Citation: Marzena Połaska, Barbara Sokołowska. Bacteriophages—a new hope or a huge problem in the food industry[J]. AIMS Microbiology, 2019, 5(4): 324-346. doi: 10.3934/microbiol.2019.4.324
[1] | Hendrix WR (2002) Bacteriophages: evolution of the majority. Theor Popul Biol 61: 471–480. doi: 10.1006/tpbi.2002.1590 |
[2] | Hietala V, Horsma-Heikkinen J, Carron A, et al. (2019) The removal of endo- and enterotoxins from bacteriophage preparations. Front Microbiol 10: 1–9. doi: 10.3389/fmicb.2019.00001 |
[3] | Sarhan WA, Azzazy HM (2015) Phage approved in food, why not as a therapeutic? Expert Rev Anti Infect Ther 13: 91–101. doi: 10.1586/14787210.2015.990383 |
[4] | Górski A, Międzybrodzki R, Borysowski J, et al. (2012) Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res 83: 41–71. doi: 10.1016/B978-0-12-394438-2.00002-5 |
[5] | Wittebole X, Roock De S, Opa M (2014) Historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5: 226–235. doi: 10.4161/viru.25991 |
[6] | Kazi M, Annapure US (2016) Bacteriophage biocontrol of foodborne pathogens. J Food Sci Technol 53: 1355–1362. doi: 10.1007/s13197-015-1996-8 |
[7] | Gilmore BF (2012) Bacteriophages as anti-infective agents: recent developments and regulatory challenges. Expert Rev Anti Infe Ther 10: 533–535. doi: 10.1586/eri.12.30 |
[8] | Fernández L, Gutiérrez D, Rodríguez A, et al. (2018) Application of bacteriophages in the agro-food sector: a long way toward approval. Front Cell Infect Microbiol 8: 1–5. doi: 10.3389/fcimb.2018.00001 |
[9] | Balogh B, Jones JB, Iriarte FB (2010) Phage therapy for plant disease control. Curr Pharm Biotechno 11: 48–57. doi: 10.2174/138920110790725302 |
[10] | Civerolo EL, Kiel HL (1969) Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 59: 1966–1967. |
[11] | Eman OH, El-Meneisy Afaf ZA (2014) Biocontrol of halo blight of bean caused by pseudomonas phaseolicola. Int J Virol 10: 235–242. doi: 10.3923/ijv.2014.235.242 |
[12] | Fujiwara A, Fujisawa M, Hamasaki R, et al. (2011) Biocontrol of ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77: 4155–4162. doi: 10.1128/AEM.02847-10 |
[13] | Born Y, Bosshard L, Duffy B, et al. (2015) Protection of Erwinia amylovora bacteriophage Y2 from UV-induced damage by natural compounds. Bacteriophage 5: 1–5. |
[14] | Zaccardelli M, Saccardi A, Gambin E (1992) Xanthomonas campestris pv. pruni bacteriophages on peach trees and their potential use for biological control. Plant Pathogenic Bacteria 8th International Conference 875–878. |
[15] | Balogh B, Canteros BI, Stall RE (2008) Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Dis 92: 1048–1052. doi: 10.1094/PDIS-92-7-1048 |
[16] | Balogh B, Jones JB, Iriarte FB (2010) Phage therapy for plant disease control. Curr Pharm Biotechno 11: 48–57. doi: 10.2174/138920110790725302 |
[17] | Leverentz B, Conway WS, Alavidze Z (2001) Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Protect 64: 1116–1121. doi: 10.4315/0362-028X-64.8.1116 |
[18] | Szczepankowska A (2012) Role of CRISPR/cas system in the development of bacteriophage resistance. Adv Virus Res 82: 289–338. doi: 10.1016/B978-0-12-394621-8.00011-X |
[19] | Koskella B, Brockhurs MA (2014) Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38: 916–931. doi: 10.1111/1574-6976.12072 |
[20] | Carrillo LC, Atterbury JR, El-Shibiny A (2005) Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microb 71: 6554–6563. doi: 10.1128/AEM.71.11.6554-6563.2005 |
[21] | Wagenaar AJ, Van Bergen M, Mueller M (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109: 275–283. doi: 10.1016/j.vetmic.2005.06.002 |
[22] | Arthur MT, Kalchayanand N, Agga EG, et al. (2017) Evaluation of bacteriophage application to cattle in lairage at beef processing plants to reduce Escherichia coli O157:H7. Prevalence on hides and carcasses. Foodborne Pathog Dis 14: 17–22. doi: 10.1089/fpd.2016.2189 |
[23] | Wall KS, Zhang J, Rostagno HM (2010) Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microb 76: 48–53. doi: 10.1128/AEM.00785-09 |
[24] | Bach JS, Johnson PR, Stanford K (2009) Bacteriophages reduce Escherichia coli O157:H7 levels in experimentally inoculated sheep. Can J Animal Sci 89: 285–293. doi: 10.4141/CJAS08083 |
[25] | Huanga K, Nitin N (2019) Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture 502: 18–25 doi: 10.1016/j.aquaculture.2018.12.026 |
[26] | Rivas L, Coffey B, McAuliffe O (2010) In vivo and ex vivo evaluations of bacteriophages e11/2 and e4/1c for use in the control of Escherichia coli O157:H7. App Environ Microb 76: 7210–7216. doi: 10.1128/AEM.01530-10 |
[27] | Hussain MA, Liu H, Wang Q (2017) Use of encapsulated bacteriophages to enhance farm to fork food safety. Crit Rev Food Sci 57: 2801–2810. doi: 10.1080/10408398.2015.1069729 |
[28] | Murthy K, Engelhardt R (2012) Encapsulated bacteriophage formulation. United States Patent 2012/0258175 A1. 2012-10-11. |
[29] | Stanford K, Mcallister AT, Niu DY (2010) Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in Feedlot Cattle. J Food Protect 73: 1304–1312. doi: 10.4315/0362-028X-73.7.1304 |
[30] | Saez AC, Zhang J, Rostagno MH, et al. (2011) Direct feeding of microencapsulated bacteriophages to reduce Salmonella colonization in pigs. Foodborne Pathog Dis 8: 1241–1248. doi: 10.1089/fpd.2011.0868 |
[31] | Ma Y, Pacan CJ, Wang Q (2008) Microencapsulation of bacteriophage felix O1 into chitosan- alginate microspheres for oral delivery. Appl Environ Microb 74: 4799–4805. doi: 10.1128/AEM.00246-08 |
[32] | EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control) (2017) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 15: 5077. |
[33] | Word Health Organzation (2019) Food safety. Available from: https://www.who.int/news-room/fact-sheets/detail/food-safety. |
[34] | Moye ZD, Woolstone J, Sulakvelidze A (2018) Bacteriophage Applications for Food Production and Processing. Viruses 10: 1–22. |
[35] | Endersen L, O'Mahony J, Hill C, et al. (2014) Phage Therapy in the Food Industry. Annu. Rev Food Sci Technol 5: 327–349. doi: 10.1146/annurev-food-030713-092415 |
[36] | de Melo AG, Levesque S, Moineau S (2018) Phages as friends and enemies in food processing. Curr Opin Biotechnol 49: 185–190. doi: 10.1016/j.copbio.2017.09.004 |
[37] | Atterbury RJ, Connerton PL, Dodd CE, et al. (2003) Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl Environ Microb 69: 6302–6306. doi: 10.1128/AEM.69.10.6302-6306.2003 |
[38] | Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microb 69: 5032–5036. doi: 10.1128/AEM.69.8.5032-5036.2003 |
[39] | Bigwood T, Hudson JA, Billington C (2009) Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS Microbiol Lett 291: 59–64. doi: 10.1111/j.1574-6968.2008.01435.x |
[40] | Orquera S, Golz G, Hertwig S, et al. (2012) Control of Campylobacter spp. and Yersinia enterocolitica by virulent bacteriophages. J Mol Genet Med 6: 273–278. |
[41] | O'Flynn G, Ross RP, Fitzgerald GF, et al. (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microb 70: 3417–3424. doi: 10.1128/AEM.70.6.3417-3424.2004 |
[42] | Abuladze T, Li M, Menetrez MY, et al. (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microb 74: 6230–6238. doi: 10.1128/AEM.01465-08 |
[43] | Sharma M, Patel JR, Conway WS, et al. (2009) Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupe and lettuce. J Food Prot 72: 1481–1485. doi: 10.4315/0362-028X-72.7.1481 |
[44] | Carter CD, Parks A, Abuladze T, et al. (2012) Bacteriophage cocktail significantly reduced Escherichia coli O157H:7contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage 2: 178–185. doi: 10.4161/bact.22825 |
[45] | Boyacioglu O, Sharma M, Sulakvelidze A, et al. (2013) Biocontrol of Escherichia coli O157: H7 on fresh-cut leafy greens. Bacteriophage 3: 1–6. |
[46] | Viazis S, Akhtar M, Feirtag J, et al. (2011) Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiol 28: 149–157. |
[47] | Patel J, Sharma M, Millner P, et al. (2011) Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis 8: 541–546. doi: 10.1089/fpd.2010.0734 |
[48] | Carlton RM, Noordman WH, Biswas B, et al. (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharm 43: 301–312. doi: 10.1016/j.yrtph.2005.08.005 |
[49] | Holck A, Berg J (2009) Inhibition of Listeria monocytogenes in cooked ham by virulent bacteriophages and protective cultures. Appl Environ Microbiol 75: 6944–6946 . doi: 10.1128/AEM.00926-09 |
[50] | Soni KA, Nannapaneni R., Hagens S (2010) Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage listex p100. Foodborne Pathog Dis 7: 427–434 . doi: 10.1089/fpd.2009.0432 |
[51] | Soni KA, Desai M, Oladunjoye A, et al. (2012) Reduction of Listeria monocytogenes in queso fresco cheese by a combination of listericidal and listeriostatic GRAS antimicrobials. Int J Food Microbiol 155: 82–88. doi: 10.1016/j.ijfoodmicro.2012.01.010 |
[52] | Chibeu A, Agius L, Gao A, et al. (2013) Efficacy of bacteriophage LISTEXTM P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int J Food Microbiol 167: 208–214. doi: 10.1016/j.ijfoodmicro.2013.08.018 |
[53] | Figueiredo ACL, Almeida RCC (2017) Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against Listeria monocytogenes in ready-to-eat sliced pork ham. Braz J Microbiol 48: 724–729. doi: 10.1016/j.bjm.2017.02.010 |
[54] | Guenther S, Loessner MJ (2011) Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage 1: 94–100. doi: 10.4161/bact.1.2.15662 |
[55] | Bigot B, Lee WJ, McIntyre L, et al. (2011) Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol 28: 1448–1452. doi: 10.1016/j.fm.2011.07.001 |
[56] | Modi R, Hirvi Y, Hill A, et al. (2001) Effect of phage on survival of Salmonella Enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J Food Protect 64: 927–933. doi: 10.4315/0362-028X-64.7.927 |
[57] | Leverentz B, Conway WS, Camp MJ, et al. (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69: 4519–4526. doi: 10.1128/AEM.69.8.4519-4526.2003 |
[58] | Whichard JM, Sriranganathan N, Pierson FW, et al. (2003) Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J Food Prot 66: 220–225. doi: 10.4315/0362-028X-66.2.220 |
[59] | Guenther S, Herzig O, Fieseler L, et al. (2012) Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 154: 66–72. doi: 10.1016/j.ijfoodmicro.2011.12.023 |
[60] | Spricigo DA, Bardina C, Cortés P, et al. (2013) Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int J Food Microbiol 165: 169–174. doi: 10.1016/j.ijfoodmicro.2013.05.009 |
[61] | Farber JM, Peterkin PI (1991) Listeria monocytogenes, a foodborne pathogen. Microbiol Rev 55: 476–511. |
[62] | Leistner L, Gorris LGM (1995) Food preservation by hurdle technology. Trends Food Sci Technol 6: 41–46 . doi: 10.1016/S0924-2244(00)88941-4 |
[63] | Phages as probiotics. Available from: http://intralytix.com/index.php?page=pro. |
[64] | Proteon Pharmaceuticals. Available from: https://www.proteonpharma.com. |
[65] | Schmelcher M, Loessner JM (2016) Bacteriophage endolysins: applications for food safety. Curr Opin Biotechnol 37: 76–87. doi: 10.1016/j.copbio.2015.10.005 |
[66] | Gutiérrez D, Rodríguez-Rubio L, Martíne B, et al. (2016) Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol 7: 1–16. |
[67] | Da Silva Felício MT, Hald T, Liebana E, et al. (2015) Risk ranking of pathogens in ready-to-eat unprocessed foods of non-animal origin (FoNAO) in the EU: initial evaluation using outbreak data (2007–2011). Int J Food Microbiol 16: 9–19. |
[68] | Beuchat LR (2002) Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect 4: 413–423. doi: 10.1016/S1286-4579(02)01555-1 |
[69] | Siringan P, Connerton PL, Payne RJ (2011) Bacteriophage-mediated dispersal of Campylobacter jejuni biofilms. Appl Environ Microb 77: 3320–3326. doi: 10.1128/AEM.02704-10 |
[70] | Soni KA, Nannapaneni R, Hagens S (2010) Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage listex p100. Foodborne Pathog Dis 7: 427–434. doi: 10.1089/fpd.2009.0432 |
[71] | Sutherland IW, Hughes KA, Skillman LC, et al. (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232: 1–6. doi: 10.1016/S0378-1097(04)00041-2 |
[72] | Maszewska A (2015) Phage associated polysaccharide depolymerases–characteristics and application. Postep Hig Med Dos 69: 690–702. doi: 10.5604/17322693.1157422 |
[73] | Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage- derived proteins--application approaches. Curr Med Chem 22: 1757–1773. doi: 10.2174/0929867322666150209152851 |
[74] | Lehman SM (2007) Development of a bacteriophage-based biopesticide for fire blight. PhD Thesis. Department of Biological Sciences, Brock University, Canada. |
[75] | Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144: 3039–3047. doi: 10.1099/00221287-144-11-3039 |
[76] | Chai Z, Wang J, Tao S, et al. (2014) Application of bacteriophage-borne enzyme combined with chlorine dioxide on controlling bacterial biofilm. LWT Food Sci Technol 59: 1159–1165. doi: 10.1016/j.lwt.2014.06.033 |
[77] | Love JM, Bhandari D, Dobson CR, et al. (2018) Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics 7: 1–25. |
[78] | Gutierrez D, Ruas-Madiedo P, Martınez B (2014) Effective removal of Staphylococcal biofilms by the endolysin LysH5. PloS One 9: 1–8. |
[79] | Oliveira H, Thiagarajan V, Walmagh M (2014) A thermostable Salmonella phage endolysin Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PloS One 9: 1–11. |
[80] | Obeso MJ, Martínez B, Rodríguez A, et al. (2008) Lytic activity of the recombinant staphylococcal bacteriophage ΦH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol 128: 212–218. doi: 10.1016/j.ijfoodmicro.2008.08.010 |
[81] | Olsen NMC, Thiran E, Hasler T, et al. (2018) Synergistic removal of static and dynamic Staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase. Viruses 10: 2–17. |
[82] | Yoyeon Ch, Son B, Ryu S (2019) Effective removal of staphylococcal biofilms on various food contact surfaces by Staphylococcus aureus phage endolysin LysCSA13. Food Microbiol 84: 1–7. |
[83] | Zhang H, Bao H, Billington C (2012) Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Food Microbiol 31: 133–136. doi: 10.1016/j.fm.2012.01.005 |
[84] | Van Nassau TJ, Lenz CA, Scherzinger AS (2017) Combination of endolysins and high pressure to inactivate Listeria monocytogenes. Food Microbiol 68: 81–88. doi: 10.1016/j.fm.2017.06.005 |
[85] | Gaeng S, Scherer S, Neve H (2000) Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microb 66: 2951–2958. doi: 10.1128/AEM.66.7.2951-2958.2000 |
[86] | Garneau EJ, Moineau S (2001) Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 10: 1–10. |
[87] | Atamer Z, Samtlebe M, Neve H, et al. (2013) Review: elimination of bacteriophages in whey and whey products. Front Microbiol 4: 1–9. |
[88] | Mercanti D, Carminati D, Reinheimer JA, et al. (2011) Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int J Food Microbiol 144: 503–510. doi: 10.1016/j.ijfoodmicro.2010.11.009 |
[89] | Tahir A, Asif M, Abbas Z (2017) Three bacteriophages SA, SA2 and SNAF can control growth of milk isolated Staphylococcal species. Pak J Zool 49: 425–759. doi: 10.17582/journal.pjz/2017.49.2.425.434 |
[90] | Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13: 1763–1786. doi: 10.3390/s130201763 |