Research article Special Issues

Quasilinear reaction diffusion systems with mass dissipation

  • Received: 29 December 2020 Accepted: 12 July 2021 Published: 19 October 2021
  • We study quasilinear reaction diffusion systems relative to the Shigesada-Kawasaki-Teramoto model. Nonlinearity standing for the external force is provided with mass dissipation. Estimate in several norms of the solution is provided under the restriction of diffusion coefficients, growth rate of reaction, and space dimension.

    Citation: Evangelos Latos, Takashi Suzuki. Quasilinear reaction diffusion systems with mass dissipation[J]. Mathematics in Engineering, 2022, 4(5): 1-13. doi: 10.3934/mine.2022042

    Related Papers:

  • We study quasilinear reaction diffusion systems relative to the Shigesada-Kawasaki-Teramoto model. Nonlinearity standing for the external force is provided with mass dissipation. Estimate in several norms of the solution is provided under the restriction of diffusion coefficients, growth rate of reaction, and space dimension.



    加载中


    [1] N. D. Alikakos, $L^p$ bounds of solutions to reaction-diffusion equations, Commun. Part. Diff. Eq., 4 (1979), 827–868. doi: 10.1080/03605307908820113
    [2] L. Chen, A. Jüngel, Analysis of a multi-dimensional parabolic population model with strong cross diffusion, SIAM J. Math. Anal., 36 (2004), 301–322. doi: 10.1137/S0036141003427798
    [3] L. Chen, A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differ. Equations, 224 (2006), 39–59. doi: 10.1016/j.jde.2005.08.002
    [4] X. Chen, E. S. Daus, A. Jüngel, Global existence analysis of cross-diffusion population systems for multiple species, Arch. Rational Mech. Anal., 227 (2018), 715–747. doi: 10.1007/s00205-017-1172-6
    [5] P. Degond, S. Génieys, A. Jüngel, Symmetrization and entropy inequality for general diffusion equations, C. R. Acad. Sci. Paris, 325 (1997), 963–968. doi: 10.1016/S0764-4442(97)89087-8
    [6] K. Fellner, J. Morgan, B. Q. Tang, Global classical solutions to quadratic systems with mass control in arbitrary dimensions, Ann. Inst. H. Poincaré - Analyse non linéaire, 37 (2020), 181–307. doi: 10.1016/j.anihpc.2019.08.001
    [7] K. Fellner, J. Morgan, B. Q. Tang, Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions, DCDS-S, 14 (2021), 635–651. doi: 10.3934/dcdss.2020334
    [8] G. Galiano, M. L. Garz, A. Jüngel, Semi-discretization and numerical convergence of a nonlinear cross-diffusion population model, Numer. Math., 93 (2003), 655–673. doi: 10.1007/s002110200406
    [9] G. Galiano, A. Jüngel, J. Velasco, A parabolic cross-diffusion system for granular materials, SIAM J. Math. Anal., 35 (2003), 561–578. doi: 10.1137/S0036141002409386
    [10] D. Henry, Geometric theory of semilinear parabolic equations, Berlin: Springer Verlag, 1981.
    [11] T. Iwaniec, A. Verde, On the operator $L(f) = f\log \vert f\vert$, J. Funct. Anal., 169 (1999), 391–420. doi: 10.1006/jfan.1999.3443
    [12] A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963–2001. doi: 10.1088/0951-7715/28/6/1963
    [13] J. I. Kanel, Solvability in the large of a system of reaction-diffusion equations with the balance condition, Diff. Equat., 26 (1990), 331–339.
    [14] S. Kawashima, Y. Shuzita, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J. II., 40 (1988), 449–464.
    [15] K. Kishimoto, H. F. Weinberger, The spatial homogeneity of stationary stable eqiilibrium of some reaction-diffusion systems on convex domains, J. Differ. Equations, 58 (1985), 15–21. doi: 10.1016/0022-0396(85)90020-8
    [16] O. A. Ladyzhenskaya, V. A. Solonikov, N. N. Ural'zeva, Linear and quasi-linear equations of parabolic type, Providence: American Mathematical Society, 1968.
    [17] E. Latos, T. Suzuki, Global dynamics of a reaction-diffusion system with mass conservation, J. Math. Anal. Appl., 411 (2014), 107–118. doi: 10.1016/j.jmaa.2013.09.039
    [18] E. Latos, Y. Morita, T. Suzuki, Global dynamics and spectrum comparison of a reaction-diffusion system with mass conservation, J. Dyn. Diff. Equat., 30 (2018), 828–844.
    [19] E. Latos, T. Suzuki, Y. Yamada, Transient and asymptotic dynamics of a prey-predator system with diffusion, Math. Meth. Appl. Sci., 35 (2012), 1101–1109. doi: 10.1002/mma.2524
    [20] T. Lepoutre, A. Moussa, Entropic structure and duality for multiple species cross-diffusion systems, Nonlinear Anal., 159 (2017), 298–315. doi: 10.1016/j.na.2017.02.008
    [21] Y. Lou, W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79–131. doi: 10.1006/jdeq.1996.0157
    [22] Y. Lou, W. M. Ni, S. Yotsunati, On a limiting system in the Lotka-Volterra competition with cross-diffusion diffusion, DCDS, 10 (2004), 435–458.
    [23] Y. Lou, W. M. Ni, S. Yotsunati, Pattern formation in a cross-diffusion system, DCDS, 35 (2015), 1589–1607. doi: 10.3934/dcds.2015.35.1589
    [24] H. Matano, M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sic. Kyoto Univ., 19 (1983), 1049–1079. doi: 10.2977/prims/1195182020
    [25] T. Mori, T. Suzuki, S. Yotsutani, Numerical approach to existence and stability of sationary solutions to a SKT cross-diffusion equation, Math. Mod. Meth. Appl. S., 28 (2018), 2191–2210. doi: 10.1142/S0218202518400122
    [26] A. Okubo, Diffusion and ecological problems: mathematical models, Springer Verlag, 1980.
    [27] M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., 78 (2010), 417–455. doi: 10.1007/s00032-010-0133-4
    [28] M. Pierre, T. Suzuki, Y. Yamada, Dissipative reaction diffusion systems with quadratic growth, Indiana U. Math. J., 68 (2019), 291–322. doi: 10.1512/iumj.2019.68.7447
    [29] F. Rothe, Global solutions of reaction-diffusion systems, Berlin: Springer Verlag, 1984.
    [30] N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83–99. doi: 10.1016/0022-5193(79)90258-3
    [31] P. Souplet, Global existence for reaction-diffusion systems with dissipation of mass and quadratic growth, J. Evol. Equ., 18 (2018), 1713–1720. doi: 10.1007/s00028-018-0458-y
    [32] T. Suzuki, Free energy and self-interacting particles, Boston: Birkhauser, 2005.
    [33] T. Suzuki, Mean field theories and dual variation - mathematical structures of the mesoscopic model, 2 Eds., Paris: Atlantis Press, 2015.
    [34] T. Suzuki, Chemotaxis, reaction, network, mathematics for self-organization, Singapore: World Scientific, 2018.
    [35] T. Suzuki, T. Senba, Applied analysis, mathematical methods in natural science, London: Imperial College Press, 2011.
    [36] T. Suzuki, Y. Yamada, Global-in-time behavior of Lotka-Volterra system with diffusion-skew symmetric case, Indiana Univ. Math. J., 64 (2015), 181–216. doi: 10.1512/iumj.2015.64.5460
    [37] A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London B, 237 (1952), 37–72. doi: 10.1098/rstb.1952.0012
    [38] A. Yagi, Exponential attractors for competing spaces model with cross-diffusion, DCDS, 22 (2008), 1091–1120. doi: 10.3934/dcds.2008.22.1091
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1673) PDF downloads(89) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog