lactose, the control input

u = ⋉3
k=1uk = δ

2
8 and u = ⋉3

k=1uk = δ
6
8 are forbidden. Then,

we have L2 = L6 = 08×8, H2 = H6 = 04×8.

Under the three types of constraints, the new matrices are

expressed as

L̂ = δ8[8 8 8 8 8 8 8 8 | 0 0 0 0 0 0 0 0

8 8 8 8 8 0 8 8 | 8 8 8 8 8 8 8 8

0 0 0 5 3 3 3 7 | 0 0 0 0 0 0 0 0

3 3 3 7 4 4 4 8 | 4 4 4 8 4 4 4 8],

Ĥ = δ4[1 1 1 1 1 1 1 1 | 0 0 0 0 0 0 0 0

2 2 2 2 2 0 2 2 | 2 2 2 2 4 4 4 4

1 1 1 1 1 1 1 1 | 0 0 0 0 0 0 0 0

1 1 1 1 3 3 3 3 | 1 1 1 1 3 3 3 3].

The following is to determine whether the output tracking

issue can be solved for the given output trajectories 1 and 2.

If it is solvable, we can give the corresponding controllers’

design. Initialize γ(0) = 18 ⋉ δ
2
8, and it has γ(0) =

δ2,10,18,26,34,42,50,58
64 by calculation.

We first consider whether the system can track the

specified reference output trajectory 1.

(1) For yo(1) = δ24, according to Ĥ, we can get Ω(1) =
{δ17

64, δ
18
64, δ

19
64, δ

20
64, δ

21
64, δ

23
64, δ

24
64, δ

25
64, δ

26
64, δ

27
64, δ

28
64} and w(1) =

δ17,18,19,20,21,23,24,25,26,27,28
64 . Then, we have

γ(1) = w(1) ⊙
(
12m ⋉ L̂γ(0)

)
= δ19,20,27,28

64 + 3δ24
64.
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(2) For yo(2) = δ34, we have Ω(2) =

{δ53
64, δ

54
64, δ

55
64, δ

56
64, δ

61
64, δ

62
64, δ

63
64, δ

64
64} and w(2) =

δ53,54,55,56,61,62,63,64
64 . Then, it holds that

γ(2) = w(2) ⊙
(
12m ⋉ L̂γ(1)

)
= 7δ56,64

64 .

(3) For yo(3) = yo(4) = δ44, it holds that Ω(3) =
Ω(4) = {δ29

64, δ
30
64, δ

31
64, δ

32
64}, and w(3) = w(4) = δ29,30,31,32

64 .

Furthermore, we have

γ(3) = w(3) ⊙
(
12m ⋉ L̂γ(2)

)
= 14δ32

64,

γ(4) = w(4) ⊙
(
12m ⋉ L̂γ(3)

)
= 14δ32

64.

It can be concluded that the output tracking issue of the

system is solvable for reference output trajectory 1 since

γ(4) , 08. Then, we can use the method in Algorithm 2

to find a feasible control sequence to realize output tracking

for the output trajectory 1. The specific process is as follows.

First, since P = 4 and γ(4) = 14δ32
64, we can only get that

u⋇(4)x⋇(4) = δ32
64 ∈ Ξ

(
γ(4)
)
. Hence, by decomposition, we

have u⋇(4) = δ48 and x⋇(4) = δ88. Next, we need to choose

u⋇(3)x⋇(3) ∈ Ξ
(
γ(3)
)
, satisfying L̂u⋇(3)x⋇(3) = x⋇(4) = δ88.

Then, we have u⋇(3)x⋇(3) = δ32
64 with u⋇(3) = δ48 and x⋇(3) =

δ88. Similarly, we can obtain a control input sequence that

meets the output tracking condition represented by {u⋇(0) =
δ18, u

⋇(1) = δ38, u
⋇(2) = δ78, u

⋇(3) = δ48, u
⋇(4) = δ48},

with corresponding state sequence denoted by {x⋇(0) =
δ28, x

⋇(1) = δ88, x
⋇(2) = δ88, x

⋇(3) = δ88, x
⋇(4) = δ88}. Note

that this is only a feasible situation we have proposed, and

it is not unique.

Analogously, for reference output trajectory 2, we can

obtain that

γ(1) = 3δ56,64
64 , γ(2) = 6δ24

64, γ(3) = 6δ32
64, γ(4) = 6δ32

64.

It determines that the system can track reference output

trajectory 2 since γ(4) , 08. Furthermore, the input

sequence that meets the output tracking condition can be

{u⋇(0) = δ18, u
⋇(1) = δ78, u

⋇(2) = δ38, u
⋇(3) = δ48, u

⋇(4) = δ48}.
In [33], there does not have any control in the output

system. The system can realize output tracking under output

trajectory 1, but fails under output trajectory 2. As one of

the innovations of this paper, we add control input to the

output system. We can find in this example that it makes the

system realize output tracking under two reference output

trajectories.

Example 4.2. Consider a modified lactose operon model in

Escherichia coli with 5 nodes [41]:

x1(t + 1) = x3(t) ∧ u1(t),
x2(t + 1) = x1(t),
x3(t + 1) = x3(t) ∨ (x4(t) ∧ x2(t)),
x4(t + 1) = x5(t) ∨ (x4(t) ∧ ¬x2(t)),
x5(t + 1) = x1(t) ∨ u2(t),
y1(t) = x1(t) ∨ u1(t),
y2(t) = x2(t) ∨ u2(t).

(4.3)

Based on the STP method, we can transfer the model to

the form as (2.5) with x(t) = ⋉5
i=1xi(t) ∈ ∆32, u(t) =

⋉2
k=1uk(t) ∈ ∆4, y(t) = ⋉2

j=1y j(t) ∈ ∆4, where L =

δ32[1 3 1 3 17 19 21 23 · · · 26 26 26 28 30 30 30 32] and

H = δ4[1 1 1 1 1 1 1 1 · · · 4 4 4 4 4 4 4 4]. Next, we suppose

that there are some constraints:

(1) State constraint: State δ32
32 is avoided and Row32(L) =

0⊤128.

(2) Transition constraint: For state x(t) = δ332, the control

input u(t) = δ14 is limited, so we will have Col3(L) =
032, and Col3(H) = 04.

(3) Input constraint: Suppose that the control input u =

⋉2
k=1uk = δ

2
4 is forbidden. Finally, the matrices are changed

to L̂ = δ32[1 3 0 3 17 19 21 23 · · · 26 26 26 28 30 30 30 0]
and Ĥ = δ4[1 1 0 1 1 1 1 1 · · · 4 4 4 4 4 4 4 4].

Here, we are going to check under the condition that

the initial state is x(0) = δ20
32, whether the output tracking

issue can be solvable with the given output trajectory

yo(1) = δ14, y
o(2) = δ24, y

o(3) = δ14. First, according

to Algorithm 1, it has γ(0) = 14 ⋉ δ
20
32 = δ

20,52,84,116
128 .

Then, calculated by the while loop, we can obtain γ(1) =
δ11,27,28,43,59,60,75,91,92,107,123,124

128 , γ(2) = δ105,107
128 , γ(3) =

2δ17
128. It shows that the output tracking issue of BCN (4.3)

is solvable. Hence, we can use Algorithm 2 to get a

feasible control sequence such that BCN (4.3) achieves

output tracking.

First of all, because of γ(P) = γ(3) = 2δ17
128, it can be

divided to u⋇(3)x⋇(3) = δ14 ⋉ δ
17
32. Then, we aim to choose

u⋇(2)x⋇(2) ∈ Ξ
(
γ(2)
)

such that L̂u⋇(2)x⋇(2) = x⋇(3) =
δ17

32. By calculation, it obtains u⋇(2) = δ44, x
⋇(2) = δ932.

Furthermore, we can get u⋇(1) = δ14, x
⋇(1) = δ27

32 and
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u⋇(0) = δ34. Therefore, using the control sequence {u⋇(0) =
δ34, u

⋇(1) = δ14, u
⋇(2) = δ44, u

⋇(3) = δ14}, the output tracking

issue based on the given reference trajectory can be solved.

5. Conclusions

By using the STP, for the BCNs with controls in
output, the reference trajectory output tracking issue is
investigated. Some results to solve the output tracking
issue are proposed and an algorithm is designed to judge
the solvability. Moreover, the controllers’ design algorithm
is given by calculation when we have determined that the
output tracking issue is solvable. To better apply the results
to daily life, the corresponding changes in the network
transition matrix and output matrix under some constraints
simulated from reality are considered. In the end, the
effectiveness of our results is shown by some examples.
An important direction for future research is to investigate
output tracking problem by reinforcement learning method.
In addition, we can study the problems considered in this
paper in BNs with time delay or switching signal.
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