[1]
|
Marvin DA (1968) Control of DNA replication by membrane. Nature 219: 485–486. doi: 10.1038/219485a0
|
[2]
|
Sueoka N, Quinn WG (1968) Membrane attachment of the chromosome replication origin in Bacillus subtilis. Cold Spring Harb Symp Quant Biol 33: 695–705. doi: 10.1101/SQB.1968.033.01.078
|
[3]
|
Earhart CF, Tremblay GY, Daniels MJ, et al. (1968) DNA replication studied by a new method for the isolation of cell membrane-DNA complexes. Cold Spring Harb Symp Quant Biol 33: 707–710. doi: 10.1101/SQB.1968.033.01.079
|
[4]
|
Leibowitz PJ, Schaechter M (1975) The attachment of the bacterial chromosome to the cell membrane. Int Rev Cytol 41: 1–28. doi: 10.1016/S0074-7696(08)60964-X
|
[5]
|
Garner J, Crooke E (1996) Membrane regulation of the chromosomal replication activity of E. coli DnaA requires a discrete site on the protein. EMBO J 15: 3477–3485.
|
[6]
|
Boeneman K, Crooke E (2005) Chromosomal replication and the cell membrane. Cuur Opin Microbiol 8: 143–148. doi: 10.1016/j.mib.2005.02.006
|
[7]
|
Hill NS, Kadoya R, Chattoraj DK, et al. (2012) Cell size and the initiation of DNA replication in bacteria. PLOS Genet 8: e1002549. doi: 10.1371/journal.pgen.1002549
|
[8]
|
Wallden M, Fange D, Lundius EG, et al. (2016) The synchronization of replication and division cycles in individual E. coli cells. Cell 166: 729–739.
|
[9]
|
Kusaka I (1967) Growth and division of protoplasts of Bacillus megaterium and inhibition of division by penicillin. J Bacteriol 94: 884–888.
|
[10]
|
Ranjit DK, Young KD (2013) The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli. J Bacteriol 195: 2452–2462. doi: 10.1128/JB.00160-13
|
[11]
|
Takahashi S, Nishida H (2015) Quantitative analysis of chromosomal and plasmid DNA during the growth of spheroplasts of Escherichia coli. J Gen Appl Microbiol 61: 262–265. doi: 10.2323/jgam.61.262
|
[12]
|
Takayanagi A, Takahashi S, Nishida H (2016) Requirement of dark condition for enlargement of the aerobic anoxygenic photosynthetic marine bacterium Erythrobacter litoralis. J Gen Appl Microbiol 62: 14–17. doi: 10.2323/jgam.62.14
|
[13]
|
Takahashi S, Takayanagi A, Takahashi Y, et al. (2016) Comparison of transcriptomes of enlarged spheroplasts of Erythrobacter litoralis and Lelliottia amnigena. AIMS Microbiol 2: 152–189. doi: 10.3934/microbiol.2016.2.152
|
[14]
|
Nakazawa M, Nishida H (2017) Effects of light and oxygen on the enlargement of spheroplasts of the facultative anaerobic anoxygenic photosynthetic bacterium Rhodospirillum rubrum. Jacobs J Biotechnol Bioeng 3: 014.
|
[15]
|
Nishino K, Morita Y, Takahashi S, et al. (2018) Enlargement of Deinococcus grandis spheroplasts requires Mg2+ or Ca2+. Microbiology 164: 1361–1371. doi: 10.1099/mic.0.000716
|
[16]
|
Kuroda T, Okuda N, Saitoh N, et al. (1998) Patch clamp studies on ion pumps of the cytoplasmic membrane of Escherichia coli. Formation, preparation, and utilization of giant vacuole-like structures consisting of everted cytoplasmic membrane. J Biol Chem 273: 16897–16904.
|
[17]
|
Nakamura K, Ikeda S, Matsuo T, et al. (2011) Patch clamp analysis of the respiratory chain in Bacillus subtilis. Biochim Biophys Acta 1808: 1103–1107. doi: 10.1016/j.bbamem.2011.01.006
|
[18]
|
Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiology 155: 1749–1757. doi: 10.1099/mic.0.026385-0
|
[19]
|
McBride SM, Fischetti VA, LeBlanc DJ, et al. (2007) Genetic diversity among Enterococcus faecalis. PLoS One 2: e582. doi: 10.1371/journal.pone.0000582
|
[20]
|
Palmer KL, Godfrey P, Griggs A, et al. (2012) Comparative genomics of Enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. mBio 3: e00318–11.
|
[21]
|
Paulsen IT, Banerjei L, Myers GSA, et al. (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299: 2071–2074. doi: 10.1126/science.1080613
|
[22]
|
Bourgogne A, Garsin DA, Qin X, et al. (2008) Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9: R110. doi: 10.1186/gb-2008-9-7-r110
|
[23]
|
Brede DA, Snipen LG, Ussery DW, et al. (2011) Complete genome sequence of the commensal Enterococcus faecalis 62, isolated from a healthy Norwegian infant. J Bacteriol 193: 2377–2378. doi: 10.1128/JB.00183-11
|
[24]
|
Zischka M, Kuenne C, Blom J, et al. (2012) Complete genome sequence of the porcine isolate Enterococcus faecalis D32. J Bacteriol 194: 5490–5491. doi: 10.1128/JB.01298-12
|
[25]
|
Fritzenwanker M, Kuenne C, Billion A, et al. (2013) Complete genome sequence of the probiotic Enterococcus faecalis symbioflor 1 clone DSM 16431. Genome Announc 1: e00165–12.
|
[26]
|
Yu Z, Chen Z, Cheng H, et al. (2014) Complete genome sequencing and comparative analysis of the linezolid-resistant Enterococcus faecalis strain DENG1. Arch Microbiol 196: 513–516. doi: 10.1007/s00203-014-0986-y
|
[27]
|
Minogue TD, Daligault HE, Davenport KW, et al. (2014) Complete genome assembly of Enterococcus faecalis 29212, a laboratory reference strain. Genome Announc 2: e00968–14.
|
[28]
|
Jiao Y, Zhang L, Liu F, et al. (2016) Complete genome sequence of Enterococcus faecalis LD33, a bacteriocin-producing strain. J Biotechnol 227: 79–80. doi: 10.1016/j.jbiotec.2016.04.030
|
[29]
|
Uchimura Y, Wyss M, Brugiroux S, et al. (2016) Complete genome sequences of 12 species of stable defined moderately diverse mouse microbiota 2. Genome Announc 4: e00951–16.
|
[30]
|
Watanabe S, Ohbayashi R, Shiwa Y, et al. (2012) Light-dependent and asynchronous replication of cyanobacterial multi-copy chromosomes. Mol Microbiol 83: 856–865. doi: 10.1111/j.1365-2958.2012.07971.x
|
[31]
|
Gellert M, O'Dea MH, Itoh T, et al. (1976) Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc Natl Acad Sci USA 73: 4474–4478. doi: 10.1073/pnas.73.12.4474
|
[32]
|
Sugino A, Higgins NP, Brown PO, et al. (1978) Energy coupling in DNA gyrase and the mechanism of action of novobiocin. Proc Natl Acad Sci USA 75: 4838–4842. doi: 10.1073/pnas.75.10.4838
|
[33]
|
Khodursky AB, Peter BJ, Schmid MB, et al. (2000) Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. Proc Natl Acad Sci USA 97: 9419–9424. doi: 10.1073/pnas.97.17.9419
|