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1. Introduction

Quasilinear reaction diffusion system is given by

τi
∂ui

∂t
− ∆ (di(u)ui) = fi(u) in Ω × (0,T )

∂

∂ν
(di(u)ui) = 0 on ∂Ω × (0,T )

ui|t=0 = u0
i (x) ≥ 0 in Ω (1.1)

for 1 ≤ i ≤ N, where τ = (τi) ∈ RN
+ , u = (u1(x, t), . . . , uN(x, t)) ∈ RN , Ω ⊂ Rn is a bounded domain

with smooth boundary ∂Ω, ν is the outer unit normal vector, and u0 = (u0
i (x)) . 0 is the initial value

sufficiently smooth. For the nonlinearity it is assumed that

d = (di(u)) : R
N
+ → R

N
+ , di(u) ≥ c0 > 0, 1 ≤ i ≤ N (1.2)
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is smooth, and f = ( fi(u)) : R
N
+ → R

N is locally Lipschitz continuous and quasi-positive:

fi(u1, · · · , ui−1, 0, ui+1, · · · uN) ≥ 0, u = (ui) ≥ 0, 1 ≤ i ≤ N. (1.3)

We have, therefore, unique existence of a positive classical solution local in time. Our purpose is to
extend this solution global in time. This question is posed in [12, 14, 17, 33, 37] with a positive result.

Main assumption below is the total mass dissipation∑
i

fi(u) ≤ 0, u = (ui) ≥ 0, (1.4)

which implies
‖τ · u(·, t)‖1 ≤ ‖τ · u0‖1. (1.5)

In the semilinear case when di(u) = di > 0 for 1 ≤ i ≤ N, if f = ( fi(u)) is of quadratic growth rate;

| f (u)| ≤ C(1 + |u|2), u = (ui) ≥ 0, (1.6)

then u = (ui(x, t)) ≥ 0 is uniformly bounded and hence global in time,

T = +∞, ‖u(·, t)‖∞ ≤ C. (1.7)

This result is a direct consequence of (1.5) for n = 1 ( [10]), and the cases n = 2 and n ≥ 3 are proven
by [28, 36] and [6, 7], respectively. For the quasi-linear case of (1.1), however, several tools of the
latter approach require non-trivial modifications [20], such as regularity interpolation [13] or Souplet’s
trick [31]. Here we examine the validity of the former approach.

So far, global in time existence of the weak solution has been discussed in details. In [2,3,5,8,9,29]
it is observed that by an appropriate logarithmic change of variables (1.1) can be transformed into a
system with a symmetric and positive definite diffusion matrix. In [3], furthermore, it is shown that

E′(t) +D(t) ≤ C(1 + E(t)),

where
E(t) =

∑
i

∫
Ω

τiui(log ui − 1)

and D(t) stands for the energy dissipation, which induces ui log ui ∈ L∞(0,T ; L1(Ω)) and ∇
√

ui ∈

L2(ΩT ). This structure is used in [4,12], to derive existence of the weak solution global in time to (1.1)
for an arbitrary number of competing population species,

di(u) = ai0 +
∑

j

ai ju j

with non-negative and positive constants ai j for 1 ≤ i, j ≤ N and ai j for 1 ≤ j ≤ N, respectively, under
the detailed balance condition

πiai j = π ja ji, 1 ≤ i, j ≤ N (1.8)

for positive constants πi, 1 ≤ i ≤ N.
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The fundamental assumption used in this approach is

P = (pi j(u)) ≥ 0, u = (ui) ≥ 0 (1.9)

for

pi j(u) =

(
∂di

∂u j
+
∂d j

∂ui

)
uiu j + (δi jdi(u)u j + δ jid j(u)ui), (1.10)

where c0, δ, C are positive constants. This assumption induces a uniform estimate of the solution in
L log L norm.

Theorem 1. Let d = (di(u)) satisfy (1.2) and (1.9)–(1.10). Assume that d(u) · u is bounded above and
below by positive constants δ, C,

δ ≤ d(u) · u ≤ C, u = (ui) ≥ 0. (1.11)

Let, furthermore, f = ( fi(u)) satisfy (1.3)–(1.4) and be of quadratic growth rate in the sense that it
satisfies (1.6) and

∂ fi

∂ui
≥ −C(1 + |u|), u = (ui) ≥ 0, 1 ≤ i ≤ N. (1.12)

Then, it holds that
sup

0≤t<T
‖u(·, t)‖L log L ≤ CT (1.13)

for u = (ui(·, t)).

Here we use the fact that (1.13) means∫
Ω

ui log ui dx ≤ CT , 1 ≤ i ≤ N

by ui ≥ 0 and (1.15), see [11].

Theorem 2. Let d = (di(u)) satisfy (1.2) and (1.9)–(1.10). Assume that it is of linear growth rate,

δ|u|2 ≤ d(u) · u ≤ C(1 + |u|2), u = (ui) ≥ 0 (1.14)

with δ > 0. Assume, furthermore, the cubic growth rate of f = ( fi(u)):

| fi(u)| ≤ (1 + |u|3),
∂ fi

∂ui
≥ −C(1 + |u|2), u = (ui) ≥ 0. (1.15)

Then (1.13) holds.

Under the setting of the above Theorem, the classical solution exists locally in time if the initial
value is sufficiently regular. It there is a uniform estimate of the solution:

sup
0≤t<T

‖u(·, t)‖∞ ≤ CT ,

this classical solution extends after t = T , see [16].
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At this stage, the method of [28, 36] ensures Lq estimate of the classical solution under the cost of
low space dimension. We require, however, an additional assumption to execute Moser’s iteration [1].

Letting

Ai j(u) =
∂di

∂u j
ui + δi jdi(u), (1.16)

we obtain

∂

∂x`
(di(u)ui) =

∑
j

∂di

∂u j

∂u j

∂x`
ui + di(u)

∂ui

∂x`

=
∑

j

(
∂di

∂u j
ui + δi jdi(u)

)
∂u j

∂x`
=

∑
j

Ai j(u)
∂u j

∂x`
,

and therefore, (1.1) is reduced to

τi
∂ui

∂t
− ∇ ·

∑
j

Ai j(u)∇u j

 = fi(u) in Ω × (0,T )∑
j

Ai j(u)∇u j · ν = 0 on ∂Ω × (0,T ). (1.17)

The diffusion matrix A = (Ai j(u)) is not necesarily symmetric nor positive definite. Our assumption is

Aα(u) + tAα(u) ≥ δI, u = (ui) > 0, α > 0 (1.18)

for Aα(u) = (Aα
i j(u)) and Aα

i j(u) = Ai j(u)(ui/u j)α, where I denotes the unit matrix and δ is a positive
constant.

Theorem 3. If f = ( fi(u)) is of quadratic growth satisfying (1.6) and (1.12). Suppose (1.13) for the
solution. Then, (1.18) implies

sup
0≤t<T

‖u(·, t)‖q ≤ CT (q) (1.19)

for any 1 ≤ q < ∞.

The Shigesada-Kawasaki-Teramoto (SKT) model [18,30] describes separation of existence areas of
competing species. There, it is assumed that N = 2,

d1(u) = a10 + a11u1 + a12u2

d2(u) = a20 + a21u1 + a22u2, (1.20)

and

f1(u) = (a1 − b1u1 − c1u2)u1

f2(u) = (a2 − b2u1 − c2u2)u2 (1.21)

where ai j, ai, bi, ci are non-negative constants for i, j = 1, 2 and a10, a20 are positive constants.
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Equalities (1.20) in SKT model are due to cross diffusion where the transient probability of particle
is subject to the state of the target point [26, 35], while equalities (1.21) are Lotka-Volterra terms
describing competition of two species in the case of

a2c1 > a1c2, a1b2 > a2b1. (1.22)

The Lotka-Volterra reaction-diffusion model without cross diffusion is the semilinear case, where
di(u) = di, i = 1, 2, are positive constants as ai j = bi j = 0 in (1.20). For this system, any stable
stationary solution is spatially homogeneous if Ω is convex [15], while there is (non-convex) Ω which
admits spatially inhomogeneous stable stationary solution [24]. Coming back to the SKT model, we
have several results for structure of stationary solutions to a shadow system [21–23, 25]. There is also
existence of the solution to the nonstationary SKT model global in time and bounded in H2 norm if

64a11a22 ≥ a12a21 (1.23)

( [38]). Obivously, Theorems 1 and 2 are not applicable to this system without total mass dissipation
(1.4). Such f = ( fi(u)), admitting linear growth term in (1.4), is called quasi-mass dissipative. Global
in time existence of the solution without uniform boundedness is the question for the general case of
quasi-mass dissipation.

We have the following theorem valid to such reaction under

Aα(u) + tAα(u) ≥ 0, u = (ui) ≥ 0, α > 0. (1.24)

Theorem 4. Let d = (di(u)) satisfy (1.24), and assume (1.3) and

fi(u) ≤ C(1 + ui), u = (ui) ≥ 0, 1 ≤ i ≤ N (1.25)

for f = ( fi(u)). Then, it holds that T = +∞ for any space dimension n.

Concluding this section, we examine the condition posed in above theorems, for d = (di(u)) given
by (1.20). First, for (1.9)–(1.10), we confirm

p11 = 2a10u1 + 2(2a11u2
1 + a12u1u2)

p12 = p21 = (a12 + a21)u1u2

p22 = 2a20u2 + 2(a21u1u2 + 2a22u2
2).

Then (1.10) reads

(a12 + a21)2u2
1u2

2 ≥ 16(2a11u2
1 + a12u1u2)(a21u1u2 + 2a22u2

2),

or equivalently,

{(a12 + a21)2 − 16(a12a21 + 4a11a22)}u2
1u2

2

≥ 32(a11a21u3
1u2 + a22a12u1u3

2), u = (u1, u2) ≥ 0. (1.26)

Inequality (1.26) means

{(a12 + a21)2 − 16(a12a21 + 4a11a22)} ≥ 32(a11a12X + a22a11X−1), X > 0
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and therefore,
a11a21 = a22a12 = 0, (a12 + a21)2 ≥ 16(a12a21 + 4a11a22) (1.27)

is the condition of (1.20) for (1.9)–(1.10).
For (1.18), second, we note

A11 = a10 + 2a11u1 + a12u2

A12 = a12u1, A21 = a21u2

A22 = a20 + a21u1 + 2a22u2, (1.28)

to confirm
Aα(u) = A0

α(u) + A1
α(u)

for A0
α(u) = diag(a10u1, a20u2) and

A1
α(u) =

(
2a11u1 + a12u2 a12u1(u1/u2)α

a21u2(u2/u1)α a21u1 + 2a22u2

)
.

Hence (1.18) follows from A1
α + tA1

α ≥ 0, or

(a10 + 2a11u1 + a12u2)(a20 + a21u1 + 2a22u2)
≥ {a12u1(u1/u2)α + a21u2(u2/u2)α}2,

which is reduced to

(2a11X + a12)(a21X + 2a22) ≥ {a12X1+α + a21X−α}2, X > 0.

This condition is thus satisfied if
a12 = a21 = 0. (1.29)

Finally, condition (1.14) holds if

4a11a22 ≥ (a12 + a21)2, a11 > 0, a22 > 0. (1.30)

From (1.27), particularly (1.29), cross diffusion is essentially excluded in the application of Theorems
2, 3, 4 to (1.20).

2. Proof of Theorems

We begin with the following proof.

Proof of Theorem 4. By (1.17) we obtain

τi

p + 1
d
dt
‖ui‖

p+1
p+1 +

∑
`, j

∫
Ω

Ai j(u)
∂u j

∂x`

∂up
i

∂x`
= ( fi(u), up

i ) (2.1)

for p > 0 and 1 ≤ i ≤ N, and therefore,

1
p + 1

d
dt

∫
Ω

τ · up+1 +
∑

i j

∫
Ω

Ai j(u)∇u j · ∇up
i =

∫
Ω

f (u) · up

Mathematics in Engineering Volume 4, Issue 5, 1–13.
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≤ C1

∫
Ω

τ · up+1

by (1.25) and we remind that u = (ui) ≥ 0. Since

Ai j(u)∇u j · ∇up
i =

4p
(p + 1)2 Ai j(u)u−

p−1
2

j u
p−1

2
i ∇u

p+1
2

j · ∇u
p+1

2
i ,

it holds that ∑
i j

Ai j(u)∇u j · ∇up
i =

4p
(p + 1)2 A p−1

2
(u)[∇u,∇u]. (2.2)

By (1.24) we have
1

p + 1
d
dt

∫
Ω

τ · up ≤ C2

(∫
Ω

τ · up+1 + 1
)
,

which implies (∫
Ω

τ · up+1
) 1

p+1

≤ eC2t

(∫
Ω

τ · up+1
0 + 1

) 1
p+1

.

Then we obtain
‖u(·, t)‖∞ ≤ C3eC2t, 0 ≤ t < T

by making p ↑ +∞ with C3 = C3(‖u0‖∞), and hence T = +∞. �

Three lemmas are needed for the proof of the other theorems.

Lemma 5. Assume (1.3). Then inequality (1.12) implies∑
i

fi(u) log ui ≤ C(1 + |u|2), u = (ui) ≥ 0. (2.3)

The second inequality of (1.15), similarly, implies∑
i

fi(u) log ui ≤ C(1 + |u|3), u = (ui) ≥ 0. (2.4)

Proof. The former part is proven in [36]. The latter part follows similarly, which we confirm for
completeness. In fact, given u = (ui) ≥ 0, put

ũi = (u1, · · · , ui−1, 0, ui+1, · · · , uN).

It holds that

fi(u) ≥ fi(u) − fi(ũi)

=

∫ 1

0

∂

∂s
fi(u1, · · · , ui−1, sui, ui+1, · · · , uN) ds

=

∫ 1

0

∂ fi

∂ui
(u1, · · · , ui−1, sui, ui+1, · · · , uN) ds · ui

≥ −C(1 + |u(s)|2)ui
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≥ −C(1 + |u|2)ui (2.5)

by (1.3), where
u(s) = (u1, · · · , ui−1, sui, ui+1, · · · , uN).

We assume |u| ≥ 1 because inequality (2.3) is obvious for the other case of |u| ≤ 1. It may be also
assumed that 0 < si ≤ 1 for ui = si|u|. Then we obtain∑

i

fi(u) log ui =
∑

i

fi(u)(log |u| + log si)

≤
∑

i

fi(u) log si

≤ −C4(1 + |u|2)
∑

i

ui log si

by |u| ≥ 1, (1.4), and (2.5). It thus holds that (2.4) for |u| ≥ 1 as∑
i

fi(u) log ui ≤ −C4(1 + |u|2)|u|
∑

i

si log si

≤ C5(1 + |u|2)|u|

by 0 < si ≤ 1, 1 ≤ i ≤ N. �

Lemma 6. If d = (di(u)) satisfies (1.2), (1.4), and (1.14), then it holds that∫ T

0
‖u(·, t)‖33 dt ≤ CT . (2.6)

If d = (di(u)) satisfies (1.2), (1.4), and (1.11), it holds that∫ T

0
‖u(·, t)‖22 dt ≤ CT . (2.7)

Proof. The latter part is well-known [27, 34]. The former part follows similarly, which we again
confirm for completeness. In fact, (1.4) implies

∂

∂t
τ · u − ∆(d(u) · u) ≤ 0 in Ω × (0,T ),

∂u
∂ν

∣∣∣∣∣
∂Ω

= 0

and hence

(τ · u, d(u) · u) +
1
2

d
dt

∥∥∥∥∥∥∇
∫ t

0
d(u) · u

∥∥∥∥∥∥2

2

≤ (τ · u0, d(u) · u),

where (·, ·) denotes the inner product in L2(Ω). Then it follows that

δmin
i
τi ·

∫ T

0
‖u(·, t)‖33 dt ≤

∫ T

0
(τ · u, d(u) · u) dt

≤

∫ T

0
(τ · u0, d(u) · u) dt

≤ C‖τ · u0‖∞(1 +

∫ T

0
‖u(·, t)‖22 dt)

and hence the result. �
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The following lemma has been used for construction of weak solution global in time [4, 12].

Lemma 7. Under the assumption of (1.9)–(1.10) it holds that

d
dt

∑
i

∫
Ω

τiui(log ui − 1) ≤
∑

i

∫
Ω

fi(u) log ui dx. (2.8)

Proof. Let
B = A(u)H−1(u) (2.9)

be the Onsager matrix, where A = (Ai j(u)) and H(u) = diag (u−1
1 , . . . , u

−1
N ). Regard B = B(w) for

w = (wi), wi = log ui,

and observe that (1.9)–(1.10) implies
B(w) + tB(w) ≥ 0 (2.10)

by (1.16). We obtain, furthermore,

τi
∂ui

∂t
− ∇ ·

∑
j

Bi j(w)∇w j

 = fi(u) in Ω × (0,T )∑
j

Bi j(w)∇w j · ν = 0 on ∂Ω × (0,T ) (2.11)

for 1 ≤ i ≤ N by (1.17).
Put

Φ(u) = u(log u − 1), u = (ui) ≥ 0.

Then we obtain

d
dt

∫
Ω

τ · Φ(u) =
∑

i

∫
Ω

τi
∂ui

∂t
log ui

=

∫
Ω

f (u) · w −
∑

i, j

Bi j(w)∇w j · ∇wi dx

=

∫
Ω

f (u) · w − B(w)[∇w,∇w] dx

≤
∑

i

∫
Ω

fi(u) log ui dx

by (2.10), and hence (2.8). �

Proof of Theorems 1 and 2. These theorems are a direct consequence of Lemmas 5, 6, and 7. �

Proof of Theorem 3. Any ε > 0 admits Cε such that

‖u‖1 ≤ ε‖u‖L log L + Cε. (2.12)
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See Chapter 4 of [32] for the proof. We have, on the other hand,

1
p + 1

d
dt

∫
Ω

τ · up+1 +
4pc2

(p + 1)2 ‖∇u
p+1

2 ‖22 ≤
∑

i

( fi(u), up
i )

≤ C(1 + ‖u‖p+2
p+2) (2.13)

by (1.6), (1.18), (2.1), and (2.2), where

∇u
p+1

2 = (∇u
p+1

2
i ).

Letting

z = (u
p+1

2
i ), r =

2
p + 1

· (p + 2),

we obtain
1

p + 1
d
dt

∫
Ω

τ · up+1 +
c3

p + 1
‖∇z‖22 ≤ C(1 + ‖z‖rr) (2.14)

with c3 > 0. Apply the Gagliardo-Nirenberg inequality for n = 2,

‖z‖rr ≤ C(r, q)‖z‖qq‖z‖
r−q
H1 , 1 ≤ q < r < ∞. (2.15)

Here we notice Wirtinger’s inequality to deduce

‖u‖p+2
p+2 = ‖z‖rr ≤ C‖z‖r−1

H1 ‖z‖1

≤ C(‖∇u
p+1

2 ‖2 + ‖u‖
p+1

2
p+1

2

)
p+3
p+1 ‖u‖

p+1
2

p+1
2

. (2.16)

In this inequality C on the right-hand side is independent of 1 ≤ p < ∞, beucase it then follows that
2 < r ≤ 3.

For p = 1 we use (2.16) to derive

‖u‖33 ≤ ε‖∇u‖22 + Cε

for any ε > 0 by (2.12). Then it follows that

sup
0≤t<T

‖u(·, t)‖2 ≤ CT . (2.17)

For p > 1, second, there arises p+3
p+1 < 1, and hence (2.13) and (2.16) implies

sup
0≤t<T

‖u(·, t)‖ p+1
2
≤ CT ⇒ sup

0≤t<T
‖u(·, t)‖p+1 ≤ C′T . (2.18)

By (2.17)–(2.18) it holds that (1.19) for any 1 ≤ q < ∞. �

Remark 1. For system of chemotaxis in two space dimension, inequality (1.19) for q = 3 implies
uniform boundedness of the chemical term by the elliptic regulariy, which replaces the right-hand side
on (2.13) by a constant times 1 + ‖u‖p+1

p+1. Then Moser’s iteration scheme induces (1.19) for q = ∞. See
Chapter 11 of [32] for details. For the case of constant di in (1.1), on the other hand, the semigroup
estimate is applicable as in [19]. If n = 2, for example, inequality (1.19) for q = 2 implies that for
q = ∞. Such parabolic estimate to (1.1) will be discussed in future.
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2. L. Chen, A. Jüngel, Analysis of a multi-dimensional parabolic population model with strong cross
diffusion, SIAM J. Math. Anal., 36 (2004), 301–322.

3. L. Chen, A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion,
J. Differ. Equations, 224 (2006), 39–59.
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