Research article Special Issues

Turing patterns in a 3D morpho-chemical bulk-surface reaction-diffusion system for battery modeling

  • Received: 02 July 2023 Revised: 12 February 2024 Accepted: 22 March 2024 Published: 07 April 2024
  • In this paper we introduce a bulk-surface reaction-diffusion (BS-RD) model in three space dimensions (3D) that extends the so-called DIB morphochemical model to account for the electrolyte contribution in the application, in order to study structure formation during discharge-charge processes in batteries. Here we propose to approximate the model by the bulk-surface virtual element method (BS-VEM) on a tailor-made mesh that proves to be competitive with fast bespoke methods for PDEs on Cartesian grids. We present a selection of numerical simulations that accurately match the classical morphologies found in experiments. Finally, we compare the Turing patterns obtained by the coupled 3D BS-RD model with those obtained with the original 2D version.

    Citation: Massimo Frittelli, Ivonne Sgura, Benedetto Bozzini. Turing patterns in a 3D morpho-chemical bulk-surface reaction-diffusion system for battery modeling[J]. Mathematics in Engineering, 2024, 6(2): 363-393. doi: 10.3934/mine.2024015

    Related Papers:

  • In this paper we introduce a bulk-surface reaction-diffusion (BS-RD) model in three space dimensions (3D) that extends the so-called DIB morphochemical model to account for the electrolyte contribution in the application, in order to study structure formation during discharge-charge processes in batteries. Here we propose to approximate the model by the bulk-surface virtual element method (BS-VEM) on a tailor-made mesh that proves to be competitive with fast bespoke methods for PDEs on Cartesian grids. We present a selection of numerical simulations that accurately match the classical morphologies found in experiments. Finally, we compare the Turing patterns obtained by the coupled 3D BS-RD model with those obtained with the original 2D version.



    加载中


    [1] B. Bozzini, D. Lacitignola, I. Sgura, Spatio-temporal organization in alloy electrode-position: a morphochemical mathematical model and its experimental validation, J. Solid State Electrochem., 17 (2013), 467–469. https://doi.org/10.1007/s10008-012-1945-7 doi: 10.1007/s10008-012-1945-7
    [2] D. Lacitignola, B. Bozzini, I. Sgura, Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, Eur. J. Appl. Math., 26 (2015), 143–173. https://doi.org/10.1017/S0956792514000370 doi: 10.1017/S0956792514000370
    [3] D. Lacitignola, B. Bozzini, R. Peipmann, I. Sgura, Cross-diffusion effects on a morphochemical model for electrodeposition, Appl. Math. Model., 57 (2018), 492–513. https://doi.org/10.1016/j.apm.2018.01.005 doi: 10.1016/j.apm.2018.01.005
    [4] D. Lacitignola, B. Bozzini, M. Frittelli, I. Sgura, Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition, Commun. Nonlinear Sci. Numer. Simulat., 48 (2017), 484–508. https://doi.org/10.1016/j.cnsns.2017.01.008 doi: 10.1016/j.cnsns.2017.01.008
    [5] D. Lacitignola, I. Sgura, B. Bozzini, T. Dobrovolska, I. Krastev, Spiral waves on the sphere for an alloy electrodeposition model, Commun. Nonlinear Sci. Numer. Simulat., 79 (2019), 104930. https://doi.org/10.1016/j.cnsns.2019.104930 doi: 10.1016/j.cnsns.2019.104930
    [6] A. Madzvamuse, A. W. Chung, C. Venkataraman, Stability analysis and simulations of coupled bulk-surface reaction-diffusion systems, Proc. R. Soc. A, 471 (2015), 20140546. https://doi.org/10.1098/rspa.2014.0546 doi: 10.1098/rspa.2014.0546
    [7] A. Madzvamuse, A. W. Chung, The bulk-surface finite element method for reaction-diffusion systems on stationary volumes, Finite Elem. Anal. Des., 108 (2016), 9–21. https://doi.org/10.1016/j.finel.2015.09.002 doi: 10.1016/j.finel.2015.09.002
    [8] M. Frittelli, A. Madzvamuse, I. Sgura, The bulk-surface virtual element method for reaction-diffusion PDEs: analysis and applications, Commun. Comput. Phys., 33 (2023), 733–763. https://doi.org/10.4208/cicp.OA-2022-0204 doi: 10.4208/cicp.OA-2022-0204
    [9] P. Hansbo, M. G. Larson, S. Zahedi, A cut finite element method for coupled bulk-surface problems on time-dependent domains, Comput. Meth. Appl. Math., 307 (2016), 96–116. https://doi.org/10.1016/j.cma.2016.04.012 doi: 10.1016/j.cma.2016.04.012
    [10] K. Deckelnick, C. M. Elliott, T. Ranner, Unfitted finite element methods using bulk meshes for surface partial differential equations, SIAM J. Numer. Anal., 52 (2014), 2137–2162. https://doi.org/10.1137/130948641 doi: 10.1137/130948641
    [11] M. Cheng, L. Ling, Kernel-based meshless collocation methods for solving coupled bulk-surface partial differential equations, J. Sci. Comput., 81 (2019), 375–391. https://doi.org/10.1007/s10915-019-01020-2 doi: 10.1007/s10915-019-01020-2
    [12] M. Frittelli, I. Sgura, Matrix-oriented FEM formulation for reaction-diffusion PDEs on a large class of 2D domains, Appl. Numer. Math., 2023. https://doi.org/10.1016/j.apnum.2023.07.010 doi: 10.1016/j.apnum.2023.07.010
    [13] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016), 377–441. https://doi.org/10.1137/130912839 doi: 10.1137/130912839
    [14] M. Frittelli, A. Madzvamuse, I. Sgura, Virtual element method for elliptic bulk-surface PDEs in three space dimensions, Numer. Methods Partial Differ. Equations, 39 (2023), 4221–4247. https://doi.org/10.1002/num.23040 doi: 10.1002/num.23040
    [15] I. Sgura, A. S. Lawless, B. Bozzini, Parameter estimation for a morphochemical reaction- diffusion model of electrochemical pattern formation, Inverse Probl. Sci. Eng., 27 (2019), 618–647. https://doi.org/10.1080/17415977.2018.1490278 doi: 10.1080/17415977.2018.1490278
    [16] I. Sgura, L. Mainetti, F. Negro, M. G. Quarta, B. Bozzini, Deep-learning based parameter identification enables rationalization of battery material evolution in complex electrochemical systems, J. Comput. Sci., 66 (2023), 101900. https://doi.org/10.1016/j.jocs.2022.101900 doi: 10.1016/j.jocs.2022.101900
    [17] A. Quarteroni, Numerical models for differential problems, Milano: Springer, 2009. https://doi.org/10.1007/978-88-470-1071-0
    [18] J. Smoller, Shock waves and reaction-diffusion equations, New York: Springer, 1994. https://doi.org/10.1007/978-1-4612-0873-0
    [19] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl., 66 (2013), 376–391. https://doi.org/10.1016/j.camwa.2013.05.015 doi: 10.1016/j.camwa.2013.05.015
    [20] L. Mascotto, The role of stabilization in the virtual element method: a survey, Comput. Math. Appl., 151 (2023), 244–251. https://doi.org/10.1016/j.camwa.2023.09.045 doi: 10.1016/j.camwa.2023.09.045
    [21] L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, The Hitchhiker's guide to the virtual element method, Math. Mod. Meth. Appl. Sci., 24 (2014), 1541–1573. https://doi.org/10.1142/S021820251440003X doi: 10.1142/S021820251440003X
    [22] M. Frittelli, A. Madzvamuse, I. Sgura, C. Venkataraman, Preserving invariance properties of reaction-diffusion systems on stationary surfaces, IMA J. Numer. Anal., 39 (2019), 235–270. https://doi.org/10.1093/imanum/drx058 doi: 10.1093/imanum/drx058
    [23] A. Kazarnikov, H. Haario, Statistical approach for parameter identification by Turing patterns, J. Theor. Biol., 501 (2020), 110319. https://doi.org/10.1016/j.jtbi.2020.110319 doi: 10.1016/j.jtbi.2020.110319
    [24] M. C. D'Autilia, I. Sgura, V. Simoncini, Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications, Comput. Math. Appl., 79 (2020), 2067–2085. https://doi.org/10.1016/j.camwa.2019.10.020 doi: 10.1016/j.camwa.2019.10.020
    [25] I. Sgura, B. Bozzini, D. Lacitignola, Numerical approximation of Turing patterns in electrodeposition by ADI methods, J. Comput. Appl. Math., 236 (2012), 4132–4147. https://doi.org/10.1016/j.cam.2012.03.013 doi: 10.1016/j.cam.2012.03.013
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1015) PDF downloads(175) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog