Citation: Xavier Fernández-Real, Alessio Figalli. On the obstacle problem for the 1D wave equation[J]. Mathematics in Engineering, 2020, 2(4): 584-597. doi: 10.3934/mine.2020026
[1] | Amerio L (1976) Su un problema di vincoli unilaterali per l'equazione non omogenea della corda vibrante. Pubbl IACD 190: 3-11. |
[2] | Amerio L, Prouse G (1975) Study of the motion of a string vibrating against an obstacle. Rend Mat 8: 563-585. |
[3] | Bamberger A, Schatzman M (1983) New results on the vibrating string with a continuous obstacle. SIAM J Math Anal 14: 560-595. doi: 10.1137/0514046 |
[4] | Citrini C (1975) Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un ostacolo. Atti Accad Naz Lincei Rend Cl Sci Fis Mat Natur 59: 368-376. |
[5] | Citrini C (1977) The energy theorem in the impact of a string vibrating against a point-shaped obstacle. Rend Act Naz Lincei 62: 143-149. |
[6] | Kim J (1989) A boundary thin obstacle problem for a wave equation. Commun Part Diff Eq 14: 1011-1026. doi: 10.1080/03605308908820640 |
[7] | Kim J (2008) On a stochastic wave equation with unilateral boundary conditions. T Am Math Soc 360: 575-607. doi: 10.1090/S0002-9947-07-04143-8 |
[8] | Lebeau G, Schatzman M (1984) A wave problem in a half-space with a unilateral constraint at the boundary. J Differ Equations 53: 309-361. doi: 10.1016/0022-0396(84)90030-5 |
[9] | Pinchover Y, Rubinstein J (2005) An Introduction to Partial Differential Equations, Cambridge: Cambridge University Press. |
[10] | Schatzman M (1980) A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle. J Math Anal Appl 73: 138-191. doi: 10.1016/0022-247X(80)90026-8 |
[11] | Schatzman M (1980) Un problème hyperbolique du 2ème ordre avec contrainte unilatérale: La corde vibrante avec obstacle ponctuel. J Differ Equations 36: 295-334. doi: 10.1016/0022-0396(80)90068-6 |