Loading [MathJax]/jax/output/SVG/jax.js
Research article

Phenotypic and molecular characterization of Staphylococcus aureus from mobile phones in Nigeria

  • The presence of Staphylococcus aureus, a normal human flora on cellphones of different professionals in Ile-Ife was investigated with a view to determining their antibiotic susceptibility profile and nature of resistance and virulence genes. One hundred swab samples were collected aseptically from mobile phones of various users based on their profession. Surfaces of the mobile phones were swabbed and the streak plate method was used to isolate colonies showing characteristic golden yellow on mannitol salt agar plates. These isolates were further identified using standard microbiological methods. The antibiotic susceptibility of the isolates was determined using Kirby-Bauer's disk diffusion technique. Molecular detection of nuc, mecA and pvl genes in some isolates was carried out by polymerase chain reaction technique. All the 36 isolates obtained in this study were 100% resistant to amoxicillin and augmentin; the isolates also displayed 55.6%, 44.4% and 41.7% resistance to ceftriazone, erythromycin and chloramphenicol, respectively. Based on resistance to oxacillin, prevalence of methicillin resistant Staphylococcus aureus (MRSA) was 11.1%. Only one S. aureus was positive for plasmid analysis. MecA gene was genetically confirmed in four (4) out of the 16 suspected phenotypic MRSA strains, nuc gene was confirmed in all 28 isolates investigated, while there was no pvl gene in the strains investigated. Mobile phones harbor multiple antibiotics resistant S. aureus, which are responsible for important diseases in humans and could be difficult to manage with antibiotics thereby posing serious health risks.

    Citation: Anthonia O. Oluduro, Yetunde M. Adesiyan, Olumide O. Omoboye, Adebowale T. Odeyemi. Phenotypic and molecular characterization of Staphylococcus aureus from mobile phones in Nigeria[J]. AIMS Microbiology, 2023, 9(3): 402-418. doi: 10.3934/microbiol.2023021

    Related Papers:

    [1] Shumoua F. Alrzqi, Fatimah A. Alrawajeh, Hany N. Hassan . An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method. AIMS Mathematics, 2024, 9(4): 8661-8688. doi: 10.3934/math.2024420
    [2] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [3] Zhengang Zhao, Yunying Zheng, Xianglin Zeng . Finite element approximation of fractional hyperbolic integro-differential equation. AIMS Mathematics, 2022, 7(8): 15348-15369. doi: 10.3934/math.2022841
    [4] Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274
    [5] Jian-Gen Liu, Jian Zhang . A new approximate method to the time fractional damped Burger equation. AIMS Mathematics, 2023, 8(6): 13317-13324. doi: 10.3934/math.2023674
    [6] Weiwen Wan, Rong An . Convergence analysis of Euler and BDF2 grad-div stabilization methods for the time-dependent penetrative convection model. AIMS Mathematics, 2024, 9(1): 453-480. doi: 10.3934/math.2024025
    [7] Shanhao Yuan, Yanqin Liu, Yibin Xu, Qiuping Li, Chao Guo, Yanfeng Shen . Gradient-enhanced fractional physics-informed neural networks for solving forward and inverse problems of the multiterm time-fractional Burger-type equation. AIMS Mathematics, 2024, 9(10): 27418-27437. doi: 10.3934/math.20241332
    [8] Xin Zhao, Xin Liu, Jian Li . Convergence analysis and error estimate of finite element method of a nonlinear fluid-structure interaction problem. AIMS Mathematics, 2020, 5(5): 5240-5260. doi: 10.3934/math.2020337
    [9] Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112
    [10] Muhammad Asim Khan, Norma Alias, Umair Ali . A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time. AIMS Mathematics, 2023, 8(6): 13725-13746. doi: 10.3934/math.2023697
  • The presence of Staphylococcus aureus, a normal human flora on cellphones of different professionals in Ile-Ife was investigated with a view to determining their antibiotic susceptibility profile and nature of resistance and virulence genes. One hundred swab samples were collected aseptically from mobile phones of various users based on their profession. Surfaces of the mobile phones were swabbed and the streak plate method was used to isolate colonies showing characteristic golden yellow on mannitol salt agar plates. These isolates were further identified using standard microbiological methods. The antibiotic susceptibility of the isolates was determined using Kirby-Bauer's disk diffusion technique. Molecular detection of nuc, mecA and pvl genes in some isolates was carried out by polymerase chain reaction technique. All the 36 isolates obtained in this study were 100% resistant to amoxicillin and augmentin; the isolates also displayed 55.6%, 44.4% and 41.7% resistance to ceftriazone, erythromycin and chloramphenicol, respectively. Based on resistance to oxacillin, prevalence of methicillin resistant Staphylococcus aureus (MRSA) was 11.1%. Only one S. aureus was positive for plasmid analysis. MecA gene was genetically confirmed in four (4) out of the 16 suspected phenotypic MRSA strains, nuc gene was confirmed in all 28 isolates investigated, while there was no pvl gene in the strains investigated. Mobile phones harbor multiple antibiotics resistant S. aureus, which are responsible for important diseases in humans and could be difficult to manage with antibiotics thereby posing serious health risks.



    In this article, we consider the following time-fractional generalized Rosenau-RLW-Burgers equation:

    utC0Dαtuxx+C0Dβtuxxxx+uxuxx+f(u)x=g(x,t), (x,t)Ω×J, (1.1)

    with boundary conditions

    u(x,t)=uxx(x,t)=0, (x,t)Ω×ˉJ, (1.2)

    and initial condition

    u(x,0)=u0(x), xΩ, (1.3)

    where Ω=(a,b) is the spatial domain, J=(0,T] is the time interval with T(0,), and g(x,t) is a known source term function. The nonlinear term f(u) satisfies the assumption condition |f(u)|cf(u)|u|, where cf(u) is a positive constant on u. C0Dαtu and C0Dβtu are both Caputo fractional derivatives with 0<α,β<1. Since C0Dγtu=γ(uu0)tγ, all of the above Caputo fractional derivatives can be converted into the Riemann-Liouville fractional derivative, note that

    γutγ=1Γ(1γ)tt0u(x,s)(ts)γds,0<γ<1. (1.4)

    Specifically, when α=1, β=1, (1.1) degenerates into the generalized Rosenau-RLW-Burgers equation which can be seen as the combined system between the generalized Rosenau-RLW equation and the generalized Rosenau-Burgers equation.

    The RLW equation, the Rosenau equation, and their combined systems with other equations are significant mathematical and physical equations that effectively describe nonlinear wave behaviors. These equations have become interesting topics in the study of nonlinear dispersion dynamics. Since obtaining analytical solutions for these equations is challenging, studying their numerical methods is paramount. Over the years, there has been extensive research on numerical methods for solving this type of equation. In [1], Atouani and Omrani discussed the numerical solution of the Rosenau-RLW (RRLW) equation based on the Galerkin finite element method. In [2], He and Pan developed a three-level, linearly implicit finite difference method for solving the generalized Rosenau-Kawahara-RLW equation. In [3], Wongsaijai and Poochinapan developed a pseudo-compact finite difference scheme for solving the generalized Rosenau-RLW-Burgers equation. In [4], Mouktonglang et al. analyzed a generalized Rosenau-RLW-Burgers equation with periodic initial-boundary value. For more papers on related equations, please refer to [5,6,7,8]. It is worth noting that the literature on the fractional generalized Rosenau-RLW-Burgers equation is relatively scarce, and its analytical solution is difficult to obtain. Therefore, we have to consider effective numerical methods such as finite element methods [9,10,11,12], finite difference methods [13,14,15], finite volume methods [16], spectral methods [17,18,19], and mixed finite element methods [20,21,22]. In addition, the existence of time-fractional derivatives increases the difficulty of studying numerical methods. Therefore, it is crucial to choose an appropriate high-order approximation formula for the fractional derivative to establish a stable numerical scheme for (1.1).

    In 1986, Lubich [23] proposed the convolution quadrature (CQ) formula for Riemann Liouville fractional operators using the discrete convolution. In [24], Chen et al. developed an alternating direction implicit fractional trapezoidal rule type to solve a two-dimensional fractional evolution equation. In [25], Jin et al. proposed a corrected approximation formula for high-order BDFs through appropriate initial modifications to discretize fractional evolution equations. Based on the CQ formula, in [26], Liu et al. developed the shifted convolution quadrature (SCQ) theory, which extended the CQ formula at xnθ and discussed the constraints of parameter θ. In [27], Yin et al. studied the generalized BDF2-θ with the finite element method for solving the fractional mobile/immobile transport model, and also developed a correction scheme by adding the starting part to restore convergence order. For more related papers, please refer to [28,29,30,31,32,33].

    In this article, we develop the generalized BDF2-θ in time combined with the mixed finite element method in space to solve (1.1). The focuses of this article are as follows:

    ● It is noted that the time-fractional generalized Rosenau-RLW-Burgers equation containing two time-fractional operators is studied.

    ● The stability of the time-fractional generalized Rosenau-RLW-Burgers equation (1.1) based on the mixed finite element method is given.

    ● Based on a comprehensive analysis of some numerical examples, the numerical method's feasibility and effectiveness have been extensively validated. Specifically, the issue of decreasing the convergence rate of nonsmooth solutions is solved by adding correction terms.

    The structure of this article is as follows: In Section 2, the generalized BDF2-θ is introduced, and the fully discrete mixed finite element scheme is provided. In Section 3, the existence and uniqueness theorem for the fully discrete mixed finite element scheme is given. In Section 4, the stability of the scheme is proved. In Section 5, some numerical examples with smooth and nonsmooth solutions based on the discrete scheme are presented. In Section 6, some conclusions are given.

    In this section, we present the fully discrete mixed finite element scheme for (1.1) in space, which combines the generalized BDF2-θ in time. The generalized BDF2-θ with the starting part is introduced in [27]. Further, we divide the time interval [0,T] into 0=t0<t1<<tN1<tN=T, and let tn=nτ(n=1,2,,N), where τ is time step length size and N is a positive integer.

    For the convenience of research, set ˆu:=uu0, and assume that ˆu has the following form:

    ˆu(x,t)=ˆu1(x,t)+ˆu2(x,t):=κj=1cjtσj+tσκ+1ϕ(x,t), (2.1)

    where cj=c(x), 1<σ1<σ2<<σκ<σκ+1 and ϕ(x,t) is sufficiently differentiable with respect to t.

    Using ˆu:=uu0, we can write (1.1)–(1.3) as

    ˆutαˆuxxtα+βˆuxxxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t),(x,t)Ω×J, (2.2)

    with boundary conditions

    ˆu(x,t)=ˆuxx(x,t)=0,(x,t)Ω×ˉJ, (2.3)

    and initial condition

    ˆu(x,0)=0,xΩ, (2.4)

    where ˆg(x,t)=g(x,t)+(u0)x(u0)xx.

    Now, we introduce an auxiliary variable q=ˆuxx to obtain the following coupled system:

    ˆutαˆuxxtα+βqxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t), (2.5)

    and

    q=ˆuxx. (2.6)

    Multiplying (2.5) and (2.6) by vH10 and wH10, respectively, integrating the result equations, and using integration by parts, we obtain the following weak form:

    (ˆut,v)+(αˆuxtα,vx)(βqxtβ,vx)(ˆu,vx)+(ˆux,vx)(f(ˆu),vx)=(ˆg,v),vH10, (2.7)

    and

    (q,w)+(ˆux,wx)=0,wH10. (2.8)

    To provide the fully discrete numerical scheme, we first introduce the relevant formulas and lemmas for the generalized BDF2-θ.

    For smooth functions ˆu and q in [0,T], we let ˆun=ˆu(,tn), qn=(,tn). The approximation formula for the Riemann-Liouville fractional derivative at time tnθ with the generalized BDF2-θ is

    γˆunθtγ=τγnj=0ω(γ)jˆunj+τγκj=1ω(γ)n,jˆuj+Rnθγ:=Ψγ,nτˆu+Sγ,nτ,κˆu+Rnθγ, (2.9)

    where |Rnθγ|Cτ2.

    The discrete convolution part is denoted as

    Ψγ,nτˆu:=τγnj=0ω(γ)jˆunj, (2.10)

    and the starting part is

    Sγ,nτ,κˆu:=τγκj=1ω(γ)n,jˆuj. (2.11)

    The convolution weights {ω(γ)j}j=0 in (2.10) are generated by the following generating function:

    ω(γ)(ξ)=(3γ2θ2γ2γ2θγξ+γ2θ2γξ2)γ. (2.12)

    Lemma 2.1. [27] We give the convolution weights {ω(γ)j}j=0 of the generalized BDF2-θ as follows:

    ω(γ)0=(3γ2θ2γ)γ,ω(γ)1=2(θγ)(2γ3γ2θ)1γ,ω(γ)j=2γj(3γ2θ)[2(γθ)(j1γ1)ω(γ)j1+(γ2θ)(1j22γ)ω(γ)j2],j2. (2.13)

    Lemma 2.2. [27] The starting weights {ω(γ)n,j}κj=1 of the generalized BDF2-θ are given as the following:

    κj=1ω(γ)n,jj=Γ(+1)Γ(γ+1)(nθ)γnj=1ω(γ)njj,=σ1,σ2,,σκ. (2.14)

    Lemma 2.3. [12,15] For ˆuC4[0,π], the following two approximate formulas at tnθ hold:

    g(tnθ)=gnθ+O(τ2),f(ˆu(tnθ))=f(ˆunθ)+O(τ2), (2.15)

    where gnθ:=(1θ)gn+θgn1 and f(ˆunθ):=(2θ)f(ˆun1)(1θ)f(ˆun2).

    Next, we have the following approximate formula:

    ˆu(tnθ)=ˆunθ+S0,nτ,κˆu+O(τ2):=(1θ)ˆun+θˆun1+S0,nτ,κˆu+O(τ2). (2.16)

    Without considering the starting part, we can obtain the weak form of (2.5) and (2.6) at tnθ:

    (Ψ1,nτˆu,v)+(Ψα,nτˆux,vx)(Ψβ,nτqx,vx)(ˆunθ,vx)+(ˆunθx,vx)=(f(ˆunθ),vx)+(ˆgnθ,v)(Rnθ1,v), (2.17)

    and

    (qnθ,w)+(ˆunθx,wx)=(Rnθ2,w), (2.18)

    where Rnθ1=O(τ2) and Rnθ2=O(τ2).

    To establish the fully discrete mixed finite element scheme, we introduce the following finite element space:

    Vh={vh|vhH10,vh|IiPk(Ii),IiTh,k1},

    where Th is a subdivision of ˉΩ=[a,b] into M subintervals Ii=[xi1,xi], with hi=xixi1, h=max1iMhi, and Pk(Ii) represent the polynomials with a degree less than or equal to k in Ii.

    Next, we provide linear basis functions {φi}Mi=1 of finite element space Vh as follows:

    φi(x)={1+xxihi,xIi,1xxihi+1,xIi+1,0,others, (2.19)
    φM(x)={1+xxMhM,xIM,0,others. (2.20)

    Based on the above finite element space, we find {Unθ,Qnθ}Vh×Vh satisfying

    (Ψ1,nτU,V)+(Ψα,nτUx,Vx)(Ψβ,nτQx,Vx)(Unθ,Vx)+(Unθx,Vx)=(f(Unθ),Vx)+(ˆgnθ,V),VVh, (2.21)

    and

    (Qnθ,W)+(Unθx,Wx)=0,WVh. (2.22)

    Theorem 3.1. The solution of the fully discrete mixed finite element scheme (2.21) and (2.22) is uniquely solvable.

    Proof. Taking basis functions {φi}Mi=1 of finite element space Vh, we have

    Un=Mi=1uniφi,Qn=Mi=1qniφi. (3.1)

    Taking V=φj and W=φj from (2.21) and (2.22), we have

    τ1ω(1)0AUn+ταω(α)0BUn+(1θ)BUn(1θ)CUnτβω(β)0BQn=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk, (3.2)

    and

    (1θ)BUn+(1θ)AQn=θBUnθAQn, (3.3)

    where

    A=[(φi,φj)]T1i,jM,B=[(φix,φjx)]T1i,jM,C=[(φi,φjx)]T1i,jM,Fnθ=[(f(Unθ),φ1x),,(f(Unθ),φMx)]T,Gnθ=[(gnθ,φ1),,(gnθ,φM)]T.

    Obviously, A and B are symmetric and positive definite. Further, processing the boundary and simplifying the right-hand term, we have

    (τ1ω(1)0˜A+ταω(α)0˜B+(1θ)˜B(1θ)˜C)Unτβω(β)0˜BQn=Hn1, (3.4)

    and

    (1θ)˜BUn+(1θ)˜AQn=Hn2, (3.5)

    where

    Hn1=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk,Hn2=θBUnθAQn.

    Multiplying (3.4) by τ˜A1, we have

    (ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C)Unτ1βω(β)0˜A1˜BQn=τ˜A1Hn1. (3.6)

    Further, rewrite (3.5) as

    Qn=Hn3, (3.7)

    where Hn3=(1θ)1˜A1Hn2˜A1˜BUn.

    Substitute (3.7) into (3.6) to obtain

    KUn=Hn4, (3.8)

    where

    K=ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C+τ1βω(β)0˜A1˜B˜A1˜B,
    Hn4=τ˜A1Hn1+τ1β(1θ)1ω(β)0˜A1˜B˜A1Hn2.

    It is easy to see that (3.7) and (3.8) are equivalent to (3.4) and (3.5). Due to τ being small enough and E being an identity matrix, the matrix K is invertible. Additionally, since Uk(k=0,1,,n1) is known, after multiple iterations, (3.7) and (3.8) have a unique solution.

    Remark 3.1. Since we introduce the auxiliary variable q=ˆuxx to transform (2.2) into a first-order system (2.5) and (2.6), according to [34,35], the mixed finite element scheme (2.21) and (2.22) do not need to satisfy the LBB condition. In [36], the LBB condition is a condition for the problem to be well posed. From this perspective, typically satisfying the LBB condition is to obtain the existence and uniqueness of a solution. Although the mixed finite element scheme in this article does not need to satisfy the LBB condition, it still satisfies the existence and uniqueness of a solution.

    Lemma 4.1. [12,14] For UmVh, satisfying Um=0(m<0), we have

    (Ψ1,mtU,Umθ)14τ(H[Um]H[Um1]), m1,

    where

    H[Um]=(32θ)Um2(12θ)Um12+(2θ)(12θ)UmUm12,

    and

    H[Um]11θUm2, m1.

    Lemma 4.2. [27] } {For any vector (v0,v1,,vn1)Rn, defining {ω(γ)k}k=0(0<γ<1) be a sequence of coefficients of the generating function ω(γ)(ξ) in (2.12) and 0θmin{γ,12}, we have

    n1m=1vmmk=1ω(γ)mkvk0, n1.

    Theorem 4.1. Let unh=Un+ˉu0h, where ˉu0h is an approximation of u0, the following stability of the fully discrete scheme (2.21) and (2.22) holds:

    uLh2  C(ˉu0h2+τLn=1gnθ2), 1LN, (4.1)

    where C is a positive constant independent of h and τ.

    Proof. Taking V=Unθ, W=Ψβ,nτQ, (2.21) and (2.22) can be written as

    (Ψ1,nτU,Unθ)+(Ψα,nτUx,Unθx)(Ψβ,nτQx,Unθx)+Unθx2=(Unθ,Unθx)+(f(Unθ),Unθx)+(ˆgnθ,Unθ), (4.2)

    and

    (Qnθ,Ψβ,nτQ)+(Unθx,Ψβ,nτQx)=0. (4.3)

    Adding (4.2) and (4.3), we have

    (Ψ1,nτU,Unθ)+(Ψα,nτUx,Unθx)+(Qnθ,Ψβ,nτQ)+Unθx2=(Unθ,Unθx)+(f(Unθ),Unθx)+(ˆgnθ,Unθ). (4.4)

    Using Lemma 4.1, we obtain

    14τ(H[Un]H[Un1])+(Ψα,nτUx,Unθx)+(Qnθ,Ψβ,nτQ)+Unθx2(Unθ,Unθx)+(f(Unθ),Unθx)+(ˆgnθ,Unθ). (4.5)

    Multiply (4.5) by 4τ and sum it with respect to n from 1 to L to get

    H[UL]H[U0]+4τLn=1(Ψα,ntUx,Unθx)+4τLn=1(Qnθ,Ψβ,nτQ)+4τLn=1Unθx24τ(Ln=1(Unθ,Unθx)+Ln=1(f(Unθ),Unθx)+Ln=1(ˆgnθ,Unθ)). (4.6)

    By the Hölder inequality and Young inequality, the three terms on the right-hand side of (4.6) can be expanded to

    Ln=1(Unθ,Unθx)12Ln=1Unθ2+12Ln=1Unθx2, (4.7)
    Ln=1(f(Unθ),Unθx)Ln=1cf(Unθ)UnθUnθxCLn=1Unθ2+12Ln=1Unθx2, (4.8)
    Ln=1(ˆgnθ,Unθ)12Ln=1ˆgnθ2+12Ln=1Unθ2, (4.9)

    where we use the bounded condition cf(Unθ)C.

    Substituting (4.7)–(4.9) into (4.6), we arrive at

    H[UL]H[U0]+4τLn=1(Ψα,ntUx,Unθx)+4τLn=1(Qnθ,Ψβ,nτQ)Cτ(Ln=1ˆgnθ2+Ln=1Unθ2). (4.10)

    In what follows, using Lemmas 4.1 and 4.2 and the Gronwall inequality, we have

    UL2U02CτLn=1ˆgnθ2. (4.11)

    Since U0=0, we obtain

    UL2CτLn=1ˆgnθ2. (4.12)

    Noting that UL=uLhˉu0h and using the triangle inequality, the conclusion of this theorem is derived.

    In this section, we present numerical simulation results for both smooth and nonsmooth solutions to verify the effectiveness of the numerical scheme. Next, we set the nonlinear term f(u)=u2, the spatial domain Ω=(0,1), and the time interval J=(0,1].

    Example 5.1 The exact solution is u(x,t)=t2sin(2πx) satisfying u(x,0)=0, and the known source function g(x,t) is given by

    g(x,t)=sin(2πx)(2t+8π2t2αΓ(3α)+32π4t2βΓ(3β)+4π2t2)+2πt2cos(2πx)+2πt4sin(4πx). (5.1)

    In Table 1, fixing τ=1/1000 and choosing h=1/10,1/20,1/40,1/80, we provide the L2-errors and the spatial convergence rates for u and q with different parameters α, β, and θ, where θmin{α,β,12}. Similarly, in Table 2, taking h=1/1000, we calculate the L2-errors and the time convergence rates with τ=1/10,1/20,1/40,1/80. From Tables 1 and 2, one can see that the convergence rates in both space and time are close to 2 when the exact solution is smooth. In Table 3, if θ>min{α,β,12}, the convergence accuracy will be unstable, which verifies the range of θ values from a numerical perspective. To observe the effect of numerical simulation more clearly, we provide the comparison images between numerical solutions and exact solutions. In Figure 1, we show distinct comparison images of the numerical solutions of uh and qh and the exact solutions of u and q with τ=1/1000, h=1/80, α=0.2, β=0.8, and θ=0.2.

    Table 1.  Spatial convergence results with τ=1/1000.
    α β θ h uhu Rate qhq Rate
    1/10 2.2165E-02 - 2.6449E-02 -
    0.2 1/20 5.6375E-03 1.9752 6.1401E-03 2.1069
    1/40 1.4151E-03 1.9941 1.5121E-03 2.0217
    1/80 3.5399E-04 1.9992 3.8250E-04 1.9830
    1/10 2.2165E-02 - 2.6470E-02 -
    0.2 0.8 -0.5 1/20 5.6369E-03 1.9753 6.1607E-03 2.1032
    1/40 1.4146E-03 1.9945 1.5327E-03 2.0070
    1/80 3.5346E-04 2.0008 4.0308E-04 1.9269
    1/10 2.2164E-02 - 2.6490E-02 -
    -1 1/20 5.6364E-03 1.9754 6.1810E-03 2.0996
    1/40 1.4141E-03 1.9949 1.5530E-03 1.9928
    1/80 3.5293E-04 2.0024 4.2346E-04 1.8747
    1/10 2.1828E-02 - 4.0463E-02 -
    0.5 1/20 5.5499E-03 1.9756 9.6844E-03 2.0629
    1/40 1.3932E-03 1.9941 2.3964E-03 2.0148
    1/80 3.4861E-04 1.9987 5.9910E-04 2.0000
    1/10 2.1828E-02 - 4.0465E-02 -
    0.5 0.5 0.2 1/20 5.5499E-03 1.9757 9.6868E-03 2.0626
    1/40 1.3931E-03 1.9941 2.3988E-03 2.0137
    1/80 3.4854E-04 1.9989 6.0151E-04 1.9956
    1/10 2.1826E-02 - 4.0523E-02 -
    -1 1/20 5.5484E-03 1.9759 9.7445E-03 2.0561
    1/40 1.3916E-03 1.9953 2.4564E-03 1.9880
    1/80 3.4706E-04 2.0035 6.5921E-04 1.8977
    1/10 2.1399E-02 - 5.8275E-02 -
    0.2 1/20 5.4386E-03 1.9763 1.4195E-02 2.0375
    1/40 1.3651E-03 1.9943 3.5279E-03 2.0085
    1/80 3.4156E-04 1.9988 8.8248E-04 1.9992
    1/10 2.1399E-02 - 5.8276E-02 -
    0.8 0.2 0 1/20 5.4386E-03 1.9763 1.4196E-02 2.0374
    1/40 1.3650E-03 1.9943 3.5290E-03 2.0082
    1/80 3.4153E-04 1.9989 8.8360E-04 1.9978
    1/10 2.1396E-02 - 5.8410E-02 -
    -1 1/20 5.4352E-03 1.9769 1.4329E-02 2.0272
    1/40 1.3616E-03 1.9970 3.6619E-03 1.9683
    1/80 3.3812E-04 2.0097 1.0167E-03 1.8487

     | Show Table
    DownLoad: CSV
    Table 2.  Time convergence results with h=1/1000.
    α β θ τ uhu Rate qhq Rate
    1/10 1.9614E-03 - 7.7510E-02 -
    0.2 1/20 5.0017E-04 1.9714 1.9814E-02 1.9679
    1/40 1.2703E-04 1.9773 5.0533E-03 1.9712
    1/80 3.2128E-05 1.9832 1.2867E-03 1.9736
    1/10 7.2565E-03 - 2.8650E-01 -
    0.2 0.8 -0.5 1/20 1.8309E-03 1.9867 7.2335E-02 1.9858
    1/40 4.6032E-04 1.9919 1.8206E-02 1.9903
    1/80 1.1551E-04 1.9946 4.5778E-03 1.9917
    1/10 1.2197E-02 - 4.8151E-01 -
    -1 1/20 3.1215E-03 1.9662 1.2329E-01 1.9655
    1/40 7.8542E-04 1.9907 3.1091E-02 1.9875
    1/80 1.9579E-04 2.0042 7.8135E-03 1.9924
    1/10 5.3041E-04 - 2.1042E-02 -
    0.5 1/20 1.3386E-04 1.9863 5.3622E-03 1.9724
    1/40 3.3676E-05 1.9910 1.3637E-03 1.9753
    1/80 8.4582E-06 1.9933 3.4761E-04 1.9720
    1/10 1.1457E-03 - 4.5326E-02 -
    0.5 0.5 0.2 1/20 2.8884E-04 1.9879 1.1461E-02 1.9836
    1/40 7.2679E-05 1.9907 2.8911E-03 1.9871
    1/80 1.8260E-05 1.9929 7.2972E-04 1.9862
    1/10 1.5622E-02 - 6.1668E-01 -
    -1 1/20 4.0111E-03 1.9615 1.5838E-01 1.9611
    1/40 1.0095E-03 1.9904 3.9868E-02 1.9901
    1/80 2.5362E-04 1.9929 1.0017E-02 1.9928
    1/10 5.2861E-04 - 2.0885E-02 -
    0.5 1/20 1.3465E-04 1.9730 5.3245E-03 1.9717
    1/40 3.4107E-05 1.9811 1.3530E-03 1.9765
    1/80 8.5857E-06 1.9901 3.4270E-04 1.9812
    1/10 2.2763E-03 - 8.9851E-02 -
    0.8 0.5 0 1/20 5.7402E-04 1.9875 2.2660E-02 1.9874
    1/40 1.4460E-04 1.9890 5.7086E-03 1.9889
    1/80 3.6405E-05 1.9899 1.4372E-03 1.9898
    1/10 1.5534E-02 - 6.1313E-01 -
    -1 1/20 3.9902E-03 1.9609 1.5749E-01 1.9609
    1/40 1.0033E-03 1.9917 3.9605E-02 1.9916
    1/80 2.5177E-04 1.9946 9.9391E-03 1.9945

     | Show Table
    DownLoad: CSV
    Table 3.  Time convergence results with h=1/1000.
    α β θ τ uhu Rate qhq Rate
    1/10 2.4519E-03 - 9.6803E-02 -
    0.1 0.9 0.11 1/20 6.2095E-04 1.9813 2.4519E-02 1.9811
    1/40 5.2080E-04 0.2538 2.0647E-02 0.2480
    1/80 4.0699E+02 -19.5758 1.6068E+04 -19.5699
    1/10 1.8093E-03 - 7.1425E-02 -
    0.5 0.5 0.51 1/20 4.5109E-04 2.0039 1.7808E-02 2.0039
    1/40 2.0018E-04 1.1721 7.8154E-03 1.1881
    1/80 5.1099E-04 -1.3520 2.0090E-02 -1.3621
    1/10 4.8552E-04 - 1.9119E-02 -
    0.8 0.2 0.21 1/20 1.2438E-04 1.9647 4.8398E-03 1.9820
    1/40 5.8298E-05 1.0933 2.2123E-03 1.1294
    1/80 2.3759E-02 -8.6708 9.3790E-01 -8.7277

     | Show Table
    DownLoad: CSV
    Figure 1.  uh, qh and u, q with τ=1/1000, h=1/80, α=0.2, β=0.8, θ=0.2.

    Example 5.2 In this example, we consider the case where the nonsmooth solution is taken as u=(tα+β+t3)sin(2πx), and the known source term g(x,t) is

    g(x,t)=sin(2πx)[(α+β)tα+β1+3t2+4π2(tβΓ(α+β+1)Γ(β+1)+6t3αΓ(4α))]+sin(2πx)[16π4(tαΓ(α+β+1)Γ(α+1)+6t3βΓ(4β))+4π2(tα+β+t3)]+2π(tα+β+t3)cos(2πx)+2π(tα+β+t3)2sin(4πx). (5.2)

    Table 4 presents the L2-errors and the spatial convergence rates of u and q before and after adding the starting parts with h=1/10,1/20,1/40,1/80, τ=1/2000, where Erroro denotes the error before adding the starting parts and Errorc denotes the error after adding the starting parts.

    Table 4.  Spatial convergence results with α=0.9, β=0.2, τ=1/2000.
    uhu qhq
    θ h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.2694E-02 - 4.2693E-02 - 1.2162E-01 - 1.2163E-01 -
    0.2 1/20 1.0850E-02 1.9763 1.0850E-02 1.9763 2.9675E-02 2.0351 2.9679E-02 2.0349
    1/40 2.7235E-03 1.9942 2.7234E-03 1.9942 7.3708E-03 2.0094 7.3746E-03 2.0088
    1/80 6.8165E-04 1.9984 6.8155E-04 1.9985 1.8361E-03 2.0051 1.8400E-03 2.0029
    1/10 4.2693E-02 - 4.2692E-02 - 1.2165E-01 - 1.2168E-01 -
    -0.5 1/20 1.0849E-02 1.9764 1.0849E-02 1.9764 2.9706E-02 2.0340 2.9728E-02 2.0331
    1/40 2.7227E-03 1.9945 2.7221E-03 1.9947 7.4017E-03 2.0048 7.4237E-03 2.0016
    1/80 6.8085E-04 1.9996 6.8028E-04 2.0005 1.8671E-03 1.9871 1.8891E-03 1.9744
    1/10 4.2691E-02 - 4.2690E-02 - 1.2172E-01 - 1.2177E-01 -
    -1 1/20 1.0848E-02 1.9766 1.0846E-02 1.9767 2.9776E-02 2.0314 2.9822E-02 2.0297
    1/40 2.7209E-03 1.9952 2.7197E-03 1.9957 7.4714E-03 1.9947 7.5178E-03 1.9880
    1/80 6.7905E-04 2.0025 6.7786E-04 2.0044 1.9368E-03 1.9477 1.9833E-03 1.9224

     | Show Table
    DownLoad: CSV

    The spatial convergence rate is almost unaffected before and after correction, based on a comparison of the data in Table 5. In Tables 6 and 7, we present the L2-errors and the time convergence rates of u and q before and after adding the starting parts. Without the addition of the starting parts, the time convergence rates are unstable and cannot reach the second-order convergence results computed by the generalized BDF2-θ. After adding the starting parts, the time convergence rates keep around 2, indicating that the starting part plays a major role in correcting the time convergence rates.

    Table 5.  Spatial convergence results with α=0.5, β=0.7, τ=1/2000.
    uhu qhq
    θ h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3949E-02 - 4.3948E-02 - 6.8838E-02 - 6.8891E-02 -
    0.5 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6266E-02 2.0814 1.6318E-02 2.0778
    1/40 2.8070E-03 1.9934 2.8057E-03 1.9940 3.9696E-03 2.0348 4.0219E-03 2.0205
    1/80 7.0358E-04 1.9963 7.0222E-04 1.9984 9.4708E-04 2.0674 9.9935E-04 2.0088
    1/10 4.3949E-02 - 4.3948E-02 - 6.8842E-02 - 6.8897E-02 -
    0.2 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6270E-02 2.0811 1.6324E-02 2.0774
    1/40 2.8069E-03 1.9935 2.8055E-03 1.9940 3.9739E-03 2.0336 4.0279E-03 2.0189
    1/80 7.0346E-04 1.9964 7.0206E-04 1.9986 9.5140E-04 2.0624 1.0054E-03 2.0023
    1/10 4.3948E-02 - 4.3946E-02 - 6.8877E-02 - 6.8974E-02 -
    -1 1/20 1.1176E-02 1.9754 1.1174E-02 1.9756 1.6304E-02 2.0788 1.6401E-02 2.0722
    1/40 2.8061E-03 1.9938 2.8035E-03 1.9948 4.0077E-03 2.0244 4.1049E-03 1.9984
    1/80 7.0259E-04 1.9978 7.0007E-04 2.0017 9.8520E-04 2.0243 1.0824E-03 1.9231

     | Show Table
    DownLoad: CSV
    Table 6.  Time convergence results with α=0.9, β=0.2, h=1/2000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 2.1916E-03 - 4.2694E-02 - 8.6515E-02 - 1.2162E-01 -
    0.2 1/20 1.6194E-03 0.4365 1.0850E-02 1.9763 6.3929E-02 0.4365 2.9675E-02 2.0351
    1/40 1.0890E-03 0.5725 2.7235E-03 1.9942 4.2990E-02 0.5725 7.3710E-03 2.0093
    1/80 6.8790E-04 0.6627 6.8165E-04 1.9984 2.7157E-02 0.6627 1.8364E-03 2.0050
    1/10 2.5540E-03 - 4.2693E-02 - 1.0123E-01 - 1.2164E-01 -
    0 1/20 1.1111E-03 1.2007 1.0850E-02 1.9763 4.3864E-02 1.2065 2.9692E-02 2.0345
    1/40 7.7616E-04 0.5176 2.7231E-03 1.9944 3.0641E-02 0.5176 7.3878E-03 2.0069
    1/80 5.0234E-04 0.6277 6.8122E-04 1.9990 1.9831E-02 0.6277 1.8531E-03 1.9952
    1/10 2.4652E-02 - 4.2689E-02 - 9.7312E-01 - 1.2182E-01 -
    -0.5 1/20 7.1878E-03 1.7781 1.0845E-02 1.9768 2.8376E-01 1.7779 2.9872E-02 2.0279
    1/40 1.9420E-03 1.8880 2.7184E-03 1.9962 7.6702E-02 1.8874 7.5673E-03 1.9809
    1/80 5.5906E-04 1.7965 6.7658E-04 2.0064 2.2071E-02 1.7971 2.0329E-03 1.8962

     | Show Table
    DownLoad: CSV
    Table 7.  Time convergence results with α=0.5, β=0.7, h=1/2000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.1456E-02 - 4.3948E-02 - 4.5228E-01 - 6.8880E-02 -
    0.5 1/20 5.0680E-03 1.1767 1.1176E-02 1.9754 2.0008E-01 1.1767 1.6307E-02 2.0786
    1/40 2.2184E-03 1.1919 2.8060E-03 1.9939 8.7577E-02 1.1919 4.0110E-03 2.0235
    1/80 9.6796E-04 1.1965 7.0250E-04 1.9979 3.8213E-02 1.1965 9.8850E-04 2.0207
    1/10 5.4375E-03 - 4.3948E-02 - 2.1466E-01 - 6.8904E-02 -
    0.2 1/20 2.5220E-03 1.1084 1.1176E-02 1.9754 9.9562E-02 1.1084 1.6332E-02 2.0769
    1/40 1.1387E-03 1.1472 2.8053E-03 1.9941 4.4952E-02 1.1472 4.0351E-03 2.0170
    1/80 5.0160E-04 1.1828 7.0188E-04 1.9989 1.9802E-02 1.1827 1.0126E-03 1.9946
    1/10 2.8636E-02 - 4.3948E-02 - 1.1304E+00 - 6.8904E-02 -
    -1 1/20 7.7097E-03 1.8931 1.1176E-02 1.9754 3.0439E-01 1.8929 1.6332E-02 2.0769
    1/40 1.9098E-03 2.0133 2.8053E-03 1.9941 7.5437E-02 2.0126 4.0351E-03 2.0170
    1/80 6.3574E-04 1.5869 7.0188E-04 1.9989 2.5098E-02 1.5877 1.0126E-03 1.9946

     | Show Table
    DownLoad: CSV

    In Figure 2, we obtain the comparison images between the numerical solution and the exact solution with τ=1/1000, h=1/80, α=0.9, β=0.2, and θ=0.2. In Figures 3 and 4, we present the space and time convergence rate images of uh and qh under different parameters α, β, and θ. From Figure 4, one can see that the corrected scheme with the starting parts can effectively restore the second-order convergence rate for the nonsmooth problem.

    Figure 2.  uh, qh and u, q with τ=1/2000, h=1/80, α=0.9, β=0.2, θ=0.2.
    Figure 3.  The spatial convergence rates in L2-errors with different parameters α, β, and θ.
    Figure 4.  The time convergence rates in L2-errors with different parameters α, β, and θ.

    Example 5.3. To better investigate the effect of changes of two fractional parameters α and β on the convergence rates, we introduce the numerical example with two nonsmooth terms. Here, we take the nonsmooth solution u with

    u=(t1+α+t1+β+t3)sin(2πx),

    and the known source term

    g(x,t)=sin(2πx)[(1+α)tα+(1+β)tβ+3t2+4π2(tΓ(2+α)+t1+βαΓ(2+β)Γ(2+βα)+6t3αΓ(4α))]+sin(2πx)[16π4(t1+αβΓ(2+α)Γ(2+αβ)+tΓ(2+β)+6t3βΓ(4β))+4π2(t1+α+t1+β+t3)]+2π(t1+α+t1+β+t3)cos(2πx)+2π(t1+α+t1+β+t3)2sin(4πx). (5.3)

    In Table 8, we provide the errors of uhu and qhq and the spatial convergence rates under different parameters, which indicate that the corrected term hardly affects the spatial convergence rate.

    Table 8.  Spatial convergence results with α=0.5, β=0.6, τ=1/2000.
    uhu qhq
    θ h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 6.5710E-02 - 6.5710E-02 - 1.1335E-01 - 1.1335E-01 -
    0.5 1/20 1.6709E-02 1.9755 1.6709E-02 1.9755 2.7037E-02 2.0678 2.7037E-02 2.0678
    1/40 4.1946E-03 1.9940 4.1946E-03 1.9940 6.6773E-03 2.0176 6.6775E-03 2.0175
    1/80 1.0498E-03 1.9984 1.0498E-03 1.9984 1.6615E-03 2.0068 1.6617E-03 2.0066
    1/10 6.5710E-02 - 6.5710E-02 - 1.1336E-01 - 1.1336E-01 -
    0.2 1/20 1.6708E-02 1.9755 1.6708E-02 1.9755 2.7042E-02 2.0676 2.7042E-02 2.0676
    1/40 4.1944E-03 1.9940 4.1944E-03 1.9940 6.6826E-03 2.0167 6.6825E-03 2.0167
    1/80 1.0497E-03 1.9986 1.0497E-03 1.9985 1.6668E-03 2.0033 1.6667E-03 2.0034
    1/10 6.5709E-02 - 6.5709E-02 - 1.1339E-01 - 1.1339E-01 -
    -0.5 1/20 1.6708E-02 1.9756 1.6708E-02 1.9756 2.7078E-02 2.0661 2.7077E-02 2.0662
    1/40 4.1935E-03 1.9943 4.1935E-03 1.9943 6.7188E-03 2.0109 6.7178E-03 2.0110
    1/80 1.0487E-03 1.9995 1.0487E-03 1.9995 1.7031E-03 1.9801 1.7020E-03 1.9808

     | Show Table
    DownLoad: CSV

    In Tables 911, fixing τ=1/4000, choosing h=1/10,1/20,1/40,1/80, and changing parameters α, β, and θ, we provide the L2-errors and the time convergence rates for u and q based on the corrected scheme and uncorrected scheme. The impact of different fractional parameters on the time convergence rates of nonsmooth problems is evident from Tables 911. Furthermore, one can see that the corrected scheme with the starting part can effectively restore the second-order convergence rate.

    Table 9.  Time convergence results with α=0.1, β=0.9, h=1/4000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 8.9204E-03 - 6.2820E-03 - 3.5216E-01 - 2.4809E-01 -
    0.1 1/20 5.2261E-03 0.7714 1.8535E-03 1.7609 2.0632E-01 0.7714 7.3209E-02 1.7608
    1/40 2.6562E-03 0.9764 4.9663E-04 1.9001 1.0486E-01 0.9764 1.9628E-02 1.8992
    1/80 1.2855E-03 1.0470 1.2782E-04 1.9580 5.0749E-02 1.0470 5.0645E-03 1.9544
    1/10 1.1291E-02 - 9.1163E-03 - 4.4575E-01 - 3.5998E-01
    0 1/20 6.8182E-03 0.7277 2.7085E-03 1.7510 2.6917E-01 0.7277 1.0696E-01 1.7509
    1/40 3.4949E-03 0.9641 7.2773E-04 1.8960 1.3797E-01 0.9641 2.8751E-02 1.8954
    1/80 1.6987E-03 1.0408 1.8766E-04 1.9553 6.7062E-02 1.0408 7.4268E-03 1.9528
    1/10 2.1457E-02 - 2.6030E-02 - 1.1105E+00 - 1.7696E+00 -
    -0.5 1/20 1.4552E-02 0.5603 8.3150E-03 1.6464 8.5207E-01 0.3822 6.2053E-01 1.5118
    1/40 7.7887E-03 0.9017 2.2980E-03 1.8554 4.7736E-01 0.8359 1.7762E-01 1.8047
    1/80 3.8350E-03 1.0222 6.0067E-04 1.9357 2.3888E-01 0.9988 4.7205E-02 1.9118

     | Show Table
    DownLoad: CSV
    Table 10.  Time convergence results with α=0.5, β=0.6, h=1/4000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3621E-03 - 3.6704E-03 - 1.7226E-01 - 1.4498E-01 -
    0.5 1/20 1.0876E-03 2.0039 9.5152E-04 1.9476 4.2941E-02 2.0042 3.7576E-02 1.9480
    1/40 3.3133E-04 1.7148 2.4178E-04 1.9765 1.3080E-02 1.7150 9.5356E-03 1.9784
    1/80 1.1132E-04 1.5735 6.1138E-05 1.9835 4.3948E-03 1.5735 2.3985E-03 1.9912
    1/10 1.4643E-03 - 1.0614E-03 - 5.8318E-02 - 4.2803E-02 -
    0.2 1/20 4.8956E-04 1.5806 3.0032E-04 1.8214 1.9326E-02 1.5934 1.2126E-02 1.8197
    1/40 1.6670E-04 1.5542 7.8625E-05 1.9335 6.5811E-03 1.5541 3.1895E-03 1.9267
    1/80 5.7051E-05 1.5470 1.9768E-05 1.9918 2.2523E-03 1.5470 8.1546E-04 1.9676
    1/10 8.7609E-03 - 6.8360E-03 - 3.4601E-01 - 2.7011E-01 -
    0 1/20 2.2404E-03 1.9673 1.9129E-03 1.8374 8.8510E-02 1.9669 7.5599E-02 1.8371
    1/40 5.6418E-04 1.9895 5.0061E-04 1.9340 2.2304E-02 1.9886 1.9798E-02 1.9330
    1/80 1.5985E-04 1.8194 1.2738E-04 1.9746 6.3107E-03 1.8214 5.0505E-03 1.9709

     | Show Table
    DownLoad: CSV
    Table 11.  Time convergence results with α=0.9, β=0.1, h=1/4000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.2779E-03 - 4.4043E-04 - 5.0452E-02 - 2.5629E-02 -
    0.1 1/20 1.0267E-03 0.3157 1.1804E-04 1.8996 4.0534E-02 0.3158 7.0942E-03 1.8531
    1/40 7.5884E-04 0.4362 3.0793E-05 1.9386 2.9957E-02 0.4362 1.8662E-03 1.9265
    1/80 5.0089E-04 0.5993 8.1141E-06 1.9241 1.9774E-02 0.5993 4.7828E-04 1.9642
    1/10 4.3621E-03 - 1.4545E-03 - 7.7482E-02 - 6.1261E-02 -
    0 1/20 1.8873E-03 0.6822 3.9496E-04 1.8807 4.6434E-02 0.7387 1.6763E-02 1.8697
    1/40 9.2034E-04 0.3539 1.0228E-04 1.9492 3.6333E-02 0.3539 4.3730E-03 1.9386
    1/80 6.1337E-04 0.5854 2.5740E-05 1.9904 2.4215E-02 0.5854 1.1169E-03 1.9692
    1/10 9.0746E-03 - 6.1035E-03 - 3.5896E-01 - 2.4209E-01 -
    -0.1 1/20 2.3761E-03 1.9332 1.7550E-03 1.7982 9.4044E-02 1.9324 6.9621E-02 1.7980
    1/40 7.1647E-04 1.7296 4.6664E-04 1.9111 2.8284E-02 1.7333 1.8526E-02 1.9100
    1/80 5.9682E-04 0.2636 1.1984E-04 1.9612 2.3561E-02 0.2636 4.7711E-03 1.9572

     | Show Table
    DownLoad: CSV

    To further validate the performance of the parameter θ in numerical simulations with nonsmooth solutions, we provide the computing data in Table 12, from which one can see that the parameter θ still needs to satisfy θmin{α,β,12}, whether before or after correction. Notably, when θ is negative, as long as it is not much less than 0, we can still obtain second-order convergence accuracy.

    Table 12.  Time convergence results with α=0.7, β=0.3, h=1/4000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 3.3675E-03 - 2.0604E-03 - 1.3333E-01 - 8.2027E-02 -
    0.31 1/20 1.2977E-03 1.3757 5.3018E-04 1.9584 5.1287E-02 1.3783 2.1127E-02 1.9570
    1/40 1.9442E-03 -0.5833 1.4145E-04 1.9062 7.6738E-02 -0.5813 5.6232E-03 1.9096
    1/80 6.1733E-02 -4.9888 1.3510E-04 0.0663 2.4372E+00 -4.9892 5.3212E-03 0.0797
    1/10 4.5472E-02 - 3.0346E-02 - 1.7952E+00 - 1.1983E+00 -
    -0.5 1/20 1.2127E-02 1.9067 9.1861E-03 1.7240 4.7880E-01 1.9066 3.6273E-01 1.7240
    1/40 3.1344E-03 1.9520 2.4851E-03 1.8861 1.2376E-01 1.9518 9.8141E-02 1.8859
    1/80 7.9608E-04 1.9772 6.4304E-04 1.9504 3.1447E-02 1.9766 2.5407E-02 1.9496
    1/10 1.1762E+00 - 3.4223E-01 - 4.6430E+01 - 1.3512E+01 -
    -5 1/20 3.9521E-01 1.5734 1.9704E-01 0.7964 1.5601E+01 1.5734 7.7788E+00 0.7966
    1/40 1.2069E-01 1.7113 7.7857E-02 1.3396 4.7643E+00 1.7113 3.0736E+00 1.3396
    1/80 3.3458E-02 1.8509 2.4673E-02 1.6579 1.3208E+00 1.8509 9.7402E-01 1.6579

     | Show Table
    DownLoad: CSV

    The time convergence rates of u and q are compared before and after correction with different parameters α, β, and θ in Figure 5, where the slope of the line segment indicates the convergence rate. The slope of each line segment in the corrected images is the same regardless of the parameters chosen, indicating that the introduction of the starting part has a significant effect on the time convergence rates for the case with nonsmooth solutions.

    Figure 5.  The time convergence rates in L2-errors with different parameters α, β, and θ.

    In this article, the spatial mixed finite element method with the generalized BDF2-θ for solving the time-fractional generalized Rosenau-RLW-Burgers equation was presented. Detailed proofs of stability were shown. The numerical scheme's effectiveness and feasibility were verified by conducting numerical examples that included both smooth and nonsmooth solutions. The numerical examples with good regularity indicated that our algorithm with changed parameters α, β, and θ can maintain second-order convergence in time. Especially, the nonsmooth examples demonstrated that adding the correction term could effectively solve the problem of reduced order caused by weak singularity.

    N. Yang: Writing–original draft, Formal analysis, Software; Y. Liu: Methodology, Validation, Formal analysis, Funding acquisition, Supervision, Writing–review & editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China (12061053), Young Innovative Talents Project of Grassland Talents Project and Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2413).

    The authors declare that they have no conflicts of interest.


    Acknowledgments



    The authors appreciate the Department of Microbiology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria for providing an enabling environment for this study.

    Conflicts of interest



    The authors declared that there are no conflicts of interest.

    Author's contribution



    Anthonia Oluduro: Conceptualization, Supervision and Project Administration; Anthonia Oluduro and Yetunde Adesiyan: Methodology, resources and Funding Acquisition; Anthonia Oluduro, Odeyemi Adebowale, Yetunde Adesiyan and Olumide Omoboye: Validation, Formal Analysis, Data curation and Visualization, Investigation; Yetunde Adesiyan and Olumide Omoboye: Writing Original Draft; Anthonia Oluduro, Odeyemi Adebowale and Olumide Omoboye: Writing Review and Editing.

    [1] Nwadike I GSM made easy: solution to every GSM problem (2007).
    [2] Nigerian Communications Commission, Subscriber Data, 2020. Available from: https://www.ncc.gov.ng/statistics-reports/industry-overview
    [3] Yusha'u M, Hassan A, Kawo AH (2008) Public health implications of the bacterial load of stethoscopes of some clinicians in Kano, Nigeria. Biol Environ Sci J Trop 5: 196-199.
    [4] Yusha'u M, Bello M, Sule H (2010) Isolation of bacteria and fungi from personal and public cell phones: a case study of Bayero University, Kano (old campus). Int J Biomed Health Sci 6: 97-102.
    [5] Glodblatt JG, Krief I, Haller TD (2007) Use of cellular telephones and transmission of pathogens by medical staff in New York and Israel. Infect Control Hosp Epidemiol 28: 500-503.
    [6] Brooks GF, Butel JS, Morse SA (2004) Jawetz, Melnick, & Adelberg's Medical Microbiology. New York: McGraw-Hill.
    [7] Ekrakene T, Igeleke CL (2007) Micro-organisms associated with public mobile phones along Benin-sapele Express Way, Benin City, Edo State of Nigeria. J Appl Sci Res 3: 2009-2012.
    [8] Tunc K, Olgun U (2006) Microbiology of public telephones. J Infect Dis 53: 140-143. https://doi.org/10.1016/j.jinf.2005.10.022
    [9] Shahaby AF, Awad NS, El-Tarras AE, et al. (2012) Mobile phone as potential reservoirs of bacterial pathogens. Afr J Biotechnol 11: 15896-15904. https://doi.org/10.5897/AJB12.1836
    [10] David OM, Oluwole OA, Owolabi A (2016) Epidemiology of oxacillin-resistant Staphylococcus aureus from cell phones of health-care workers in Ekiti State. Int J Scien World 4: 15-18. https://doi.org/10.14419/ijsw.v4i1.5903
    [11] Odeyemi AT, Sulaimon AM, Odunmbaku E, et al. (2018) Bacteriological contamination of user interface of automated teller machines (ATM) of banks in Ekiti State University, Ado-Ekiti. Int J Res Stu Microbiol Biotechnol 1: 10-17.
    [12] Trivedi HR, Desai KJ, Trivedi LP, et al. (2011) Role of mobile phone in spreading hospital acquired infection: a study in different group of health care workers. Nat J Integ Res Med 2: 61-66.
    [13] Costa AR, Batistão DW, Ribas RM, et al. (2013) Staphylococcus aureus virulence factors and disease. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. Badajoz: Formatex 702-710.
    [14] Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158: 513-516. https://doi.org/10.1128/jb.158.2.513-516.1984
    [15] Reynolds PE, Brown DF (1985) Penicillin-binding proteins of β-lactam-resistant strains of Staphylococcus aureus: effect of growth conditions. FEBS Lett 192: 28-32. https://doi.org/10.1016/0014-5793(85)80036-3
    [16] Utsui Y, Yokota T (1985) Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother 28: 397-403. https://doi.org/10.1128/AAC.28.3.397
    [17] Matsuhashi M, Song MD, Ishino F, et al. (1986) Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to beta-lactam antibiotics in Staphylococcus aureus. J Bacteriol 167: 975-980. https://doi.org/10.1128/jb.167.3.975-980.1986
    [18] Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin-resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44: 1549-1555. https://doi.org/10.1128/AAC.44.6.1549-1555.2000
    [19] Hiramatsu K, Asada K, Suzuki E, et al. (1992) Molecular cloning and nucleotide sequence determination of the regulator region of mecA gene in methicillin-resistant Staphylococcus aureus (MRSA). FEBS Lett 298: 133-136. https://doi.org/10.1016/0014-5793(92)80039-J
    [20] Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31. https://doi.org/10.1128/CMR.00020-18
    [21] Diekema DJ, Pfaller MA, Schmitz FJ, et al. (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32: S114-S132. https://doi.org/10.1086/320184
    [22] Olutiola PO, Famurewa O, Sonntag HG (2018) An introduction to microbiology, a pratical approach. Heidelberg: Heidelberger Verlagsanstalt und Druckerei GmbH 157-177.
    [23] Adesoji TO, Egyir B, Shittu AO (2020) Antibiotic-resistant staphylococci from the wastewater treatment plant and grey-water samples in Obafemi Awolowo University, Ile-Ife, Nigeria. J Water Health 18: 890-898. https://doi.org/10.2166/wh.2020.019
    [24] (2018) Clinical and Laboratory Standards InstituteMethods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne, PA: Clinical and Laboratory Standards Institute.
    [25] Kraft R, Tardiff J, Krauter KS, et al. (1988) Using mini-prep plasmid DNA for sequencing double stranded template with sequenase. Biotechniques 6: 544-549.
    [26] Bollet C, Gevaudan MJ, de Lamballerie X, et al. (1991) Common protocols such as phenol-chloroform extraction and microwave lysis. J Amer Oil Chem Soc 68: 509-514.
    [27] Brakstad O, Aasbakk GK, Maeland JA (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30: 1654-1660. https://doi.org/10.1128/jcm.30.7.1654-1660.1992
    [28] Zhang K, McClure JA, Elsayed S, et al. (2005) Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec Types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43: 5026-5033. https://doi.org/10.1128/JCM.43.10.5026-5033.2005
    [29] Lina G, Piémont Y, Godail-Gamot F, et al. (1999) Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29: 1128-1132. https://doi.org/10.1086/313461
    [30] Singh A, Walker M, Rousseau J, et al. (2013) Methicillin-resistant staphylococcal contamination of clothing worn by personnel in a veterinary teaching hospital. Vet Surg 42: 643-648. https://doi.org/10.1111/j.1532-950X.2013.12024.x
    [31] Selim HS, Abaza AF (2015) Microbial contamination of mobile phones in a health care setting in Alexandria, Egypt. GMS Hyg Infect Contr 10. https://doi.org/10.3205/dgkh000246
    [32] Khivsara A, Sushma T, Dhanshree B (2006) Typing of Staphylococcus aureus from mobile phones and clinical samples. Curr Sci 90: 910-912.
    [33] Tambekar DH, Dhanorkar DV, Gulhane SR, et al. (2006) Prevalence and antimicrobial susceptibility pattern of methicillin resistant Staphylococcus aureus from health care and community associated sources. Afr J Infect Dis 1: 52-56. https://doi.org/10.4314/ajid.v1i1.42086
    [34] Akinyemi KO, Audu DA, Olabisi OA, et al. (2009) The potential role of mobile phones in the spread of bacterial infections. J Infect Dis 3: 628-632. https://doi.org/10.3855/jidc.556
    [35] Nikhil NT, Chitra PA (2012) Study of microbial flora and MRSA harbored by mobile phones of health care personnel. Internat J Recent Trends Sci Technol 4: 14-18.
    [36] Famurewa O, David OM (2009) Cell phones: a medium of transmission of bacterial pathogens. World Rur Obser 1: 69-72.
    [37] Ilusanya OAF, Adesanya OO, Adesemowo A, et al. (2012) Personal hygiene and microbial contamination of mobile phones of food vendors in Ago-Iwoye Town, Ogun State, Nigeria. Pakist J Nutri 11: 276-278.
    [38] Roy SS, Siddhartha SM, Malik MW (2013) Isolation and identification of bacteria of public health importance from mobile phones of fish and animal handlers of Kashmir, India. Afr J Microbiol Res 7: 2601-2607.
    [39] Mushabati NA, Samutela MT, Yamba K, et al. (2021) Bacterial contamination of mobile phones of healthcare workers at the University Teaching Hospital, Lusaka, Zambia. Infect Prev Pract 3: 100126. https://doi.org/10.1016/j.infpip.2021.100126
    [40] Adhikari S, Khadka S, Sapkota S, et al. (2018) Methicillin-resistant Staphylococcus aureus associated with mobile phones. SOJ Microbiol Infect Dis 6: 1-6.
    [41] Ulger F, Esen S, Dilek A, et al. (2009) Are we aware how contaminated our mobile phones with nosocomial pathogens?. Ann Clin Microbiol Antimicrob 8. https://doi.org/10.1186/1476-0711-8-7
    [42] Elmanama A, Hassona I, Marouf A, et al. (2015) Microbial load of touch screen mobile phones used by university students and healthcare staff. J Arab Am Univ 1: 1-21.
    [43] Gashaw M, Abtew D, Addis Z (2014) Prevalence and antimicrobial susceptibility pattern of bacteria isolated from mobile phones of health care professionals working in gondar town health centers. ISRN Public Health . https://doi.org/10.1155/2014/205074
    [44] Holmes JW, Williams MD (2010) Methicillin-resistant Staphylococcus aureus screening and eradication in the surgical intensive care unit: is it worth it?. Amer J Surg 200: 827-831.
    [45] Wangai FK, Masika MM, Maritim MC, et al. (2019) Methicillin-resistant Staphylococcus aureus (MRSA) in East Africa: red alert or red herring?. BMC Infect Dis 19: 596. https://doi.org/10.1186/s12879-019-4245-3
    [46] Becker K, Pagnier I, Schuhen B, et al. (2006) Does nasal cocolonization by methicillin-resistant coagulase-negative staphylococci and methicillin-susceptible Staphylococcus aureus strains occur frequently enough to represent a risk of false-positive methicillin-resistant S. aureus determinations by molecular methods?. J Clin Microbiol 44: 229-231. https://doi.org/10.1128/JCM.44.1.229-231.2006
    [47] Wolk DM, Struelens MJ, Pancholi P, et al. (2009) Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol 47: 823-826. https://doi.org/10.1128/JCM.01884-08
    [48] Whitby M, McLaws ML, Berry G (2001) Risk of death from methicillin-resistant Staphylococcus aureus bacteraemia: a meta-analysis. Med J Aust 175: 264-267.
    [49] Fortuin-de Smidt MC, Singh-Moodley A, Badat R, et al. (2015) Staphylococcus aureus bacteraemia in Gauteng academic hospitals, South Africa. Int J Infect Dis 30: 41-48. https://doi.org/10.1016/j.ijid.2014.10.011
    [50] Thampi N, Showler A, Burry L, et al. (2015) Multicenter study of health care cost of patients admitted to hospital with Staphylococcus aureus bacteremia: impact of length of stay and intensity of care. Am J Infect Contr 43: 739-744. https://doi.org/10.1016/j.ajic.2015.01.031
    [51] Bunu SJ, Otele D, Alade T, et al. (2020) Determination of serum DNA purity among patients undergoing antiretroviral therapy using NanoDrop-1000 spectrophotometer and polymerase chain reaction. Biomed Biotechnol Res J 4: 214-219.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2154) PDF downloads(234) Cited by(2)

Figures and Tables

Figures(4)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog