Tumor growth dynamics serve as a critical aspect of understanding cancer progression and treatment response to mitigate one of the most pressing challenges in healthcare. The in silico approach to understanding tumor behavior computationally provides an efficient, cost-effective alternative to wet-lab examinations and are adaptable to different environmental conditions, time scales, and unique patient parameters. As a result, this paper explored modeling of free tumor growth in cancer, surveying contemporary literature on continuum, discrete, and hybrid approaches. Factors like predictive power and high-resolution simulation competed against drawbacks like simulation load and parameter feasibility in these models. Understanding tumor behavior in different scenarios and contexts became the first step in advancing cancer research and revolutionizing clinical outcomes.
Citation: Dashmi Singh, Dana Paquin. Modeling free tumor growth: Discrete, continuum, and hybrid approaches to interpreting cancer development[J]. Mathematical Biosciences and Engineering, 2024, 21(7): 6659-6693. doi: 10.3934/mbe.2024292
Tumor growth dynamics serve as a critical aspect of understanding cancer progression and treatment response to mitigate one of the most pressing challenges in healthcare. The in silico approach to understanding tumor behavior computationally provides an efficient, cost-effective alternative to wet-lab examinations and are adaptable to different environmental conditions, time scales, and unique patient parameters. As a result, this paper explored modeling of free tumor growth in cancer, surveying contemporary literature on continuum, discrete, and hybrid approaches. Factors like predictive power and high-resolution simulation competed against drawbacks like simulation load and parameter feasibility in these models. Understanding tumor behavior in different scenarios and contexts became the first step in advancing cancer research and revolutionizing clinical outcomes.
[1] | R. L. Siegel, A. N. Giaquinto, A. Jemal, Cancer statistics, CA Cancer J. Clin., 74 (2024), 12–49. https://doi.org/10.3322/caac.21820 doi: 10.3322/caac.21820 |
[2] | K. A. Schafer, The cell cycle: A review, Vet. Pathol., 35 (1998), 461–478. https://doi.org/10.1177/030098589803500601 doi: 10.1177/030098589803500601 |
[3] | B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edition, Garland Science, New York, 2002. |
[4] | Z. Wang, Cell cycle progression and synchronization: An overview, Methods Mol. Biol., 2579 (2002), 3–23. https://doi.org/10.1007/978-1-0716-2736-5_1 doi: 10.1007/978-1-0716-2736-5_1 |
[5] | E. A. Kolokotroni, D. D. Dionysiou, N. K. Uzunogulu, G. S. Stamatakos, Studying the growth kinetics of untreated clinical tumors by using an advanced discrete simulation model, Math. Model., 54 (2011), 1989–2006. https://doi.org/10.1016/j.mcm.2011.05.007 doi: 10.1016/j.mcm.2011.05.007 |
[6] | M. Gyllenberg, G. F. Webb, A nonlinear structured population model of tumor growth with quiescence, J. Math. Biol., 28 (1990), 671–694. https://doi.org/10.1007/BF00160231 doi: 10.1007/BF00160231 |
[7] | Z. Wang, J. D. Butner, R. Kerketta, V. Cristini, T. S. Deisboeck, Simulating cancer growth with multiscale agent-based modeling, Semin. Cancer Biol., 30 (2015), 70–78. https://doi.org/10.1016/j.semcancer.2014.04.001 doi: 10.1016/j.semcancer.2014.04.001 |
[8] | T. S. Deisboeck, Z. Wang, P. Macklin, V. Cristini, Multiscale cancer modeling, Annu. Rev. Biomed. Eng., 13 (2011), 127–155. https://doi.org/10.1146/annurev-bioeng-071910-124729 doi: 10.1146/annurev-bioeng-071910-124729 |
[9] | J. West, M. Robertson-Tessi, A. R. A. Anderson, Agent-based methods facilitate integrative science in cancer, Trends Cell Biol., 33 (2023), 300–311. https://doi.org/10.1016/j.tcb.2022.10.006 doi: 10.1016/j.tcb.2022.10.006 |
[10] | Z. Wang, T. S. Deisboeck, Computational modeling of brain tumors: discrete, continuum or hybrid?, Sci. Model Simul., 15 (2008), 381. https://doi.org/10.1007/s10820-008-9094-0 doi: 10.1007/s10820-008-9094-0 |
[11] | T. Trisilowati, D. G. Mallet, In silico experimental modeling of cancer treatment, ISRN Oncol., 2012 (2012), 1–8. https://doi.org/10.5402/2012/828701 doi: 10.5402/2012/828701 |
[12] | K. Bhuvaneshwar, A. Belouali, V. Singh, R. M. Johnson, L. Song, A. Alaoui, et al., G-DOC Plus–an integrative bioinformatics platform for precision medicine, BMC Bioinf., 17 (2016), 193. https://doi.org/10.1186/s12859-016-1010-0 doi: 10.1186/s12859-016-1010-0 |
[13] | L. B. Edelman, J. A. Eddy, N. D. Price, In silico models of cancer, WIREs Mech. Dis., 2 (2010), 438–459. https://doi.org/10.1002/wsbm.75 doi: 10.1002/wsbm.75 |
[14] | B. Colom, M. P. Alcolea, G. Piedrafita, M. W. J. Hall, A. Wabik, S. C. Dentro, Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium, Nat. Genet., 52 (2020), 604–614. https://doi.org/10.1038/s41588-020-0624-3 doi: 10.1038/s41588-020-0624-3 |
[15] | H. B. Frieboes, An integrated computational/experimental model of tumor invasion, Cancer Res., 66 (2006), 1597–1604. https://doi.org/10.1158/0008-5472.CAN-05-3166 doi: 10.1158/0008-5472.CAN-05-3166 |
[16] | H. P. Greenspan, Models for the growth of a solid tumor by diffusion, Stud. Appl. Math., 51 (1972), 317–340. https://doi.org/10.1002/sapm1972514317 doi: 10.1002/sapm1972514317 |
[17] | A. R. A. Anderson, A. M. Weaver, P. T. Cummings, V. Quaranta, Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell J., 127 (2006), 905–915. https://doi.org/10.1016/j.cell.2006.09.042 doi: 10.1016/j.cell.2006.09.042 |
[18] | H. Byrne, D. Drasdo, Individual-based and continuum models of growing cell populations: a comparison, J. Math. Biol., 58 (2009), 657–687. https://doi.org/10.1007/s00285-008-0212-0 doi: 10.1007/s00285-008-0212-0 |
[19] | C. Drapaca, S. Sivaloganathan, Mathematical Modelling and Biomechanics of the Brain, Springer, New York, 2019. |
[20] | P. Castorina, D. Carcò, C. Guiot, T. S. Deisboeck, Tumor growth instability and its implications for chemotherapy, Cancer Res., 69 (2009), 8507–8515. https://doi.org/10.1158/0008-5472.CAN-09-0653 doi: 10.1158/0008-5472.CAN-09-0653 |
[21] | J. T. Oden, E. A. B. F. Lima, R. C. Almeida, Y. Feng, M. N. Rylander, D. Fuentes, et al., Toward predictive multiscale modeling of vascular tumor growth: computational and experimental oncology for tumor prediction, Arch. Comput. Methods Eng., 23 (2016), 735–779. https://doi.org/10.1007/s11831-015-9156-x doi: 10.1007/s11831-015-9156-x |
[22] | A. M. Jarrett, E. A. B. F. Lima, D. A. Hormuth, M. T. McKenna, X. Fent, D. A. Ekrut, et al., Mathematical models of tumor cell proliferation: A review of the literature, Expert Rev. Anticancer Ther., 18 (2018), 1271–1286. https://doi.org/10.1080/14737140.2018.1527689 doi: 10.1080/14737140.2018.1527689 |
[23] | H. Murphy, J. Jaafari, H. M. Dobrovolny, Differences in predictions of ODE models of tumor growth: a cautionary example, BMC Cancer, 16 (2016), 1471–2407. https://doi.org/10.1186/s12885-016-2164-x doi: 10.1186/s12885-016-2164-x |
[24] | B. Heesterman, J. Bokhorst, L. De Point, B. Verbist, J. Bayley, A. Van Der Mey, et al., Mathematical models for tumor growth and the reduction of overtreatment, J. Neurol. Surg. B., 80 (2019), 72–78. https://doi.org/10.1055/s-0038-1667148 doi: 10.1055/s-0038-1667148 |
[25] | P. Gerlee, A. R. A. Anderson, An evolutionary hybrid cellular automaton model of solid tumour growth, J. Theor. Biol., 246 (2007), 583–603. https://doi.org/10.1016/j.jtbi.2007.01.027 doi: 10.1016/j.jtbi.2007.01.027 |
[26] | N. M. Dimitriou, E. Demirag, K. Strati, G. D. Mitsis, A calibration and uncertainty quantification analysis of classical, fractional and multiscale logistic models of tumour growth, Comput. Methods Programs Biomed., 243 (2024), 107920. https://doi.org/10.1016/j.cmpb.2023.107920 doi: 10.1016/j.cmpb.2023.107920 |
[27] | H. J. Huber, H. B. Mistry, Explaining in-vitro to in-vivo efficacy correlations in oncology pre-clinical development via a semi-mechanistic mathematical model, J. Pharmacokinet. Pharmacodyn., 51 (2024), 169–185. https://doi.org/10.1007/s10928-023-09891-7 doi: 10.1007/s10928-023-09891-7 |
[28] | D. Tatro, The Mathematics of Cancer: Fitting the Gompertz Equation to Tumor Growth, Ph.D thesis, Bard College, 2018. |
[29] | P. Gerlee, The model muddle: In search of tumor growth laws, Cancer Res., 73 (2013), 2407–2411. https://doi.org/10.1158/0008-5472.CAN-12-4355 doi: 10.1158/0008-5472.CAN-12-4355 |
[30] | A. Talkington, R. Durrett, Estimating tumor growth laws in vivo, Bull. Math. Biol., 77 (2015), 1934–1954. https://doi.org/10.1007/s11538-015-0110-8 doi: 10.1007/s11538-015-0110-8 |
[31] | C. Vaghi, A. Rodallec, R. Fanciullino, J. Ciccolini, J. P. Mochel, M. Mastri, et al., Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors, PLoS Comput. Biol., 16 (2020), e1007178. https://doi.org/10.1371/journal.pcbi.1007178 doi: 10.1371/journal.pcbi.1007178 |
[32] | S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. L. Ebos, L. Hlatky, et al., Classical mathematical models for description and prediction of experimental tumor growth, PLoS Comput. Biol., 10 (2014), e1003800. https://doi.org/10.1371/journal.pcbi.1003800 doi: 10.1371/journal.pcbi.1003800 |
[33] | S. Vieira, R. Hoffman, Comparison of the logistic and the Gompertz growth functions considering additive and multiplicative error terms, J. R. Stat., 26 (1977), 143–148. https://doi.org/10.2307/2347021 doi: 10.2307/2347021 |
[34] | N. M. Dimitriou, S. Flores-Torres, J. M. Kinsella, G. D. Mitsis, Quantifying the morphology and mechanisms of cancer progression in 3D in-vitro environments: Integrating experiments and multiscale models, IEEE Trans. Biomed. Eng., 70 (2023), 1318–1329. https://doi.org/10.1109/TBME.2022.3216231 doi: 10.1109/TBME.2022.3216231 |
[35] | N. C. Atuegwu, L. R. Arlinghaus, X. Li, A. B. Chakravarthy, V. G. Abramson, M. E. Sanders, et al., Parameterizing the logistic model of tumor growth by DW-MRI and DCE-MRI data to predict treatment response and changes in breast cancer cellularity during neoadjuvant chemotherapy, Transl. Oncol., 6 (2013), 256–264. https://doi.org/10.1593/tlo.13130 doi: 10.1593/tlo.13130 |
[36] | A. K. Laird, Dynamics of tumor growth, Br. J. Cancer, 18 (1964), 490–502. https://doi.org/10.1038/bjc.1964.55 doi: 10.1038/bjc.1964.55 |
[37] | B. Gompertz, XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. & c, Phil. Trans. R. Soc., 115 (1825), 513–583. https://doi.org/10.1098/rstl.1825.0026 doi: 10.1098/rstl.1825.0026 |
[38] | C. L. Frenzen, J. D. Murray, A cell kinetics justification for Gompertz' Equation, SIAP, 46 (1986), 614–629. https://doi.org/10.1137/0146042 doi: 10.1137/0146042 |
[39] | R. Chignola, A. Schenetti, G. Andrighetto, E. Chiesa, R. Foroni, S. Sartoris, et al., Forecasting the growth of multicell tumour spheroids: implications for the dynamic growth of solid tumours, Cell Prolif., 33 (2000), 219–229. https://doi.org/10.1046/j.1365-2184.2000.00174.x doi: 10.1046/j.1365-2184.2000.00174.x |
[40] | L. Von Bertalanffy, Quantitative laws in metabolism and growth, Q. Rev. Biol., 32 (1957), 217–231. https://doi.org/10.1086/401873 doi: 10.1086/401873 |
[41] | K. Renner-Martin, N. Brunner, M. Kühleitner, W. G. Nowak, K. Scheicher, On the exponent in the Von Bertalanffy growth model, PeerJ, 6 (2018), e4205. https://doi.org/10.7717/peerj.4205 doi: 10.7717/peerj.4205 |
[42] | H. H. Diebner, T. Zerjatke, M. Griehl, I. Roeder, Metabolism is the tie: The Bertalanffy-type cancer growth model as common denominator of various modelling approaches, Biosystems, 167 (2018), 1–23. https://doi.org/10.1016/j.biosystems.2018.03.004 doi: 10.1016/j.biosystems.2018.03.004 |
[43] | K. C. L. Wong, R. M. Summers, E. Kebebew, J. Yao, Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusions, MedIA, 25 (2015), 72–85. https://doi.org/10.1016/j.media.2015.04.002 doi: 10.1016/j.media.2015.04.002 |
[44] | R. A. Gatenby, E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745–5753. |
[45] | V. Cristini, J. Lowengrub, Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46 (2003), 191–224. https://doi.org/10.1007/s00285-002-0174-6 doi: 10.1007/s00285-002-0174-6 |
[46] | C. Hogea, C. Davatzikos, G. Biros, An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects, J. Math. Biol., 56 (2008), 793–825. https://doi.org/10.1007/s00285-007-0139-x doi: 10.1007/s00285-007-0139-x |
[47] | O. Clatz, M. Sermesant, P. Y. Bondiau, H. Delingette, S. K. Warfield, G. Malandain, et al., Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE Trans. Med. Imaging, 24 (2005), 1334–1346. https://doi.org/10.1109/TMI.2005.857217 doi: 10.1109/TMI.2005.857217 |
[48] | X. Chen, R. M. Summers, J. Yao, Kidney tumor growth prediction by coupling reaction-diffusion and biomechanical model, IEEE Trans. Biomed. Eng., 60 (2013), 169–173. https://doi.org/10.1109/TBME.2012.2222027 doi: 10.1109/TBME.2012.2222027 |
[49] | E. Konukoglu, O. Clatz, P. Bondiau, H. Delingette, N. Ayache, Extrapolating glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins, MedIA, 14 (2010), 111–125. https://doi.org/10.1016/j.media.2009.11.005 doi: 10.1016/j.media.2009.11.005 |
[50] | Y. Liu, S. M. Sadowski, A. B. Weisbrod, E. Kebebew, R. M. Summers, J. Yao, Patient specific tumor growth prediction using multimodal images, MedIA, 18 (2014), 555–566. https://doi.org/10.1016/j.media.2014.02.005 doi: 10.1016/j.media.2014.02.005 |
[51] | B. H. Menze, K. Van Leemput, A. Honkela, E. Konukoglu, M. Weber, N. Ayache, et al., A generative approach for image-based modeling of tumor growth, in Information Processing in Medical Imaging (eds. G. Székely, H. K. Hahn), Springer, (2011), 735–747. |
[52] | C. Martens, A. Rovai, D. Bonatto, T. Metens, O. Debeir, C. Decaestecker, et al., Deep learning for reaction-diffusion glioma growth modeling: Towards a fully personalized model?, Cancers, 14 (2022), 2530. https://doi.org/10.3390/cancers14102530 doi: 10.3390/cancers14102530 |
[53] | S. Jbabdi, E. Mandonnet, H. Duffau, L. Capelle, K. R. Swanson, M. Pélégrini-Issac, et al., Simulation of anisotropic growth of low‐grade gliomas using diffusion tensor imaging, Magn. Reson. Med., 54 (2005), 616–624. https://doi.org/10.1002/mrm.20625 doi: 10.1002/mrm.20625 |
[54] | E. Konukoglu, O. Clatz, B. H. Menze, B. Stieltjes, M. Weber, E. Mandonnet, et al., Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic Eikonal equations, IEEE Trans. Med. Imaging, 29 (2010), 77–95. https://doi.org/10.1109/TMI.2009.2026413 doi: 10.1109/TMI.2009.2026413 |
[55] | S. Subramanian, K. Scheufele, M. Mehl, G. Biros, Where did the tumor start? An inverse solver with sparse localization for tumor growth models, Inverse Probl., 36 (2020), 045006. https://doi.org/10.1088/1361-6420/ab649c doi: 10.1088/1361-6420/ab649c |
[56] | K. Scheufele, S. Subramanian, G. Biros, Fully automatic calibration of tumor-growth models using a single mpMRI scan, IEEE Trans. Med. Imaging, 40 (2021), 193–204. https://doi.org/10.1109/TMI.2020.3024264 doi: 10.1109/TMI.2020.3024264 |
[57] | B. Tunc, D. Hormuth, G. Biros, T. E. Yankeelov, Modeling of glioma growth with mass effect by longitudinal magnetic resonance imaging, IEEE Trans. Biomed. Eng., 68 (2021), 3713–3724. https://doi.org/10.1109/TBME.2021.3085523 doi: 10.1109/TBME.2021.3085523 |
[58] | V. Cristini, J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, 2010. |
[59] | J. Retzlaff, X. Lai, C. Berking, J. Vera, Integration of transcriptomics data into agent-based models of solid tumor metastasis, Comput. Struct. Biotechnol. J., 21 (2023), 1930–1941. https://doi.org/10.1016/j.csbj.2023.02.014 doi: 10.1016/j.csbj.2023.02.014 |
[60] | G. De Vries, T. Hillen, M. Lewis, J. Müler, B. Schönfisch, A Course in Mathematical Biology: Quantitative Modeling with Mathematical and Computational Methods, Society for Industrial and Applied Mathematics, Philadelphia, 2006. https://doi.org/10.1137/1.9780898718256 |
[61] | D. Kamel, Dynamics in a discrete-time three dimensional cancer system, Int. J. Appl. Math., 49 (2019), 625–631. |
[62] | J. Poleszczuk, H. Enderling, A high-performance cellular automaton model of tumor growth with dynamically growing domains, Appl. Math., 5 (2014), 144–152. https://doi.org/10.4236/am.2014.51017 doi: 10.4236/am.2014.51017 |
[63] | A. Adamatzky, Game of Life Cellular Automata, Springer, London, 2010. https://doi.org/10.1007/978-1-84996-217-9 |
[64] | V. García-Morales, J. A. Manzanares, J. Cervera, Modeling tumour growth with a modulated game of life cellular automaton under global coupling in Cancer, Complexity, Computation (eds. I. Balaz, A. Adamatzky), Springer International Publishing, (2022), 117–131. https://doi.org/10.1007/978-3-031-04379-6_5 |
[65] | G. Migliaccio, R. Ferraro, Z. Wang, V. Cristini, P. Dogra, S. Caserta, Exploring cell migration mechanisms in cancer: From wound healing assays to cellular automata models, Cancers, 15 (2023), 5284. https://doi.org/10.3390/cancers15215284 doi: 10.3390/cancers15215284 |
[66] | C. A. Valentim, J. A. Rabi, S. A. David, Cellular-automaton model for tumor growth dynamics: Virtualization of different scenarios, Comput. Biol. Med., 153 (2023), 106481. https://doi.org/10.1016/j.compbiomed.2022.106481 doi: 10.1016/j.compbiomed.2022.106481 |
[67] | F. Pourhasanzade, S. H. Sabzpoushan, A cellular automata model of chemotherapy effects on tumour growth: targeting cancer and immune cells, MCMDS, 25 (2019), 63–89. https://doi.org/10.1080/13873954.2019.1571515 doi: 10.1080/13873954.2019.1571515 |
[68] | J. Santos, A. Monteagudo, Analysis of behaviour transitions in tumour growth using a cellular automaton simulation, IET Syst. Biol., 9 (2015), 75–87. https://doi.org/10.1049/iet-syb.2014.0015 doi: 10.1049/iet-syb.2014.0015 |
[69] | C. Tanade, S. Putney, A. Randles, Developing a scalable cellular automaton model of 3D tumor growth, in Computational Science – ICCS 2022 (eds. D. Groen, C. De Mulatier, M. Paszynski, V. Krzhizhanovskaya, J. J. Dongarra, P. M. A. Sloot), Springer International Publishing, (2022), 3–16. https://ldoi.org/10.1007/978-3-031-08751-6_1 |
[70] | C. M. Macal, M. J. North, Agent-based modeling and simulation: ABMS examples, 2008 Winter Simulation Conference, IEEE, (2008), 101–112. https://doi.org/10.1109/WSC.2008.4736060 |
[71] | P. Van Liedekerke, A. Buttenschön, D. Drasdo, Off-Lattice agent-based models for cell and tumor growth, in Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes, Elsevier, (2018), 245–267. https://doi.org/10.1016/B978-0-12-811718-7.00014-9 |
[72] | P. Macklin, H. B. Frieboes, J. L. Sparks, A. Ghaffarizadeh, S. H. Friedman, E. F. Juarez, et al., Progress towards computational 3-D multicellular systems biology, in Systems Biology of Tumor Microenvironment (ed. K. A. Rejniak), Springer International Publishing, (2016), 225–246. http://doi.org/10.1007/978-3-319-42023-3_12 |
[73] | E. Kim, V. Rebecca, I. V. Fedorenko, J. L. Messina, R. Mathew, S. S. Maria-Engler, et al., Senescent fibroblasts in melanoma initiation and progression: An integrated theoretical, experimental, and clinical approach, Cancer Res., 73 (2013), 6874–6885. https://doi.org/10.1158/0008-5472.CAN-13-1720 doi: 10.1158/0008-5472.CAN-13-1720 |
[74] | V. Estrella, T. Chen, M. Lloyd, J. Wojtkowiak, H. H. Cornnell, A. Ibrahim-Hashim, et al., Acidity generated by the tumor microenvironment drives local invasion, Cancer Res., 73 (2013), 1524–1535. https://doi.org/10.1158/0008-5472.CAN-12-2796 doi: 10.1158/0008-5472.CAN-12-2796 |
[75] | A. El-Kenawi, C. Gatenbee, M. Robertson-Tessi, R. Bravo, J. Dhillon, Y. Balagurunathan, et al., Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer, Br. J. Cancer, 121 (2019), 556–566. https://doi.org/10.1038/s41416-019-0542-2 doi: 10.1038/s41416-019-0542-2 |
[76] | I. Bozic, T. Antal, H. Ohtsuki, H. Carter, D. Kim, S. Chen, et al., Accumulation of driver and passenger mutations during tumor progression, Proc. Natl. Acad. Sci. USA, 107 (2010), 18545–18550. https://doi.org/10.1073/pnas.1010978107 doi: 10.1073/pnas.1010978107 |
[77] | R. C. Kennedy, G. E. Ropella, C. A. Hunt, A cell-centered, agent-based framework that enables flexible environment granularities, Theor. Biol. Med. Model., 13 (2016), 4. https://doi.org/10.1186/s12976-016-0030-9 doi: 10.1186/s12976-016-0030-9 |
[78] | S. Jamous, A. Comba, P. R. Lowenstein, S. Motsch, Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation, PLoS Comput. Biol., 16 (2020), e1007611. https://doi.org/10.1371/journal.pcbi.1007611 doi: 10.1371/journal.pcbi.1007611 |
[79] | P. Macklin, M. E. Edgerton, A. M. Thompson, V. Cristini, Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): From microscopic measurements to macroscopic predictions of clinical progression, J. Theor. Biol., 301 (2012), 122–140. https://doi.org/10.1016/j.jtbi.2012.02.002 doi: 10.1016/j.jtbi.2012.02.002 |
[80] | J. D. Butner, V. Cristini, Z. Wang, Development of a three dimensional, multiscale agent-based model of ductal carcinoma in situ, in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2017), 86–89. https://doi.org/10.1109/EMBC.2017.8036769 |
[81] | J. D. Butner, D. Fuentes, B. Ozpolat, G. A. Calin, X. Zhou, J. Lowengrub, et al., A multiscale agent-based model of ductal carcinoma in situ, IEEE Trans. Biomed. Eng., 67 (2020), 1450-1461. https://doi.org/10.1109/TBME.2019.2938485 doi: 10.1109/TBME.2019.2938485 |
[82] | A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M. Mumenthaler, P. Macklin, PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems, PLoS Comput. Biol., 14 (2018), e1005991. https://doi.org/10.1371/journal.pcbi.1005991 doi: 10.1371/journal.pcbi.1005991 |
[83] | G. Letort, A. Montagud, G. Stoll, R. Heiland, E. Barillot, P. Macklin, et al., PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling, Bioinformatics, 35 (2019), 1188–1196. https://doi.org/10.1093/bioinformatics/bty766 doi: 10.1093/bioinformatics/bty766 |
[84] | J. Ozik, N. Collier, J. M. Wozniak, C. Macal, C. Cockrell, S. H. Friedman, et al., High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow, BMC Bioinf., 19 (2018), 483. https://doi.org/10.1186/s12859-018-2510-x doi: 10.1186/s12859-018-2510-x |
[85] | M. Robertson-Tessi, R. J. Gillies, R. A. Gatenby, A. R. A. Anderson, Impact of metabolic heterogeneity on tumr growth, invasion, and treatment outcomes, Cancer Res., 75 (2015), 1567–1579. https://doi.org/10.1158/0008-5472.CAN-14-1428 doi: 10.1158/0008-5472.CAN-14-1428 |
[86] | A. R. A. Anderson, A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion, Math. Med. Biol., 22 (2005), 163–186. https://doi.org/10.1093/imammb/dqi005 doi: 10.1093/imammb/dqi005 |
[87] | D. Toker, F. T. Sommer, M. D'Esposito, A simple method for detecting chaos in nature, Commun. Biol., 3 (2020), 11. https://doi.org/10.1038/s42003-019-0715-9 doi: 10.1038/s42003-019-0715-9 |
[88] | F. R. Marotto, Snap-back repellers imply chaos in Rn, J. Math. Anal. Appl., 63 (1978), 199–223. https://doi.org/10.1016/0022-247X(78)90115-4 doi: 10.1016/0022-247X(78)90115-4 |
[89] | T. Saeed, K. Djeddi, J. L. G. Guirao, H. H. Alsulami, M. S. Alhodaly, A discrete dynamics approach to a tumor system, Mathematics, 10 (2022), 1774. https://doi.org/10.1016/0022-247X(78)90115-4 doi: 10.1016/0022-247X(78)90115-4 |
[90] | E. R. Paquet, M. T. Hallett, Absolute assignment of breast cancer intrinsic molecular subtype, JNCI, 107 (2015). https://doi.org/10.1093/jnci/dju357 doi: 10.1093/jnci/dju357 |
[91] | C. Letellier, F. Denis, L. A. Aguirre, What can be learned from a chaotic cancer model?, J. Theor. Biol., 322 (2013), 7–16. https://doi.org/10.1016/j.jtbi.2013.01.003 doi: 10.1016/j.jtbi.2013.01.003 |
[92] | N. Debbouche, A. Ouannas, G. Grassi, A. A. Al-Hussein, F. R. Tahir, K. M. Saad, et al., Chaos in cancer tumor growth model with commensurate and incommensurate fractional-order derivatives, Comput. Math. Methods. Med., 2022 (2022), 1–13. https://doi.org/10.1155/2022/5227503 doi: 10.1155/2022/5227503 |
[93] | A. Cucuianu, Chaos in cancer?, Nat. Med., 4 (1998), 1342–1342. https://doi.org/10.1038/3904 doi: 10.1038/3904 |
[94] | K. A. Rejniak, A. R. A. Anderson, Hybrid models of tumor growth, WIREs Mech. Dis., 3 (2011), 115–125. https://doi.org/10.1002/wsbm.102 doi: 10.1002/wsbm.102 |
[95] | M. Branicky, Studies in Hybrid Systems: Modeling, Analysis, Control, Ph.D thesis, Massachusetts Institute of Technology, 1995. |
[96] | T. A. Henzinger, The theory of hybrid automata, in Verification of Digital and Hybrid Systems (eds. M. K. Inan, R. P. Kurshan), Springer, Berlin, (2000), 265–292. http://doi.org/10.1007/978-3-642-59615-5_13 |
[97] | R. Alur, C. Belta, F. Ivančić, V. Kumar, M. Mintz, G. J. Pappas, et al., Hybrid modeling and simulation of biomolecular networks in Hybrid Systems: Computation and Control (eds. G. Goos, J. Hartmanis, J. Van Leeuwen, M. D. Di Benedetto, A. Sangiovanni-Vincentelli, R. Alur, et al.), Springer, Berlin, (2001), 19–32. http://doi.org/10.1007/3-540-45351-2_6 |
[98] | G. Lorenzo, S. R. Ahmed, D. A. Hormuth, B. Vaughn, J. Kalpathy-Cramer, L. Solorio, et al., Patient-specific, mechanistic models of tumor growth incorporating artificial intelligence and big data, preprint, arXiv: 2308.14925. |
[99] | Z. Frankenstein, D. Basanta, O. E. Franco, Y. Gao, R. A. Javier, D. W. Strand, et al., Stromal reactivity differentially drives tumour cell evolution and prostate cancer progression, Nat. Ecol. Evol., 4 (2020), 870–884. https://doi.org/10.1038/s41559-020-1157-y doi: 10.1038/s41559-020-1157-y |
[100] | A. G. López, J. M. Seoane, M. A. F. Sanjuán, Modelling cancer dynamics using cellular automata, in Advanced Mathematical Methods in Biosciences and Applications (eds. F. Berezovskaya, B. Toni), Springer International Publishing, Cham, (2019), 159–205. http://doi.org/10.1007/978-3-030-15715-9_8 |
[101] | L. Messina, R. Ferraro, M. J. Peláez, Z. Wang, V. Cristini, P. Dogra, et al., Hybrid cellular automata modeling reveals the effects of glucose gradients on tumor spheroid growth, Cancers, 15 (2023), 5660. https://doi.org/10.3390/cancers15235660 doi: 10.3390/cancers15235660 |
[102] | S. Suveges, I. Chamseddine, K. A. Rejniak, R. Eftimie, D. Trucu, Collective cell migration in a fibrous environment: A hybrid multiscale modelling approach, Front. Appl. Math. Stat., 7 (2021), 680029. https://doi.org/10.3389/fams.2021.680029 doi: 10.3389/fams.2021.680029 |
[103] | J. A. Gallaher, S. C. Massey, A. Hawkins-Daarud, S. S. Noticewala, R. C. Rockne, S. K. Johnston, et al., From cells to tissue: How cell scale heterogeneity impacts glioblastoma growth and treatment response, PLoS Comput. Biol., 16 (2020), e1007672. https://doi.org/10.1371/journal.pcbi.1007672 doi: 10.1371/journal.pcbi.1007672 |
[104] | A. Stéphanou, A. C. Lesart, K. Deverchère, A. Juhem, A. Popov, F. Estève, How tumour-induced vascular changes alter angiogenesis: Insights from a computational model, J. Theor. Biol., 419 (2017), 211–226. https://doi.org/10.1016/j.jtbi.2017.02.018 doi: 10.1016/j.jtbi.2017.02.018 |
[105] | Y. Chen, H. Wang, J. Zhang, K. Chen, Y. Li, Simulation of avascular tumor growth by agent-based game model involving phenotype-phenotype interactions, Sci. Rep., 5 (2015), 17992. https://doi.org/10.1038/srep17992 doi: 10.1038/srep17992 |
[106] | J. Kremheller, A. Vuong, B. A. Schrefler, W. A. Wall, An approach for vascular tumor growth based on a hybrid embedded/homogenized treatment of the vasculature within a multiphase porous medium model, Numer. Methods Biomed. Eng., 35 (2019), e3253. https://doi.org/10.1002/cnm.3253 doi: 10.1002/cnm.3253 |
[107] | C. M. Phillips, E. A. B. F. Lima, R. T. Woodall, A. Brock, T. E. Yankeelov, A hybrid model of tumor growth and angiogenesis: In silico experiments, PLoS One, 15 (2020), e0231137. https://doi.org/10.1371/journal.pone.0231137 doi: 10.1371/journal.pone.0231137 |
[108] | T. Duswald, E. A. B. F. Lima, J. T. Oden, B. Wohlmuth, Bridging scales: A hybrid model to simulate vascular tumor growth and treatment response, Comput. Methods Appl. Mech. Eng., 418 (2024), 116566. https://doi.org/10.1016/j.cma.2023.116566 doi: 10.1016/j.cma.2023.116566 |
[109] | I. M. Chamseddine, K. A. Rejniak, Hybrid modeling frameworks of tumor development and treatment, WIREs Mech. Dis., 12 (2020), e1461. https://doi.org/10.1002/wsbm.1461 doi: 10.1002/wsbm.1461 |
[110] | Q. Chen, Q. Ye, W. Zhang, H. Li, X. Zheng, TGM-Nets: A deep learning framework for enhanced forecasting of tumor growth by integrating imaging and modeling, Eng. Appl. Artif. Intell., 126 (2023), 106867. https://doi.org/10.1016/j.engappai.2023.106867 doi: 10.1016/j.engappai.2023.106867 |
[111] | H. N. Matin, S. Setayeshi, A computational tumor growth model experience based on molecular dynamics point of view using deep cellular automata, J. Med. Artif. Intell., 148 (2024), 102752. https://doi.org/10.1016/j.artmed.2023.102752 doi: 10.1016/j.artmed.2023.102752 |
[112] | A. Amanzholova, A. Coşkun, Enhancing cancer stage prediction through hybrid deep neural networks: a comparative study, Front. Big Data, 7 (2024), 1359703. https://doi.org/10.3389/fdata.2024.1359703 doi: 10.3389/fdata.2024.1359703 |