Successful identification procedures are undoubtedly important for accurate model description and the consequent implementation of control strategies. Linear Parameter Varying (LPV) models are nowadays standard for control design purposes and powerful identification techniques accordingly available. Anyhow, recent advances have brought to focus the class of Nonlinear Parameter Varying (NLPV) models, which keep some nonlinearities embedded to the formulation. Identification tools for this latter class are still not available. Therefore, this paper proposes a novel method for the robust identification of stochastic NLPV systems, considering that the nonlinear parameter part is a priori known and obeys a Lipschitz condition. The method is based on a modified extended Masreliez-Martin filter and yields the joint estimation of both NLPV systems states and model parameters. The method manages the stochasticity of the system by considering the presence of measurement outliers with non-Gaussian distributions. Results considering real data from a vehicle suspension system are presented in order to demonstrate the consistency of the proposed method.
Citation: Marcelo Menezes Morato, Vladimir Stojanovic. A robust identification method for stochastic nonlinear parameter varying systems[J]. Mathematical Modelling and Control, 2021, 1(1): 35-51. doi: 10.3934/mmc.2021004
[1] | A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628 |
[2] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[3] | Rajesh Dhayal, Muslim Malik, Syed Abbas . Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion. AIMS Mathematics, 2019, 4(3): 663-683. doi: 10.3934/math.2019.3.663 |
[4] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[5] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[6] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265 |
[7] | Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477 |
[8] | Omar Kahouli, Saleh Albadran, Zied Elleuch, Yassine Bouteraa, Abdellatif Ben Makhlouf . Stability results for neutral fractional stochastic differential equations. AIMS Mathematics, 2024, 9(2): 3253-3263. doi: 10.3934/math.2024158 |
[9] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536 |
[10] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
Successful identification procedures are undoubtedly important for accurate model description and the consequent implementation of control strategies. Linear Parameter Varying (LPV) models are nowadays standard for control design purposes and powerful identification techniques accordingly available. Anyhow, recent advances have brought to focus the class of Nonlinear Parameter Varying (NLPV) models, which keep some nonlinearities embedded to the formulation. Identification tools for this latter class are still not available. Therefore, this paper proposes a novel method for the robust identification of stochastic NLPV systems, considering that the nonlinear parameter part is a priori known and obeys a Lipschitz condition. The method is based on a modified extended Masreliez-Martin filter and yields the joint estimation of both NLPV systems states and model parameters. The method manages the stochasticity of the system by considering the presence of measurement outliers with non-Gaussian distributions. Results considering real data from a vehicle suspension system are presented in order to demonstrate the consistency of the proposed method.
Fractional differential equations (FDEs) are an effective mathematical tool to model and analyze many real life problems; it has been used by researchers and scientists to get better results than the integer order differential equations. Fractional order differential equations offer a superior framework for capturing the intricate dynamics of real-world phenomena compared to their integer-order counterparts. This superiority stems from the unique ability of fractional integrals and derivatives to account for the inherent hereditary and memory characteristics present in diverse processes and materials. By harnessing these fractional operators, models can more accurately depict the nuanced behaviors observed in nature, thereby enhancing our understanding and predictive capabilities across a wide range of disciplines and applications. Many fractional derivatives, including Caputo derivative, Atangana-Baleanu derivative, Coimbra derivative, and Riemann-Liouville (R-L) derivative, are frequently used to examine FDEs and fractional order stochastic differential equations (SDEs). In a similar vein, the Hilfer fractional derivative (HFD), which was just recently used to do so, was developed by Hilfer [21], which is a generalized version of R-L and Caputo derivatives. In actuality, fractional derivative and integrals indicate greater accuracy than integral models and also depict broader physical applications in seepage, flow in porous media, nanotechnology, fluid dynamics and traffic models [6,7,12,22,24,28,31].
SDEs are the natural extension of deterministic systems. SDEs with impulses arise from many mathematical models of physical phenomena in different scientific fields for example, technology, physics, biology, economics, etc. They are important from the viewpoint of applications since they incorporate randomness into the mathematical description of the phenomena and provide a more accurate description of it. Certainly, in various fields like economics, bioengineering, chemistry, medicine, and biology, we often encounter situations where things change suddenly at specific points in time [5,23,29,32]. These abrupt changes can be explained by what we call "impulsive effects." These impulsive effects are like sudden pushes that happen at certain moments and have a big impact on the system, being studied. These pushes play a crucial role in understanding and modeling how things change in the aforementioned diverse fields. For the mathematical models of such phenomena, finding their solution is a challenging task. As a result, Boundani et al. [8,9] presented some specific conditions that help us to determine whether certain mathematical equations, involving randomness, can have solutions. These equations involve functional differential equations and a type of random behavior, called fractional Brownian motion.
In [20], Hernandez and O'Regan introduced non-instantaneous (NI) impulses. Many researchers have utilized these impulses and studied the corresponding dynamical systems [3,4,27,36,39]. To better understand NI impulses, we can think about human blood sugar levels. When they have too much or too little, glucose they get insulin medication through the bloodstream, in fact it doesn't work instantly but takes some time to be absorbed [37]. This gradual effect is like NI, where the impact lasts for a while in many real situations. Sudden changes don't explain things well. For instance, in the treatment of diseases with medication, we need to describe how things change over time more smoothly. That's where NI impulsive differential equations come in handy. They help us to model these gradual changes, like how drugs affect the body in pharmacotherapy.
Among the qualitative behaviors of different physical systems, different types of stabilities are the essential ones. One of these types of stabilities is Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR) stability [11,16,26,30,33].
In the literature, most of the results related to fractional stochastic differential equations (FSDEs) are given over infinite dimensional spaces [1,2,13,18,19,25,32,35,38], and very few have looked at similar results in finite spaces. There is no prior work on the specific topic of non-integers order impulses in finite-dimensional equations to the problem of fractional neutral SDEs including both noises. In FSDEs incorporating both retarded and advanced arguments, a significant characteristic emerges: The rate of change of the system at the present moment is influenced not only by its past history but also by its anticipated future states. This feature underscores the intricate interplay between past, present, and future dynamics, where the system's behavior is shaped by a combination of its memory effects and anticipatory responses.
In the current manuscript, we investigate the following ψ-Hilfer fractional stochastic equation (HFSE):
Dγ,βψ(ε)[Γ(ε)−h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε),Dγ,βψ(ε)Γ(ε))+∫ε0g(s,Γ(s),Dγ,βψ(ε)Γ(ε))dB(s)+∫ε0λ(s,Γ(s),Dγ,βψ(ε)Γ(ε))dBH(s),ε ∈(sk,εk+1]⊂J′:=(0,b],k=0,1,2,…,m,Γ(ε)=hk(ε,Γ(ε)),ε∈(εk,sk],k=1,2,…,m,I1−v0+Γ(ε)/ε=0=Γ0,v=γ+β−γβ,Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(ε)=φ(ε),ε∈[b,b+h], | (1.1) |
where Dγ,βψ(ε) is the ψ– Hilfer FD of order 0<γ<1 and of type 0<β≤1. Let J:=[0,b], b>0. The state vector Γ∈Rn, A∈Rn×n and nonlinear functions h : J×Rn⟶Rn, Δ:J×Rn⟶Rn, g:J×Rn⟶Rn×n, λ:J×Rn⟶Rn×n, and hk:J×Rn⟶Rn are measurable and bounded functions. Also, Γ0 is F0 measurable Rn-valued stochastic variable and B is an n-dimensional Wiener process.
Based on the value of H, the following kinds of the fractional Brownian motion (fBm) process exist:
(1) if H=12, then the process is a Brownian motion or a Wiener process exists;
(2) if H>12, then the increment of the process is positively correlated;
(3) if H<12, then the increment of the process is negatively correlated.
The contributions of this paper are described as below:
● Nonlinear ψ-HFSE is considered in Rn.
● The existence and uniqueness results are established by using the standard Banach contraction principle.
● The weaker sufficient conditions are derived by using the generalized Schaefer FPT for the system with measure of non-compactness (MNC).
● UHR stability results are derived for ψ-HFSE with NI impulse.
● An example is provided for the theoretical results.
This paper is structured as follows: In Section 2, we present a number of lemmas and some fundamental definitions for fractional calculus. Section 3 derives the solution representation of ψ-Hilfer fractional SDEs with NI impulses. To demonstrate the key results, the generalized Schaefer's and contraction mapping principles are used in Section 4. In Section 5, UHR stability of a ψ-HFSE is discussed. Example is demonstrated for the validity of theoretical results in Section 6.
Notations:
● (Ω,F,P) represents the complete probability space along a probability measure P on Ω.
● B(ε) and BH(ε) denote, respectively, the n-dimensional Brownian motion and fBm with Hurst index 12<H<1.
● {Fε|ε∈J} represents the filtration generated by {B(ε):0≤s≤ε}.
● L2(Ω,Fε,P,Rn) : = L2(Ω,Rn) is the space of all Fε-measurable square integrable random variables with values in Rn.
Let Jk = (εk,εk+1], k=1,2,…,m be such that impulse times satisfy 0 = ε0 = s0<ε1<s1<ε2<⋯<εm≤sm<εm+1 = b. Let C(J,L2(Ω,Rn)) denote Cn(J) and be the Banach space of all continuous maps from J into L2(Ω,Rn) of Fε-adapted square integrable functions Γ(ε) and for its norm supE||Γ(ε)||2<∞.
Define the space
Y=PCvn(J)=PCvn(J,L2(Ω,Rn))={Γ:J→L2(Ω,Rn),Γ/Jk∈Cn(Jk,L2(Ω,Rn)), |
and there exist Γ(ε−k) and Γ(ε+k) with Γ(εk)=Γ(ε−k), k=1,…,m, endowed with the norm
||Γ||2Y=maxk=0,1,…,msupε∈Jk{E||(ε−εk)(1−v)Γ(ε)||}}. |
Clearly, Y is a Banach space.
Lemma 2.1. [39] Let p≥2 and f∈Lp(J,Rn×n) such that E|∫b0f(s)dB(s)|p<∞, then
E|∫b0f(s)dB(s)|p≤(p(p−1)2)p2bp−22E∫b0|f(s)|pds. |
Lemma 2.2. [10] Let φ:J→L02 satisfy ∫b0||φ(s)||2L02ds<∞, then we get
E||∫ε0φ(s)dBH(s)||2≤2Hε2H−1∫ε0E||φ(s)||2L02ds. |
Definition 2.1. [17] The generalized ψ-Hilfer FD of order 0<γ<1 and of type 0≤β≤1 is represented by
Dγ,βψ(t)f(t)=Iβ(n−γ)ψ(t)(1ψ′(t).ddt)mI1−β(n−γ)ψ(t)f(t). |
Definition 2.2. [10] Let z be a bounded linear operator. The two parameter Mittage-Leffler (M-L) function is defined by
Mγ,β(z)=∞∑r=0zrΓ(rγ+β),γ,β>0,z∈C. |
One of the interesting properties of the M-L function, related with their Laplace integral, is given by
∫∞0e−sεεβ−1Mγ,β(±aεγ)dε=sγ−β(sγI∓a). |
That is
L{εβ−1Mγ,β(±aεγ)}(s)=sγ−β(sγI∓a). |
Lemma 2.3. [17] For γ∈(n−1,n], β∈[0,1], the following Laplace formula for the ψ-Hilfer derivative is valid:
Lψ{0Dγ,βψ(t)f(t)}=sγLψ{f(t)}−m−1∑n=0sm(1−v)+γβ−n−1(0I(1−v)(m−β)−nψ(t)f)(0). |
Corollary 2.1. [17] If f is a function whose classical Laplace transform is F(s), then the generalized Laplace transform of the function f∘ψ=f(ψ(t)) is also F(s):
L{F(s)}=F(s)⇒L{f(ψ(ε))}=F(s). |
Example 2.1. [17]
(a)Lψ{(ψ(ε)μ)}=Γ(μ+1)sμ+1,fors>0.(b)Lψ{ea(ψ(ε))}=1s−a,fors>a.(c)Lψ{Mμ(A(ψ(ε))μ)}=sμ−1sμ−A.(d)Lψ{(ψ(ε))μ−1Mμ,μ(A(ψ(ε))μ)}=1sμ−A,forRe(μ)>0and |Asμ|<1. |
Example 2.2. Assume that Re(μ)>0 and |Asμ|<1. If Mγμ,v denotes the Prabhakar function, then we have
Lψ{(ψ(ε))v−1Mγμ,v(A(ψ(ε))μ)}=L{ψ(ε)v−1Mγμ,v(A(ψ(ε)μ))}=sμγ−v(sμ−A)γ. |
Consider the linear deterministic system, which is represented in the following form:
Dγ,βψ(ε)[Γ(ε)−h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε)),I1−v0+Γ(ε)/ε=0=Γ0,v=γ+β−γβ. |
By the Laplace transformation, we get
sγˆΓ(s)−ˆh(s)−s−β(1−γ)(Γ(0)−h(ε,0))=AˆΓ(s)+ˆΔ(s),(sγI−A)(ˆΓ(s))=s−β(1−γ)(Γ(0)−h(ε,0))+ˆh(s)+ˆΔ(s),ˆΓ(s)=s−β(1−γ)(sγI−A)[Γ(0)−h(ε,0)]+1(sγI−A)ˆh(s)+1(sγI−A)ˆΔ(s), |
where I is the identity matrix.
Γ(s)=Lψ−1s−β(1−γ)(sγI−A)[Γ(0)−h(ε,0)]+Lψ−11(sγI−A)ˆh(s)+Lψ−11(sγI−A)ˆΔ(s). |
Substituting the LψT of the M-L function, one can obtain that
Γ(ε)=ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds. |
Therefore, the solution of (1.1) is given as follows:
Γ(ε)={Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(sk,εk+1],Γ(ε)=ϕ(ε),ε∈[b,b+h]. |
Definition 3.1. [40] The set S is called a quasi-equicontinuous in T if, for ε > 0, there exists a δ > 0, such that if Γ∈S,K∈N,τ1,τ2∈TK⋂T, and |τ2−τ1|<δ, then |Γ(τ2)−Γ(τ1)|<ε.
Lemma 3.1. [34] The set S⊂PC(J,Rn) is relatively compact if
(i) S is uniformly bounded, i.e., ||Γ||PCk for each Γ∈S and some k>0;
(ii) S is quasi-equicontinous in T.
Definition 3.2. [14] An operator T : Z→Z is said to be χ-condensing of any bounded set B of Z with χ-condensing(B) > 0, χ(T(B))<χ(B), where
χ(B)=inf{k>0,B is covered by a finite number of sets of diameter ≤k} |
is Kuratowskii MNC of a bounded set B of Z.
Now, we state the generalized Schaefer's type FPT with χ-condensing operators.
Theorem 3.1. [15] Let T : Z→Z be an operator and Z be a separable Banach space satisfying
(A1) T is χ-condensing and continuous.
(A2) The set S = {Γ∈Z:Γ=δT(Γ) for some 0<δ<1} is bounded, then T has a fixed point.
For convenience, define the following:
M1=supξ∈J||Mγ,v(A(ψ(ε))γ)||2;M2=supξ∈J||Mγ,γ(A(b−ψ(ε))γ)||2. |
To derive the existence result, we imposed the following assumptions:
(H1) The functions Δ,h,g,λ, and hk k=1,2,…,m are Lipschitz continuous.
(1) E||h(ε,u1)−h(ε,u2)||2 ≤Mh||u1−u2||2Y;
(2) E||Δ(ε,u1,v1)−Δ(ε,u2,v2)||2 ≤Mf1||u1−u2||2Y+Mf2||v1−v2||2Y;
(3) E||g((ε,u1,v1))−g((ε,u2,v2))||2 ≤Mg1||u1−u2||2Y+Mg2||v1−v2||2Y;
(4) E||λ(ε,u1,v1)−λ(ε,u2,v2)||2 ≤Mλ1||u1−u2||2Y+Mλ2||v1−v2||2Y;
(5) E|hk(ε,u1)−hk(ε,v1)||2 ≤Mhk||u1−v1||2Y,
and hk∈C((εk,sk],L2(Ω,Rn)), where Mh,Mf,Mg,Mλ, and Mhk are positive constants, u1,u2,v1,v2∈Rn, and ε∈Tk.
(H2) There exist lh, mh,nh∈Y with l∗h=supξ∈Jlf(ε), m∗h=supξ∈Jmh(ε), and n∗h=supξ∈J nh(ε) such that
E||h(ε,u1,v1)||2≤lh(ε)+mh(ε)||u1||2+nh(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H3) There exist lf, mf,nf∈Y with l∗f=supξ∈Jlf(ε), m∗f=supξ∈Jmf(ε), and n∗f=supξ∈Jnf(ε) such that
E||Δ(ε,u1,v1)||2≤lf(ε)+mf(ε)||u1||2+nf(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H4) There exist lg, mg∈Y with l∗g=supξ∈Jlg(ε), m∗g=supξ∈Jmg(ε), and n∗g=supξ∈Jng(ε) such that
E||g(ε,u1,v1)||2≤lg(ε)+mg(ε)||u1||2+ng(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H5) There exist lλ, mh,nh∈Y with l∗λ=supξ∈Jlλ(ε), m∗λ=supξ∈Jmλ(ε), and n∗λ=supξ∈Jnλ(ε) such that
E||λ(ε,u1,u2||2≤lλ(ε)+mλ(ε)||u1||2+nλ(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H6) There exist Mhk>0, for all u∈Rn, such that
E||hk(ε,u)||2≤Mhk(1+||u||2Y). |
To prove the existence and uniqueness of solution first, we need to transform the problem (1.1) into a fixed point problem and define an operator H : Y→Y by
HΓ(ε)={Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(β)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(β)dBH)ds, εϵ(sk,εk+1],Γ(ε)=φ(ε),ε∈[b,b+h]. |
Let x:[0−r,b+h]→R be a function defined by
x(ε)={Γ(ε)=ϕ(ε),ifε∈[0−r,0],0,ifε∈(0,b],Γ(ε)=φ(ε),ifε∈[b,b+h]. |
For each z∈C([0,b],R) with z(0)=0, we denote by u the function defined by
u(ε)={Γ(ε)=ϕ(ε),ifε∈[0−r,0],z(ε),ifε∈(0,b],Γ(ε)=φ(ε),ifε∈[b,b+h]. |
Let us set Γ(ε)=z(ε)+x(ε) such that yε=zε+xε for each ε∈(0,b], where
Γ(ε)={Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γη),Dγ,βψ(ε)ΓβdBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ((η,γη)),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1]. |
z(ε)={Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1]. |
Let Φ:Y→Y be an operator given by
Φz(ε)={0,ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1],0,ε∈[b,b+h]. |
To show that the operator H has a fixed point, for this it is sufficient to show that the operator Φ has a fixed point and this fixed point will correspond to a solution of problem (1.1).
Theorem 4.1. Assume that the Hypothesis (H1) holds, then the solution (1.1) has a unique solution of the problem (1.1), provided
L0=max{L1,Lk,L∗k}<1,k=1,2,…,m, | (4.1) |
where
L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)],Lk=Mhk,L∗k=4[bv−1M1Mhk+M2(b)2γγ2{(Mh+Mf1+bMg1+2Hb2HMλ1)+(Mf2+bMg2+2Hb2HMλ2)×||A||+Mh+Mf1+bMg1+2Hb2HMλ11−(Mf2+bMg2+2Hb2HMλ2)}]. |
Proof. Consider the operator Φ : Y→Y defined by
Φz(ε)={0,ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1],0,ε∈[b,b+h]. | (4.2) |
As Δ, h, g, λ, hk are all continuous, we have to prove that Φ is a contraction.
Case 1. For z, y∈Y and for ε∈[0,ε1], we have
E||(Φz)(ε)−(Φy)(ε)||2≤3{(M2ψ(ε)2γγ2Mh||z(ϵ)−y(ε)||2+M2ψ(ε)2γγ2Mf1||z(ϵ)−y(ε)||2+M2ψ(ε)2γ+1γ2Mg1||z(ϵ)−y(ε)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H−1Mλ1||z(ϵ)−y(ε)||2)+(M2ψ(ε)2γγ2Mf2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ2Mg2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H−1Mλ2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2)}. |
This implies
||(Φz)(ε)−(Φy)(ε)||2Y≤3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hb2HMλ1)×||z(ϵ)−y(ε)||2Y+3M2ψ(ε)2γγ2(Mf2+ψ(ε1)Mg2+2Hb2HMλ2)×||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2],||(Φz)(ε)−(Φy)(ε)||2Y≤3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)]||z(ε)−y(ε)||2. |
Thus we take
L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)]. |
So, we get
||(Φz)(ε)−(Φy)(ε)||2Y≤L1||z(ε)−y(ε)||2Y. |
Case 2. For ε∈(εk,sk], k=1,2,…,m, we have
E||(Φz)(ε)−(Φy)(ε)||2Y≤E||hk(ε,z(ε))−hk(ε,y(ε))||2,||(Φz)(ε)−(Φy)(ε)||2Y≤Mhk||z(ε)−y(ε)||2Y. |
Take Lk:=Mhk and therefore,
||(Φz)(ε)−(Φy)(ε)||2Y≤Lk||z(ε)−y(ε)||2Y. |
Case 3. For z,y∈Y and for ε∈(sk,εk+1], we have
E||(Φz)(ε)−(Φy)(ε)||2≤4{(ψ(ε)−sk)v−1M1Mhk||z(ε)−y(ε)||2+(M2(ψ(ε)−sk)2γγ2Mh||z(ϵ)−y(ε)||2+M2(ψ(ε)−sk)2γγ2Mf1||z(ϵ)−y(ε)||2+M2(ψ(ε)−sk)2γγ2Mg1||z(ϵ)−y(ε)||2+M2(ψ(ε)−sk)2γγ22Hψ(ε)2H−1Mλ1||z(ϵ)−y(ε)||2)+(M2(ψ(ε)−sk)2γγ2Mf2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2(ψ(ε)−sk)2γγ2Mg2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2(ψ(ε)−sk)2γγ22Hψ(ε)2H−1Mλ2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2)}.||(Φz)(ε)−(Φy)(ε)||2≤4{(ψ(ε)k+1−sk)v−1M1Mhk+(M2(ψ(ε)−sk)2γγ2×[Mh+Mf1+(ψ(εk+1)−sk)Mg1+2Hψ(ε)2HMλ1]×||z(ε)−y(ε)||2)+(M2(ψ(ε)−sk)2γγ2×[Mf2+(ψ(εk+1)−sk)Mg2+2Hψ(ε)2HMλ2]×||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2)}. |
Thus,
||(Φz)(ε)−(Φy)(ε)||2≤4{bv−1M1Mhk+M2(b)2γγ2{Mh+Mf1+bMg1+2Hb2HMλ1+(Mf2+bMg2+2Hb2HMλ2)}×||A||+Mh+Mf1+bMg1+2Hb2HMλ11−(Mf2+bMg2+2Hb2HMλ2)}||z(ε)−y(ε)||2:=L∗k||z(ε)−y(ε)||2Y. |
From the above three cases, we obtain that ||(Φz)(ε)−(Φy)(ε)||2 ≤ L0||z(ε)−y(ε)||2Y as per (4.1), Φ is contraction, and, thus, (1.1) has a unique fixed point z, which is a solution to problem (1.1).
Remark 4.1. Banach contraction principle provides not only the existence results, but also uniqueness is assured. Also, the nonlinear functions could satisfy only Lipschitz conditions to prove existence and uniqueness results, even though conditions are stronger.
Remark 4.2. It is to be noted that the assumption L0<1 in Theorem 4.1 shows a restrictive smallness on Lipschitz constants for the nonlinear functions h, g, Δ, and λ when compared with the periods of time, while the impulses are active or vice-versa. In order to relax such a kind of smallness, the generalized Schaefer's FPT is introduced.
Theorem 4.2. Assume that (H2)−(H5) hold, then the nonlinear operator Φ:Y→Y has a fixed point, which is a solution of problem (1.1)
Proof. Since Φ is well defined, we will present the proof by the following four steps.
First, we prove that Φ is completely continuous (CC), that is, T is continuous, maps bounded sets into bounded sets, and maps bounded sets into quasi-equicontinuous sets.
Step 1. To prove Φ is continuous.
Since h, g, Δ,λ, and hK are all continuous, then it is clear that the operator Φ is continuous on J.
Step 2. To prove Φ maps bounded sets in Y.
In fact, it is sufficient to show that for any r>0, there exists an η>0 such that for each z∈Br={z∈Y:||z||2Y≤z}.
Case 1. For ε∈[0,ε1],z∈Y
||(Φz)(ε)||2Y≤4{ψ(ε1)ν−1M1||Γ0−h(ε,0)||2Y+M2ψ(ε1)2γγ2||h(ε,zs+xs),Dγ,βψ(ε)Γ(s)||+M2ψ(ε1)2γγ2||Δ(ε,zs+xs,Dγ,βψ(ε)Γ(s))||+M2ψ(ε1)2γ+1γ2||g(ε,zη+xη,Dγ,βψ(ε)Γ(s))||+2Hψ(ε)2H−1M2ψ(ε1)2γ+1γ2||λ(ε,zη+xη,Dγ,βψ(ε)Γ(s))||}. |
Using (H2)−(H4) and Lemmas 2.1 and 2.2, one can enumerate
||(Φz)(ε)||2Y≤4{M1||Γ0−h(ε,0)||2Y+M2ψ(ε1)2γγ2(lh(ε)+mh(ε)||zs+xs||2Y)+M2ψ(ε1)2γγ2(lf(ε)+mf(ε)||zs+xs||2Y+nf(ε)||Dγ,βψ(ε)Γ(s)||2Y)+M2ψ(ε1)2γ+1γ2(lg(ε)+mg(ε)||zη−xη||2Y+ng||Dγ,βψ(ε)Γ(s)||2)+2Hψ(ε)2H−1M2ψ(ε1)2γ+1γ2(lλ(ε)+mλ(ε)||zη+xη||2Y+||Dγ,βψ(ε)Γ(s)||2)}≤4{M1||Γ0−h(ε,0)||2Y+M2ψ(ε1)2γγ2(l∗h)+M2ψ(ε1)2γγ2(l∗f)+M2ψ(ε1)2γ+1γ2(l∗g)+M22Hψ(ε1)2Hγ2(l∗λ)}+4{M2ψ(ε1)2γγ2(m∗h)+M2ψ(ε1)2γγ2(m∗f)+M2ψ(ε1)2γ+1γ2(m∗g)+M22Hψ(ε1)2Hγ2(m∗λ)}||z||+4{M2ψ(ε1)2γγ2n∗f+M2ψ(ε1)2γ+1γ2n∗g+M2ψ(ε1)2γ+1γ2n∗λ}||Dγ,βψ(ε)Γ(s)||2≤4{M1||Γ0−h(ε,0)||2+M2ψ(ε1)2γγ2(l∗h+l∗f+ψ(ε)l∗g+2Hψ(ε)2Hl∗λ)}+4{M1||Γ0−h(ε,0)||2+M2ψ(ε1)2γγ2(m∗h+m∗f+ψ(ε)m∗g+2Hψ(ε)2Hm∗λ)+(l∗h+l∗f+ψ(ε)l∗g+ψ(ε)l∗λ+(m∗h+m∗f+ψ(ε)m∗g+ψ(ε)m∗λ)1−(n∗f+ψ(ε)n∗g+ψ(ε)m∗λ)}z:=η0. |
Case 2. For ε∈(εk,sk], k = 1, 2, …, m,
||(Φz)(ε)||2≤E||hk(ε,zs+xs)||2≤Mhk(1+||z||2)≤ψ(ε)1−vMhk(1+||z||2)≤maxψ(ε)1−vMhk(1+z):=ηk, k=1,2,3…,m. |
Case 3. For ε∈(sk,εk+1], k=1,2,…,m, Γ∈Y, we have
E||(Φz)(ε)||2≤4{E||(ψ(ε)k+1−sk)v−1Mγ,v(A(sk)γ)hk(sk,Γ(sk))||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs,Dγ,βψ(ε)Γ(s))ds||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη,Dγ,βψ(ε)Γ(s))dB(η))ds||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ((η,zη+xη,Dγ,βψ(ε)Γ(s))dBH)ds||2}. |
Thus
E||(ΦΓ)(ε)||2≤4{(ψ(ε)v−1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1−sk)2γγ2[l∗h+l∗f+(ψ(ε)k+1−sk)l∗g+2H(ψ(ε)k+1−sk)2Hl∗λ]}+4{(ψ(ε)v−1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1−sk)2γγ2[m∗h+m∗f+(ψ(ε)k+1−sk)m∗g+2H(ψ(ε)k+1−sk)2Hl∗λ]}+4{M2ψ(ε1)2γγ2n∗f+M2ψ(ε1)2γ+1γ2n∗g+M2ψ(ε1)2γ+1γ2n∗λ}||Dγ,βψ(ε)Γ(s)||2≤4{bv−1M1Mhk+M2b2γγ2[l∗h+l∗f+bl∗g+2Hb2Hl∗λ]}+4{bv−1M1Mhk+M2b2γγ2[m∗h+m∗f+bm∗g+2Hb2Hm∗λ]+[l∗h+l∗f+bl∗g+bl∗λ+(m∗h+m∗f+bm∗g+bm∗λ)1−4(n∗f)+bn∗g+bm∗λ]}z:=ηb. |
Let η = {η0,ηk,ηb}, k=1,2,…,m, then {ψ1−v(Φz)(ε):z∈B} is a bounded set in Y, i.e., ||Φz||2Y ≤η.
Step 3. Φ is a quasi-equicontinous set in Y.
Case 1. Let τ1, τ2 ∈[0,ε1] with 0≤τ1≤τ2≤ε1. One could establish the following estimate:
||(Φz)(τ2)−(Φz)(τ1)||2=sup{E||τ1−v2(ΦΓ)(τ2)−τ1−v1(ΦΓ)(τ1)||2}≤8{E||Mγ,v(Aτγ2)||Γ0−h(ε,0)||−Mγ,v(Aτγ1)||Γ0−h(ε,0)||||2+τ2∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗h+m∗hE||zs+xs||2+n∗h||Dγ,βψ(ε)Γ(s)||2)ds+(τ2−τ1)∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2(l∗h+m∗hE||zs+xs||2+n∗h||Dγ,βψ(ε)Γ(s)||2)ds+τ2∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗f+m∗fE||zs+xs||2+n∗f||Dγ,βψ(ε)Γ(s)||2)ds+(τ2−τ1)∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2(l∗f+m∗fE||zs+xs||2+n∗f||Dγ,βψ(ε)Γ(s)||2)ds+τ2∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗g+m∗gE||zη+xη||2+n∗g||Dγ,βψ(ε)Γ(s)||2)ds+(τ2−τ1)∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2(l∗g+m∗gE||zs+xs||2+n∗g||Dγ,βψ(ε)Γ(s)||2)ds+2Hτ2H−12∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗λ+m∗λE||zs+xs||2+n∗λ||Dγ,βψ(ε)Γ(s)||2)ds+2H(τ2−τ1)2H−1∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2×(l∗λ+m∗λE||zs+xs||2+n∗λ||Dγ,βψ(ε)Γ(s)||2)ds}. |
We conclude that as τ2−τ1→0 with ε sufficiently small, the right hand side of the above inequality tends to zero independently of z∈Br. Furthermore, the similar results are true for εk<τ1<τ2≤sk and sk<τ1<τ2≤εk+1 for k=1,2,…,m. It proves the equicontinuous of Φ on Y. Thus, for τ1,τ2∈[0,b]⋂(εk,εk+1], k=1,2,…,m, whenever B is a bounded set of Y as in Step 2, let z∈Br, then
||(Φz)(τ1)−(Φy)(τ2)||2Y≤M(r)(τ2−τ1). |
Thus, Φ is quasi-equicontinuous, then Φ(z) is relatively compact by Lemma 3.1, which implies that Φ(z) is CC.
Step 4. Φ has a Prior bound.
It remains to estimate that the set ∏(Φ)={z∈Y:z=ΘΦz,0<Θ<1} is bounded.
Let z∈Π(Φ), then z=ΘΦ(z) for some Θ∈(0,1), by following the proof of Step 2 that ||z||Y≤η. This proves that the set Π(Φ) is bounded. Hence, by Theorem 3.1, Φ has a fixed point, which is the required solution on J.
Here, we derive the UHR stability for (1.1). Let ω>0, ϕ≥0, and ζ∈PC(J,Rn) be nondecreasing. Consider the following inequalities.
E||Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]−A˜Γ(ε)−Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))−∫ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)−∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)||≤ωζ(ε),ε ∈(sk,εk+1],k=0,1,2,…,m,E||Γ(ε)−hk(ε,Γ(ε))||2≤ωϕ,ε∈(εk,sk],k=1,2,…,m,E||I1−v0+Γ(ε)−Γ0||2≤ωϕ,Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(ε)=φ(ε),ε∈[b,b+h]. |
Define a vector space as χ:
χ=PC(J,Rn)∩C((sk,tk+1],Rn). |
Definition 5.1. System (1.1) is UHR stable with respect to (ζ,ϕ) if there exists C(M,L,P,ζ)>0 such that for each solution ˜Γ∈χ of the inequality (5.1), there exists solution Γ∈PC(J,Rn) of (1.1) with
E||˜Γ(ε)−Γ(ε)||2≤C(M,L,p,ζ)ω(ζ(ε)+ϕ),ε∈J. |
Remark 5.1. A function ˜Γ∈χ is a solution of (5.1) ⇔ there is Q∈⋂Ki=0 ((sk,εk+1],Rn] and q∈⋂Ki=0((εk,sk],Rn) such that:
(1) E||Q(ε)||2≤ωζ(ε),ε∈⋂Ki=0(sk,εk+1];E||q(ε)||2≤ωϕ,ε∈⋂Ki=0(tk,sk];
(2) Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s) +∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε ∈(sk,εk+1],k=0,1,2,…,m,
(3) ˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε∈(εk,sk],k=0,1,2,…,m.
By Remark 5.1, we have
Dγ,βψ(ε)[˜˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s)+∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε ∈(sk,εk+1],k=0,1,2,…,m,˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε∈(εk,sk],k=0,1,2,…,m,I1−v0+˜Γ(ε)/ε=0=Γ0. |
Lemma 5.1. Let β∈[0,1], γ∈(0,1). If a function ˜Γ∈χ is a solution of (5.1) then we have:
(i)E||˜Γ(ε)−ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤ψ2γ(ε)γ2M2ω∫ε0ζ(s)ds,ε∈[0,ε1]. |
(ii)E||(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤b2γγ2M2ω∫εskζ(s)ds, ε∈(sk,εk+1],k=1,2,…,m. |
By Remark 5.1, we have:
Case 1. For ε∈[0,ε1], we have
Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε). |
Thus
˜Γ(ε)=ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds. |
From above, we obtain
E||˜Γ(ε)−ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤E||∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤ψ2γ(ε)γ2M2ω∫ε0ζ(s)ds. |
Case 2. For ε∈(εk,sk], we have
E||˜Γ(ε)−hk(ε,˜Γ(ε))||2≤ωϕ. |
Case 3. For ε∈(sk,εk+1], we get
Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε),then,˜Γ(ε)=(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds,+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds. |
Thus
E||˜Γ(ε)−(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤(ψ(ε)−sk)2γγ2M2ω∫ε0ζ(s)ds≤b2γγ2M2ε∫ε0ζ(s)ds. |
In order to prove stability, we assume the following assumptions:
(H7) There exist positive constants Mk(k=1,2,…,m) such that
E||hk(ε,Γ(ε))−hk(ε,z(ε))||2≤m∑k=1MkE||Γ(ε)−z(ε)||2Y∀ε∈(εk,sk]. |
(H8) Let ζ∈C(J,Rn) be a nondecreasing function if there exists cζ>0 such that ∫ε0ζ(s)ds<cζζ(ε), ∀ ε∈J.
Lemma 5.2. Let P0=P∪0 where p=1,2,…,m, and the following inequality holds
Γ(ε)≤a(ε)+∫ε0b(s)Γ(s)ds+Σ0<εk<εαkΓ(εˉk),ε≥0, |
where Γ,a,b∈PC(R+,R+), a is nondecreasing and b(ε)>0, αk>0, k∈P. For ε∈R+,
Γ(ε)≤a(ε)(1+α)Ke(∫ε0b(s)ds),ε∈(εK,εK+1],K∈P0, |
where α=supK∈P{αK} and ε0=0.
Theorem 5.1. If the assumptions (H1),(H7), and (H8) are satisfied, then (1.1) is UHR stable with respect to (ζ,ϕ).
Proof. Let ˜Γ∈χ be a solution of inequality (5.1) and Γ be the unique solution of (1.1).
Case 1. For ε∈[0,ε1], we have:
E||˜Γ(ε)−ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤ψ2γ(ε)γ2M2ε∫ε0ψ(s)ds≤ψ2γ(ε)γ2M2ωcζζ(ε)≤b2γγ2M2ωcζζ(ε)≤cpcζζ(ε), |
where cp=b2γγ2M2.
Case 2. For ε∈(εk,sk], we have
E||˜Γ(ε)−hk(ε,˜Γ(ε))||2≤ωϕ. |
Case 3. For ε∈(sk,εk+1], we have
E||˜Γ(ε)−(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,Γ(sk))−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤(ψ(ε)−sk)2γγ2M2ω∫ε0ζ(s)ds≤b2γγ2M2ωcζζ(ε)≤cpcζζ(ε). |
Hence, for ε∈[0,ε1], we have:
E||Γ(ε)−˜Γ(ε)||2≤ψ(ε)2γγ2M2[ωcζζ(ε)+((Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2))||Γ(s)−˜Γ(s)||2]≤b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+2Hb2HMλ2))||Γ(s)−˜Γ(s)||2]. | (5.1) |
For ε∈(εk,sk], we get
E||Γ(ε)−˜Γ(ε)||2=E||Γ(ε)−hk(sk,˜Γ(sk))||2=E||Γ(ε)−hk(sk,Γ(sk))+hk(sk,Γ(sk))−hk(sk,˜Γ(sk))||2≤2{E||Γ(ε)−hk(sk,Γ(sk))||2+E||hk(sk,Γ(sk))−hk(sk,˜Γ(sk))||2}≤2{ωϕ+Σki=0Mk||Γ(ε)−˜Γ(ε)||2}. | (5.2) |
For ε∈(sk,εk+1], k = 1, 2, …, m,
E||Γ(ε)−˜Γ(ε)||2≤5b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+Hb2HMλ2))||Γ(s)−˜Γ(s)||2].+5bv−1M1Σki=1Mk||Γ(s)−~Γ(s)||2. | (5.3) |
Combining (5.2)–(5.4), one can get an inequality of the form given in Lemma 5.2. For ε∈J, since ε∈(εk,εk+1], K∈P0, we have
E||Γ(ε)−˜Γ(ε)||2≤5{cpωcζζ(ε)+bv−1M1Σki=1Mk||Γ(ε)−˜Γ(ε)||2+cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+Hb2HMλ2)]||Γ(s)−˜Γ(s)||2+5bv−1M1Σki=1Mk||Γ(s)−~Γ(s)||2}+2ωϕ≤5cpωcζ(ζ(ε)+ϕ)(1+M)ke∫ε0Lds, |
where
M=sup{bv−1M1Mk},L=cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+Hb2HMλ2)]. |
Thus,
E||Γ(ε)−˜Γ(ε)||2≤5C(M,L,p,ζ)ω(ζ(ε)+ϕ),∀ε∈J, |
where C(M,L,p,ζ) is a constant depending on M,L,p,ζ. Hence, (1.1) is UHR stable w.r.t (ζ,ϕ).
Consider the following nonlinear ψ-HFSE with NI impulses driven by both noises. This type of fractional SDE can be applied in pharmacotherapy.
D12,34ψ(ε)Γ1(ε)=Γ2(ε)+15(Γ1(ε)1+Γ21(ε)+Γ22(ε))+15(Γ1(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s)) |
+Γ1(ε)e−ψ(ε)3β1(ε),Dγ,βψ(ε)Γ(s)+Γ1(ε)e−2ψ(ε)5βH1(ε),Dγ,βψ(ε)Γ(s), |
D12,34ψ(ε)Γ2(ε)=Γ1(ε)+15(Γ2(ε)1+Γ21(ε)+Γ22(ε))+15(Γ2(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s)) |
+Γ2(ε)e−ψ(ε)3β2(ε),Dγ,βψ(ε)Γ(s)+Γ2(ε)e−2ψ(ε)3βH2(ε),Dγ,βψ(ε)Γ(s), |
ε∈(sk,εk+1],k=0,1,…,m, |
Γ(ε)=14Γ(ε,εk),ε(0.9,sk),k=1,2,…,m, |
Γ(0)=Γ0,ψ(ε)=sin(ε), |
where Γ∈R2, Γ∈12, β=34, 0<ε0<s0<ε1<⋯<sm=1 are prefixed numbers, J=[0,1]. Here
A=(0110),Δ(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))), |
h(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))), |
g(ε,Γ(ε))=(Γ1(ε)e−ψ(ε)300Γ2(ε)e−ψ(ε)3),λ(ε,Γ(ε))=(Γ1(ε)e−2ψ(ε)500εΓ2(ε)e−ψ(ε)5). |
Calculate the M-L function by using [12]. We have
Mγ,ν(Aψ(ε)γ)=(S1S2−S3S4), |
where
S1=S4=∞∑j=0(−1)jb2jγΓ(1+2jγ)=−0.3377, |
S2=−S3=∞∑j=0(−1)jb(2j+1)γΓ(1+(2j+1)γ)=−1.666. |
Also calculate
Mγ,ν(A(b−s)γ)=(P1P2−P3P4), |
where
P1=P4=∞∑j=0(−1)j(b−s)2jγΓ(2jγ+γ)=−0.7477, |
P2=−P3=∞∑j=0(−1)j(b−s)(2j+1)γΓ[(2j+1)γ]=−0.4203. |
Therefore, we need to check the hypotheses of nonlinear functions:
E||h(ε,u1)−h(ε,u2)||2≤130||u1−u2||2, |
E||Δ(ε,u1,v1)−Δ(ε,u2,v2)||2≤125||u1−u2||2+135||v1−v2||2, |
E||g(ε,u1,v1)−g(ε,u2,v2)||2≤19e−2||u1−u2||2+110e−3||v1−v2||2, |
E||λ(ε,u1,v1−λ(ε,u2,v2)||2≤125e−4ψ(ε)||u1−u2||2+120e−5ψ(ε)||v1−v2||2, |
E||hk(ε,u)−hk(ε,v||2≤116||u−v||2,k=1,2,…,m. |
We get M1=0.0862, M2=0.3824, Mhk=0.065, and γ=0.5. Hence we have L=max{L0,Lk,Lk∗}=0.52<1. Also,
E||Γ(ε)−˜Γ(ε)||2≤5C(M,L,p,ζ)ε(ζ(ε)+ϕ),∀ε∈J,≤0.218. |
In this example, all the conditions stated in Theorems 4.1 and 5.1 are satisfied, so the example has a unique solution and is also UHR stable.
With the help of Schaefer's FPT and the Banach contraction principles, we obtained the existence and uniqueness results for HSFEs with retarded and advanced arguments, selected the non-instantaneous impulses with both multiplicative and fractional noises, and obtained the UHR stability for HSFEs. UHR stability gives bounds between the exact and approximation solution, which is why this theory is very important in the numerical analysis as well as in approximation theory. We are hoping that our findings will have a great importance in the mentioned theories. Finally, a case study is provided to demonstrate the efficacy of the suggested outcomes. In the future, we can use the findings to investigate the controllability of HSFEs.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by Anhui Province Natural Science Research Foundation (2023AH051810).
The authors declare no conflicts of interest.
[1] | H. Akaike, A new look at the statistical model identification, IEEE T. Automat. Contr.,, 19 (1974), 716–723. |
[2] | K. J. Åström, P. Eykhoff, System identification: A survey, Automatica, 7 (1971), 123–162. |
[3] | A. Bachnas, R. Tóth, J. Ludlage, A. Mesbah, A review on data-driven linear parameter-varying modeling approaches: A high-purity distillation column case study, J. Process Contr., 24 (2014), 272–285. |
[4] | B. Bamieh, L. Giarre, Identification of linear parameter varying models, Int. J. Robust Nonlin., 12 (2002), 841–853. |
[5] | F. D. Bianchi, R. S. Sánchez-Peña, Robust identification/invalidation in an LPV framework, Int. J. Robust Nonlin., 20 (2010), 301–312. |
[6] | J. Blesa, P. Jiménez, D. Rotondo, F. Nejjari, V. Puig, An interval NLPV parity equations approach for fault detection and isolation of a wind farm, IEEE T. Ind. Electron., 62 (2014), 3794–3805. |
[7] | S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, vol. 15, Siam, 1994. |
[8] | S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, P. Natl Acad. Sci., 113 (2016), 3932–3937. |
[9] | H.-F. Chen, L. Guo, Identification and stochastic adaptive control, Springer Science & Business Media, 2012. |
[10] | P. Cui, H. Zhang, J. Lam, L. Ma, Real-time kalman filtering based on distributed measurements, Int. J. Robust Nonlin., 23 (2013), 1597–1608. |
[11] | F. Daum, Nonlinear filters: beyond the kalman filter, IEEE Aero. El. Sys. Mag., 20 (2005), 57–69. |
[12] | P. L. Dos Santos, J. Ramos, J. M. de Carvalho, Identification of linear parameter varying systems using an iterative deterministic-stochastic subspace approach, in Proceedings of the European Control Conference, (2007), 4867–4873. IEEE. |
[13] | P. L. Dos Santos, J. A. Ramos, J. M. De Carvalho, Identification of LPV systems using successive approximations, in 47th IEEE Conference on Decision and Control, (2008), 4509–4515. IEEE. |
[14] | P. L. Dos Santos, Linear parameter-varying system identification: New developments and trends, vol. 14, World Scientific, 2012. |
[15] | P. L. Dos Santos, T. P. Azevedo-Perdicoúlis, J. A. Ramos, J. L. M. De Carvalho, G. Jank, J. Milhinhos, An LPV modeling and identification approach to leakage detection in high pressure natural gas transportation networks, IEEE T. Contr. Syst. T., 19 (2010), 77–92. |
[16] | E. Gassiat, E. Gautherat, Identification of noisy linear systems with discrete random input, IEEE T. Inform. Theory, 44 (1998), 1941–1952. |
[17] | M. Gharamti, B. Ait-El-Fquih, I. Hoteit, An iterative ensemble kalman filter with one-step-ahead smoothing for state-parameters estimation of contaminant transport models, J. Hydrol.,, 527 (2015), 442–457. |
[18] | G. Giordano, J. Sjöberg, Consistency aspects of wiener-hammerstein model identification in presence of process noise, in 55th Conference on Decision and Control, (2016), 3042–3047. IEEE. |
[19] | S. Guo, S. Yang, C. Pan, Dynamic modeling of magnetorheological damper behaviors, J. Intel. Mat. Syst. Str., 17 (2006), 3–14. |
[20] | C. Hoffmann, H. Werner, A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations, IEEE T. Contr. Syst. T., 23 (2014), 416–433. |
[21] | P. J. Huber, Robust statistics, Springer, 2011. |
[22] | W. E. Larimore, P. B. Cox, R. Tóth, CVA identification of nonlinear systems with LPV state-space models of affine dependence, in Proceedings of the 2015 American Control Conference, (2015), 831–837. IEEE. |
[23] | L. H. Lee, K. Poolla, Identification of Linear Parameter-Varying Systems Using Nonlinear Programming, J. Dyn. Syst-T ASME, 121 (1999), 71–78. |
[24] | J. Li, W. X. Zheng, J. Gu, L. Hua, A recursive identification algorithm for wiener nonlinear systems with linear state-space subsystem, Circ. Syst. Signal Pr., 37 (2018), 2374–2393. |
[25] | L. Ljung, Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems, IEEE T. Automat. Contr., 24 (1979), 36–50. |
[26] | C. Masreliez, R. Martin, Robust bayesian estimation for the linear model and robustifying the kalman filter, IEEE T. Automat. Contr., 22 (1977), 361–371. |
[27] | W. Mei, G. Shan, C. Wang, Practical development of the second-order extended kalman filter for very long range radar tracking, Signal Process., 91 (2011), 1240–1248. |
[28] | J. Mohammadpour, C. W. Scherer, Control of linear parameter varying systems with applications, Springer Science & Business Media, 2012. |
[29] | M. M. Morato, O. Sename, L. Dugard, M. Q. Nguyen, Fault estimation for automotive electro-rheological dampers: LPV-based observer approach, Control Eng. Pract., 85 (2019), 11–22. |
[30] | M. M. Morato, M. Q. Nguyen, O. Sename, L. Dugard, Design of a fast real-time LPV model predictive control system for semi-active suspension control of a full vehicle, J. Franklin I., 356 (2019), 1196–1224. |
[31] | M. M. Morato, O. Sename, L. Dugard, LPV-MPC fault tolerant control of automotive suspension dampers, IFAC-PapersOnLine, 51 (2018), 31–36. |
[32] | A. S. Morris, R. Langari, Measurement and instrumentation: theory and application, Academic Press, 2012. |
[33] | T.-P. Pham, O. Sename, L. Dugard, Real-time damper force estimation of vehicle electrorheological suspension: A nonlinear parameter varying approach, IFAC-PapersOnLine, 52 (2019), 94–99. |
[34] | C. Poussot-Vassal, S. M. Savaresi, C. Spelta, O. Sename, L. Dugard, A methodology for optimal semi-active suspension systems performance evaluation, in 49th IEEE Conference on Decision and Control, (2010), 2892–2897. IEEE. |
[35] | S. Z. Rizvi, J. M. Velni, F. Abbasi, R. Tóth, N. Meskin, State-space lpv model identification using kernelized machine learning, Automatica, 88 (2018), 38–47. |
[36] | T. B. Schön, A. Wills, B. Ninness, System identification of nonlinear state-space models, Automatica, 47 (2011), 39–49. |
[37] | G. Scorletti, V. Fromion, S. De Hillerin, Toward nonlinear tracking and rejection using LPV control, IFAC-PapersOnLine, 48 (2015), 13–18. |
[38] | T. Söderström, Identification of stochastic linear systems in presence of input noise, Automatica, 17 (1981), 713–725. |
[39] | V. Stojanovic, V. Filipovic, Adaptive input design for identification of output error model with constrained output, Circ. Syst. Signal Pr., 33 (2014), 97–113. |
[40] | V. Stojanovic, N. Nedic, Joint state and parameter robust estimation of stochastic nonlinear systems, Int. J. Robust Nonlin., 26 (2016), 3058–3074. |
[41] | V. Stojanovic, N. Nedic, Robust kalman filtering for nonlinear multivariable stochastic systems in the presence of non-gaussian noise, Int. J. Robust Nonlin., 26 (2016), 445–460. |
[42] | S. Tayamon, T. Wigren, Recursive prediction error identification and scaling of non-linear systems with midpoint numerical integration, in Proceedings of the 2010 American Control Conference, (2010), 4510–4515. IEEE. |
[43] | R. Tóth, Modeling and identification of linear parameter-varying systems, vol. 403, Springer, 2010. |
[44] | J. C. Tudón-Martínez, S. Fergani, O. Sename, J. J. Martinez, R. Morales-Menendez, L. Dugard, Adaptive road profile estimation in semiactive car suspensions, IEEE T. Contr. Syst. T., 23 (2015), 2293–2305. |
[45] | J. Umenberger, J. Wågberg, I. R. Manchester, T. B. Schön, Maximum likelihood identification of stable linear dynamical systems, Automatica, 96 (2018), 280–292. |
[46] | A. Unger, F. Schimmack, B. Lohmann, R. Schwarz, Application of LQ-based semi-active suspension control in a vehicle, Control Eng. Pract., 21 (2013), 1841–1850. |
[47] | T. Utz, C. Fleck, J. Frauhammer, D. Seiler-Thull, A. Kugi, Extended kalman filter and adaptive backstepping for mean temperature control of a three-way catalytic converter, Int. J. Robust Nonlin., 24 (2014), 3437–3453. |
[48] | C. Vivas-Lopez, D. H. Alcántara, M. Q. Nguyen, S. Fergani, G. Buche, O. Sename, L. Dugard, R. Morales-Menéndez, INOVE: a testbench for the analysis and control of automotive vertical dynamics, in 14th International Conference on Vehicle System Dynamics, Identification and Anomalies, VSDIA, 2014, pp–403. |
[49] | Z. Wang, X. Liu, Y. Liu, J. Liang, V. Vinciotti, An extended kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series, IEEE/ACM T. Comput. Bi., 6 (2009), 410–419. |
[50] | C.-Y. Wu, J.-H. Tsai, S.-M. Guo, L.-S. Shieh, J. I. Canelon, F. Ebrahimzadeh, L. Wang, A novel on-line observer/kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems, J. Franklin I., 352 (2015), 1119–1151. |
[51] | Y. Zhao, B. Huang, H. Su, J. Chu, Prediction error method for identification of lpv models, J. Process Contr., 22 (2012), 180–193. |
1. | Hamza Khalil, Akbar Zada, Sana Ben Moussa, Ioan-Lucian Popa, Afef Kallekh, Qualitative Analysis of Impulsive Stochastic Hilfer Fractional Differential Equation, 2024, 23, 1575-5460, 10.1007/s12346-024-01149-y | |
2. | Hamza Khalil, Akbar Zada, Mohamed Rhaima, Ioan-Lucian Popa, Existence and Stability of Neutral Stochastic Impulsive and Delayed Integro-Differential System via Resolvent Operator, 2024, 8, 2504-3110, 659, 10.3390/fractalfract8110659 | |
3. | Wei Zhang, Jinbo Ni, Some New Results on Itô–Doob Hadamard Fractional Stochastic Pantograph Equations in Lp Spaces, 2024, 23, 1575-5460, 10.1007/s12346-024-01190-x |