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Abstract: Tumor growth dynamics serve as a critical aspect of understanding cancer progression
and treatment response to mitigate one of the most pressing challenges in healthcare. The in silico
approach to understanding tumor behavior computationally provides an efficient, cost-effective alter-
native to wet-lab examinations and are adaptable to different environmental conditions, time scales,
and unique patient parameters. As a result, this paper explored modeling of free tumor growth in
cancer, surveying contemporary literature on continuum, discrete, and hybrid approaches. Factors
like predictive power and high-resolution simulation competed against drawbacks like simulation load
and parameter feasibility in these models. Understanding tumor behavior in different scenarios and
contexts became the first step in advancing cancer research and revolutionizing clinical outcomes.
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1. Introduction

According to the American Cancer Society, an estimated 2 million new cancer cases will be diag-
nosed in the United States in 2024, with approximately 611,000 cancer-related deaths expected [1].
Mathematical modeling is a powerful tool to dissect and standardize the complex biological mecha-
nisms underlying tumor initiation and growth. Already revealing significant findings alone, the insights
gained from in silico hypothesis testing complement existing experimental trials and clinical observa-
tions. Furthermore, the quantitative techniques discussed here bear a significant influence on implica-
tions for optimizing and personalizing cancer therapy. Simulating strategies prior to application while
maintaining patient-specific qualities allows algorithms to ensure successful and desired outcomes for
every case. With this motivation in mind, we establish a benchmark for the current state of cancer re-
search and highlight promising leads to explore further. The individual models discussed below reveal
considerable diversity in their approach to spatiotemporal dynamics, intra-tumor heterogeneity, and
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environmental influences.

1.1. Cell cycle and cancer initiation

The cell cycle determines the cell’s ability to proliferate in its environment. The complex series of
events required for cells to divide is regulated by protein signaling and resource availability and can
be disrupted to initiate tumorigenesis. Healthy somatic cells rotate through interphase–comprised of
G1, S, and G2 stages–and mitosis. A cell first enters into the G1 growth phase, where it fulfills its
basic biological functions for any duration. If the conditions to proliferate are unfavorable, the cell
may remain in G1 or arrest in the dormant (G0) phase, where it carries out cellular duties but does
not prepare for cellular division. Once conditions become optimal, the cell is surveyed to ensure a
complete nuclear genome, and the cell is signaled to divide; this quiescent cell passes the checkpoint
and enters the proliferating S phase. Here, the cell undergoes DNA replication and advances into the
resting G2 phase, where other organelles prepare for the division. The cell will then enter the mitotic
phase, transitioning through mitosis and cytokinesis until it splits into two daughter cells. For a detailed
overview of the cell cycle and its relationship with cancer, see Schafer [2] or Alberts et al. [3].

The disregulation of growth factors, tumor suppressor proteins, or proto-oncogenes may disrupt
this process. Overexpressed growth factors enable the cell to proliferate without consideration of re-
sources or internal readiness. Mitosis rapidly occurs, and the cancerous cells often have telomeric
mutations that increase their DNA life span. Moreover, tumor suppressor genes like p53 play a vi-
tal role in DNA repair by releasing inhibitory proteins that pause the cell’s progression in the cell
cycle when the genome is damaged. If p53 is not functional, the lack of inhibition will accelerate
proliferation, and unrepaired mutations may compound the risk of cancer. Lastly, although healthy
proto-oncogenes accelerate the cell’s transition into the next stages of the cycle, mutated oncogenes
may promote unsupported growth. The multiple mechanisms that endanger the cell cycle–cellular, bio-
chemical, molecular–can be further exacerbated by genetic predispositions and environmental factors
that endanger the cell’s ability to repress fast proliferative rates [4].

1.2. Important considerations for cancer development

The mathematical models explored in later sections use a variety of factors to simulate cancer
growth. Below, a handful of these factors are defined in greater detail to explain how studies may use
available data to increase the accuracy of their algorithms.

Often, proliferating (non-quiescent) cancerous cells are categorized by their potential to continue
dividing. Kolokotroni et al. [5] classified them as undifferentiated cancer stem cells, limited mitotic po-
tential (LIMP) cells, and terminally differentiated tumor cells. Any category of cells can produce cells
of its own population or of the next category that follows the path toward terminal differentiation. For
example, stem cells can produce LIMP/progenitor cells, and progenitor cells can produce terminally
differentiated cells. Cancer stem cells are primarily responsible for tumor sustenance and propaga-
tion, so distinguishing cancer populations is important to predict global tumor behavior. Additionally,
the average duration spent in each phase is an important metric to predict glucose consumption, acid
production, and overall tumor size [6].

Two other categories, apoptotic and necrotic cells, account for dead or dying cancer cells [5]. Due
to poor survival conditions in an environment of rapidly dividing cells, quiescent cells that are not
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recruited back into the active cell cycle can die uncontrollably through necrosis. Alternatively, cancer
cells in any category or cell cycle phase may undergo programmed cell death, or apoptosis, if they are
signaled appropriately. Figure 1, adapted from Wang et al. 2015, demonstrates a rudimentary pathway
for a noncancerous cell’s transition through the cell cycle and various phenotypes.

One commonly modeled environmental phenomenon during tumor development is angiogenesis.
Both healthy and cancer tissues exploit networks of vasculature to provide cells with nutrients, hor-
mones, and oxygen necessary for cellular function. Angiogenesis is tumor-induced vascularization
that branches out from existing blood vessels into tumor architecture [7]. Because rapid cell division
and nutrient competition pressure the survival of less aggressive cancer phenotypes, tumor angiogenic
factors (TAF) stimulate the extension of vasculature to tumor regions. As a result, models occasionally
include angiogenesis as a factor for development because it sustains a larger tumor volume and harbors
different cancerous phenotypes.

Figure 1. Flowchart of a healthy cell’s decision process, relying on internal signals and
external conditions. In a cancerous state, phenotypic categories such as LIMP and stem
cells would be considered, and the decision process may heavily skew towards continued
proliferation despite unmet conditions. From Wang et al. 2015 [7], used with permission.

1.3. Mathematical modeling as integrative science

Even a brief overview of cancer research has demonstrated the need for a multi-scale investigation
into the field. By multi-scale we mean processes that occur at two or more spatial or temporal scales,
such as molecular signaling pathways, sequencing of genetic mutations, histology of cell biomarkers,
homeostasis of the tissue environment, and positron emission tomography (PET) scans of metastasized
tumors [8]. Each of these examples is a level of biological organization at which cancerous phenomena
occur [9, 10].

Scientists often employ in vitro and in vivo experiments to explore cancer growth as a dynamic
process. However, to truly understand the interdependent variables that characterize the cancer system,
mathematical modeling and computer simulations have become increasingly popular to observe change
at the appropriate time scale. This in silico approach fits biological phenomena to free parameters
that can be manipulated at the scientist’s discretion, to study asymptotic behavior or behavior under
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specific, known conditions. Used in isolation, in combination with, or as a precursor to the more
traditional methods of cancer research, in silico research has promoted exploratory analyses of cancer
based on existing clinical data [11–13].

In this expository review, we will specifically investigate spatiotemporal modeling approaches to
free growth behavior–that is, growth in a host environment unrestricted by immune responses or an-
ticancer therapies. Despite the current emphasis on understanding the efficacy of treatment and drug
administration in cancerous states in the current literature, the first priority of the in silico approach
must be to understand the biological variables that significantly impact tumor growth and cancerous
cell populations in the human body. These models can then be applied to create new therapeutic targets
or simulate treatment initiation [5].

The objective to discover patterns in given data and predict future trends requires that models rep-
resent observed cancer systems with a systematic treatment of biological complexity across relevant
scales [7]. For example, scientists may compromise on modeling the stochastic (random) behavior
of individual cells to better simulate the macroscopic tissue-wide effects of tumor expansion in their
algorithms. Other model objectives may include customizable parameters for patient-specific contexts
or the production of testable hypotheses that can be further refined in wet lab research evaluations. To
perform any function, mathematical models must first quantitatively clarify basic cancer phenotypes
and assess their relationship with environmental changes.

As seen throughout this paper, mathematical modeling confronts several challenges in its pursuit
of predictive power and exploration of processes. Although the multi-scale approach is common,
different simulations focus on different selections of modeling scales: some focus especially on protein
and cellular movements, while others explore cancerous changes through the homeostasis of tissue
environments [9, 14–16]. Another significant challenge is determining the level of complexity of the
parameters and processes simulated, weighing accuracy against computational load and applicability in
the clinical setting. The decision to choose certain variables may also depend on the model’s objective
or past findings that indicate where an algorithm can be appropriately simplified [17].

Despite operating under similar computational objectives and limitations, mathematical models of
the cancer system have demonstrated enormous diversity in their approaches toward and predictions
of free tumor growth. This paper is organized as follows: Section 2 explores continuum approaches
to tumor growth modeling, Section 3 focuses on discrete lattice-based and lattice-free simulations, and
Section 4 discusses recent hybrid frameworks in the field.

2. Continuum modeling

Continuum models treat the tumor as a continuous mass, prioritizing the overall tumor morphology
and nutrient distributions rather than the influence of individual cells [7]. Understanding the tumor
body as a material region within a Euclidean space, this modeling technique maintains that the previous
local history of deformation determines the mechanical stress applied to the body and that the material’s
response is identical for all observers. The mechanical stress, exerted by the tumor body itself and
interstitial fluid in a cancer system, impacts the growth kinetics of the proliferating cells [18]. A
continuum approach requires that the uniform agents fill the space they occupy and are all deformable,
or sensitive to the loads and pressures they experience [19]. Typical assumptions in these simulations
include continuity, homogeneity, and isotropy of invariant vector properties. When these conditions are
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not applicable, subspaces are established in which each region satisfies these properties. For example,
Castorina et al. [20] divided a heterogeneous tumor into subpopulations of cells with shared properties
to be modeled as separate continuous regions.

By examining larger scales of growth (multicellular, tissue), stochastic variations of single-cellular
responses are often neglected. One of two popular formats of continuum modeling is the use of or-
dinary differential equations (ODEs). Built on the assumption that signaling molecules are highly
abundant, well-mixed, and uniform in the cellular microenvironment, ODEs can disregard the be-
havior of the individual cell to instead focus on investigating the global production/consumption of the
molecules in the mass [21,22]. Models implementing ODEs are therefore restricted by the requirement
of a homogeneous microenvironment, but they can be practical for consolidating data from assays of
in vivo or in vitro cell lines.

Although many ODE models–exponential, logistic, Mendelsohn, linear, surface, Gompertz, and
Bertalanffy–have been proposed to simulate tumor growth data, only a select few are discussed be-
low. The criteria for proving the ‘best’ model under a specific circumstance typically depends on
the function’s fit, its biological basis, and its capability to estimate future growth. The Mendelsohn,
linear, surface, and exponential models assume infinite growth without bound, a biologically unreal-
istic behavior. Murphy et al. [23] found that Mendelsohn, linear, and surface models do not amply
fit experimental data of in vivo lung and breast cell lines. Coupled with their lack of physiological
foundation, these three models are not included in the discussion below. (For an overview of these
models, see Murphy et al. [23], Heesterman et al. [24], and Gerlee [25]). The authors’ statistical anal-
ysis also reveals the lowest Aikaike’s information criterion (AICc) for the exponential model and the
minimum sum of squared residuals (SSR) for the Bertalanffy model, indicating promising results for
these two functions. Additionally, based on recent successes with logistic and Gompertzian growth
modeling, we have included these approaches in the review as well [26–28]. As a result, Sections 2.1
through 2.4 investigate these four models simulating cancerous cell populations (exponential, logistic,
Gompertzian, Bertalanffy) that are classified as first-order ODEs. Each of these models adheres to the
following tumor cell population growth equation:

dN(t)
dt
= g(t)N(t) (2.1)

where N(t) represents the number of tumor cells at time t, and g(t) is the growth rate of cells, which
can also be expressed as a function of time [22].

Another format of continuum modeling is by partial differential equations (PDEs), which allow for
expressions containing several variables rather than just one. As a result, PDEs can account for the
spatial heterogeneity of tumor growth and the surrounding environment by exploring the temporal and
spatial evolution of the tumor, in 2D monolayers or 3D architecture [22]. In Section 2.5, we discuss
the continuous reaction-diffusion model as an example of a closed PDE system.

2.1. Exponential

Exponential models are based on the assumption of constant, unbounded cell growth. The creation
of two daughter cells by cellular division occurs at a stable rate, independent of tumor size. To rep-
resent this biological description of cell reproduction, the function employs one free parameter, the
growth rate, also known as the proportionality constant since growth remains proportional to the cur-
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rent population [23]. In reference to Eq (2.1), g = r where r is a constant value [22]. Tumor doubling
time DT can be simply modeled by

DT =
ln(2)

r
. (2.2)

This traditional understanding of cell growth is often used to fit the growth curve at tumor initiation.
Theoretically, cellular mechanisms support the notion of geometric growth for tumor populations,
assuming there is no limitation on nutrient availability or physical space [29]. Its potential for ideal or
early growth modeling is depicted by Jarrett et al. [22], who found that exponential growth occurs when
a constant nutrient source exists, but it is no longer practical when nutrients are variable. Incorporating
five experimental datasets of in vivo breast and liver cancer, Talkington and Durrett [30] found trends
of exponential growth. The authors’ small dataset, providing tumor volume only at two time points,
indicates that exponential growth is most effective for modeling limited data or early data from a
tumor that has not fully developed. This scenario of limited data is further confirmed by Murphy et
al. [23] who found the exponential model to have a poor SSR value but the lowest AICc of all models
tested, meaning it succeeds at modeling the experimental data when correcting for the number of
parameters and small sample size. Other models, such as the Bertalanffy function, do not show enough
improvement in fit to counter their need for increased parameters. The exponential model, with just
one free parameter, appropriately fits a small experimental dataset.

However, as the tumor matures, or a longer timeframe of data is provided, exponential growth
becomes inaccurate. Figure 2 shows how fitting late time point data of in vivo mice tumor samples
forces the proliferation parameter r to converge at a low estimated value, in a study by Vaghi et al. [31].
As nutrients, oxygen, and space become population-limiting factors, the growth rate decelerates and
betrays the assumption of constant doubling time. Exponential models do not allow for slowed growth
when resources inevitably deplete. Benzekry [32] shows how exponential growth does not accurately
explain in vivo breast and lung tumor growth data taken over weeks, and the growth curve has the
largest error residuals of all models tested. Over a long period with ample data, the exponential model
has poor descriptive power.

Figure 2. Goodness of fit population analysis with various model-predicted percentiles of
tumor volume through time against empirical data from animal models. From Vaghi et al.
2020 [31], used under Creative Commons CC-BY License.

Kolokotroni et al. [5] demonstrated a possible case for exponential growth for fully developed tu-
mors when focusing on short-term approximations and when the tumor is in a state of population
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equilibrium or balanced growth. For example, cell populations must become asymptotic, even if the
overall tumor cell population continues to grow. However, complications including quiescence, differ-
entiation, and recruitment of dormant cells back into the cell cycle result in further deviations from the
exponential pattern of growth.

Exponential modeling arises from assumptions of constant conditions like inexhaustible nutrient
sources, and this criterion makes it more suitable for early phases of population growth or a small
window of data collection. In this scenario, the simulation can convey the rapid tumor growth as
proportional to the population. As the cancer continues to develop, it undergoes complicating factors
including depleting nutrients, angiogenesis, and necrotic cores that invalidate the unbounded model for
long-term growth. Once these factors significantly impact the cell population, the growth rate declines
in a manner characteristic of a carrying capacity.

2.2. Logistic

Logistic growth models display this observed capacity trend as a maximum population size. They
assume that population growth is density-dependent on space and nutrients, where the rate of growth
decreases linearly with increasing population size. Expressed as two sigmoid functions between two
asymptotes N = 0 and N = K, where K is the carrying capacity, the logistic trend is characterized by an
initial period of fast growth, followed by a subsequent phase of decreasing growth [31]. The location
of the point of inflection between the radially symmetrical periods of fast growth and delayed growth
is halfway between the two asymptotes [33]. When fitted to Eq (2.1), growth rate g can be modeled as

g(N) = r
(
1 −

N
K

)
(2.3)

where r is the specific growth rate [22]. For example, Vaghi et al. [31] experimentally determined
r to be 1

N
dN
dt , from a logistic analysis of animal tumor model datasets. As N approaches K and 0, g

approaches 0 and 1
N at a rate determined by the ratio of population density and carrying capacity.

Heesterman et al. [24] examine various growth curves on in vivo patient case data of paragan-
gliomas, finding that the logistic model fits the data as well as other decelerating growth laws. Unlike
the other models, though, the logistic model is not derived from biological concepts, nor does it have a
physiological basis. This makes it a capable, but not optimal, model to depict tumor growth trends.

Nevertheless, logistic growth is still successfully applied to a variety of tumor growth data because
of its instrumental benefits, such as in vitro cervical cancer growth. Dimitriou et al. [26] proposed
a classical single-cell population model, a type of logistic growth model with an additional term for
effective tumor cell death. Among all models, classical logistic growth proves to be the best fit for
the tumor data when there are little to no treatment interventions. Another study by Dimitriou et
al. [34] also incorporates logistic growth for individual cells in a hybrid model by adding a growth
term su(1 − u), where s represents the growth constant of the cell and u represents the spatiotemporal
evolution of the cell. By including logistic growth, the authors accurately model a 3D in vitro breast
cancer culture system.

The classical assumption of symmetry between the accelerating and decelerating phases is not real-
ized in many growth processes, and it becomes restrictive when applied to cancerous cell proliferation.
Figure 2 showcases the constraint of earlier data points on the pace of growth deceleration [31]. Be-
cause the initial growth is sometimes far more rapid than in the cases where the logistic function holds,

Mathematical Biosciences and Engineering Volume 21, Issue 7, 6659–6693.



6666

it cannot always conform to trends of tumor cell proliferation.
A variation of the logistic model is the generalized logistic model, or the Spratt model, with the

small modification that

g(N) = r(1 −
(N
K

)v

) (2.4)

with the additional parameter v bounded by [0, 1] [24]. When v → 1, the function is reduced to clas-
sical logistic growth. The revised function makes the generalized logistic model more flexible to data
alterations than its predecessor [30]. Benzekry et al. [32] showcased this using in vivo human breast
and lung cancer xenografted in mice subjects. They find that this model has high descriptive power
because its large flexibility can adapt to growth curves for the best fit. However, this becomes a disad-
vantage when needing to extrapolate future growth trends, in which case model rigidity is prioritized,
so the generalized model has low prediction scores.

The logistic growth curve successfully models and predicts tumor growth. Huber and Mistry [27]
and Atuegwu et al. [35] demonstrate this when exploring tumor responses to treatment therapies with
logistic modeling. Despite this, the modeling approach lacks both a biological foundation and predic-
tive power, which becomes useful when forecasting tumor development during maturation or treatment.

2.3. Gompertzian

The Gompertzian model was first constructed in 1825 to understand human mortality trends before
Anna Laird applied it to cancerous cell growth in 1964 [24, 36, 37]. Now a popular growth curve
for tumor development, the Gompertz curve approaches growth as time-dependent (decreasing with
increasing time) rather than density-dependent. Available nutrients deplete alongside the population,
allowing for sustainable yet limited food sources [22].

Its behavior deviates from logistic models by using an exponential decrease of the specific growth
rate, rather than a linear decrease proportional to population N. The proliferation degradation rate now
decreases at a more accelerated pace, at a speed Vaghi et al. [31] estimates as

dβ
dt
= −
β

N
, e−βt (2.5)

where ß represents the new specific growth rate as a nonlinear function of time [31]. Thus, the function
of the population proliferation rate is represented by

g(N) = λe−βt (2.6)

where λ is the maximal growth rate that bounds g [22].
The Gompertzian sigmoidal curve expresses initial exponential growth which eventually converges

at a limiting value, independent of other model parameters. Figure 2 represents this S-shape that is
not symmetric around the inflection point as the logistic curve is, and again unlike the logistic model,
its point of inflection is related to the asymptote but without symmetrical phases of growth [6]. This
absolves the model from the restriction that limited the capabilities of the classical logistic function.
Figure 2 also shows the remarkable predictive power of Gompertzian modeling for this experimental
setup, and this success has been replicated numerous times in other studies [6, 20, 31, 33, 38, 39].

Mathematical Biosciences and Engineering Volume 21, Issue 7, 6659–6693.



6667

The Gompertzian form can be derived from the biological mechanisms of cellular kinetics. Laird
initially defended the model by stating that only a fraction of cells will divide exponentially at a given
time and that tumor cells will rotate through the cell cycle at a decelerating speed–hence the success
of the model that adapts both exponential and logistic traits [36]. Frenzen and Murray [38] explore
this biological background further through the cell kinetics models. They observe that as the total
number of cells increases, the individual maturation rates decrease, and the population asymptotes
to a bounded value or equilibrium size. As a result, this kinetics foundation provides a biologically
plausible explanation for why the Gompertz model has been so successful in mathematical oncology.
However, the spontaneously decelerating growth rate integral to these justifications does not have any
physiological basis [32]. Like the logistic approach, it remains capable of modeling tumor development
in theoretical and clinical contexts without a biological foundation for its significance.

The Gompertz model has been successful in fitting experimental data, simulating patient-specific
cases, and predicting future growth. Its robustness and adaptability establish it as a mathematical tool
appropriate for more complex cancer systems. One such application is a cancerous environment with
an emerging tumor subsystem that has a higher proliferation rate than the parent strain. Although
tumor heterogeneity is typically disregarded to understand general global trends, Castorina et al. [20]
focused on modeling this growth instability to understand its impact on therapeutic efficacy and patient
survival. The paper constructs a two-population dynamic model by which both populations N1 and N2

adhere to Gompertzian growth laws. The size of one population of cells is modeled as

Ni(t) = Ni(t∗)e−ωi(t)(t−t∗) (2.7)

where Ni(t) is the size of an unspecified population at a given time point t, Ni(t∗) is the size at the onset
of treatment, andω(t) represents the corresponding rate of cell reduction through treatment [20]. ω(t) is
simplified to a constant for the parent population N1 so that the subpopulation N2 can be approximated
with a different proliferation rate and reaction to therapy:

ω2(t) = ω1 − β

(
1 − e−K(t−t∗)

K(t − t∗)

)
. (2.8)

The population N1(t) exponentially decreases with a constant rate ω1 while subpopulation N2(t)
adheres to a time-dependent rate ω2 [20]. This establishes the nontrivial boundary condition ω2(t∗) =
ω1 − β, where β is an equation parameter. With Eq (2.8), the authors can explore the delay of N2 onset,
different possible replication rates, and size of the N2 system alongside clinical data of breast cancer
survival probability. Here, the Gompertzian formula has been adapted to approach more complex
tumor masses like cancerous subsystems.

Reducing the standard model to one population parameter and one individual parameter, Vaghi et
al. [31] found that the Gompertz curve coupled with Bayesian estimation produces an accurate and
precise fit of in vivo breast and lung tumor data in animal subjects. It displays strong predictive power,
exceeding the capabilities of the logistic form. Tatro [28] also successfully fits the Gompertz equation
on a patient dataset of untreated breast cancer cases, accurately modeling the data with the classical
model. Benzekry et al. [32] confirmed the Gompertzian model’s high descriptive and predictive power
for its lung and breast cancer datasets. Another application of this versatile model is to parameterize
the internal variability that drives the time-evolution of tumor growth, as seen in Chignola et al. [39].
A stochastic Gompertzian adaptation, this model includes a term for additional noise that mimics the
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intrinsic variability of growth, without needing a probability time evolution of possible outcomes. This
modification resizes the upper limit of the maximum possible population volume, and by extension,
the largely accepted understanding of tumor growth potential.

One open avenue of interest for Gompertzian modeling is validating the integrity of the model at
tumor initiation. Vaghi et al. [31] operated with late time point data, Tatro [28] models the dataset
with information on the whole tumor lifespan, and Chignola et al. [39] simulated tumor spheroid over
a similarly long duration. However, patient cases are not always caught after maturation, but often in
a developing stage. Studies should be performed to determine whether the Gompertz model remains
a successful fit for early stages of tumor growth. More specifically, the model should be validated for
circumstances when the growth rate has not decelerated significantly and the cancerous population is
still rapidly proliferating.

2.4. Bertalanffy

An under-researched yet promising ODE approach is the Bertalanffy model, which has shown a
strong fit and possesses a physiological basis for its parameters. Originally formulated as a model for
organism growth, it follows the fundamental energetic principles of metabolic growth and decline [40].
The Bertalanffy trend assumes that proliferation and cell death are responsible for tumor size and
development, as cells continuously divide and die off. The basic formula for this simplistic growth
curve is as follows:

g(N) = aNγ − bN (2.9)

where a and b are constants for the growth and loss terms, respectively. The model is structured so
that proliferation increases proportional to the surface area, and loss of tumor mass due to cell deaths
is also in proportion to tumor volume [23, 25]. The specific case under which the Bertalanffy model is
commonly applied is when the metabolic scaling component is γ = 2

3 and the cell loss factor is b = 1.
However, recent studies such as Renner-Martin [41] find considerable variability in the value of the
exponent, and this may encourage new studies to reevaluate parameter values for every context.

The Bertalanffy model has displayed strong predictive and descriptive power in simulating tumor
growth curves. Heesterman et al. [24] found that out of seven models fit to three time points of tu-
mor volume data, the Bertanalffy function provides an equally strong fit to the Gompertz, logistic, and
Spratt models tested. Additionally, it demonstrated its extrapolation abilities by presenting a realistic
age of onset and predicted development for various cases. Murphy et al. [23] also finds that, when
fitting in vivo data from animal model xenografts, this model has the lowest SSR compared to the ex-
ponential, Mendelsohn, logistic, linear, surface, and Gompertz curves. The function has the flexibility
to describe the available data despite its simplistic nature. The authors contradict the former study by
remaining skeptical of the model’s predictive capabilities: when fit to data, parameter b is reduced to 0,
eliminating the influence of cell deaths on tumor volume and presenting biologically unrealistic tumor
sizes.

Diebner et al. [42] constructed a mathematical model that is founded in the biological principles
of tumor developement, considering both allometric scaling and population selection tendencies, in
their attempt to simulate tumor multiclonal competition. The authors’ model is compatible with the
traditional Bertalanffy growth model, and it preserves both the metabolic foundation and the captured
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complexity of the original function. Although the study’s model has not been rigorously tested and
validated, the fact that a biologically motivated function agrees with the Bertalanffy model structure
indicates the potential for the classical case, and for any growth trend rooted in the physiological
context of tumor development.

Despite the Bertalanffy model’s simple structure, strong model fit, and connection to biological
mechanisms of tumor growth, little research has been performed to ascertain the best contexts and sce-
narios for the growth curve. Future studies should focus on tailoring the model to specific tumor cases,
such as tumor invasion, angiogenesis, heterogeneity, and metastasis. These findings will demonstrate
the function’s applicability of different tumor conditions and different experimental settings.

2.5. Reaction-diffusion

We have already demonstrated different approaches to modeling tumor cell proliferation with vari-
ous multi-scalar, continuum simulations. These cell-based models require large assumptions across
model parameters to apply to personalized clinical situations [43]. In comparison, the reaction-
diffusion PDE can be used macroscopically, adapting information from medical images to perform
powerful simulations of the tumor mass.

Wong et al. [43] offers the following equation:

∂N
∂t
= div(D∇N) + ρN

(
1 −

N
K

)
(2.10)

where N is the tumor cell population, K is the carrying capacity, ρ is the proliferation rate, and D is the
anisotropic diffusion tensor matrix. This matrix represents the diffusion coefficients along each of the
three (x-, y-, and z-) directions for the invasive property of the tumor into healthy host tissue. The first
term of this equation represents the tumor invasion based on this tensor, and the second term models
for logistic cell proliferation.

The reaction-diffusion model is often seen as a system of coupled equations. For example, Frieboes
et al. [15] takes advantage of the macroscopic lens that reaction-diffusion models offer to focus on
cellular interactions rather than kinetics. The authors construct a closed system of PDEs to simulate
three microenvironment conditions in their in vitro model: nutrients, growth factor (GF) diffusion, and
O2. Focusing on the environmental influences on tumor invasion, Gatenby and Gawlinski [44] model
the spatial distribution and temporal evolution of host cell density, tumor cell density, and excess
concentration of H+ ions, with a set of PDEs. By exploring the dynamics and structure of the tumor-
host interface, authors find that a tumor-induced disturbance of the homeostatic pH (a change to which
the normal cells are intolerant) acts as a mechanism for cancer invasion. Figure 3 notably shows a
drop in intracellular volume fractions (ICVF) at the boundary of the tumor growth, where the cell-to-
volume ratio is low. This front of expansion into the healthy tissue is a prominent research topic in
cancer modeling. Looking exclusively at these borders, Cristini, Lowengrub, and Nie [45] establish
boundary-integral simulations to find that environmental factors are critical conditions for determining
the invasive potential of the tumor.

Researchers have used reaction-diffusion equations for coupling simulations with patient imaging,
applying their three-dimensional modeling capacity, investigating growth as a biomechanical function
of surrounding tissue, and integrating data from longitudinal cancer cases [46–51]. This approach is
especially popular in glioma modeling where the tumor cell-density function can effectively reconstruct
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Figure 3. ICVF image reconstructed from calculations of contrast-enhanced computed to-
mography (CT) scan to provide estimates for tumor cell ratio and proliferation rate. The
contrast agent is taken up in the interstitial space but minimally absorbed by the cells. From
Wong et al. 2015 [43], used with permission.

the diffuse nature of invading tumor cells in the brain, in comparison to medical imaging that cannot
depict these borders at a cellular level [52]. Reaction-diffusion growth models for glioma cases are used
in conjunction with medical imaging, such as in Jbabdi et al. [53] and Konukoglu et al. [54], or in place
of this clinical tool, such as in Clatz et al. [47] and Hogea et al. [46]. In the former circumstance, the
authors implement medical imaging information to calculate parameter estimates, from which they can
build glioma growth models. In the latter cases, imaging validates the in silico simulations of invasion
and expansion. Reaction-diffusion equations in all examples prove to be a successful approach to
depict the spatiotemporal evolution of glioma cell densities.

A significant obstacle to this modeling approach is rooted in its applicability to in vivo human
glioma cases. The extensive literature on building personalized reaction-diffusion models creates a
demand for patient-specific parameters for simulations and treatment plans, but the model framework
carries free parameters that are not easily accessible through current imaging tools. Recently, quantities
such as tumor cell density, diffusion rate, and proliferation rate are often estimated to produce findings,
or the model itself is simplified to reduce error margins from inexact measurements. Konukoglu et
al. [49] estimated tumor cell diffusivity at the tumor boundary from magnetic resonance (MR) and CT
imaging but left the proliferation rate as constant for all cases. Subramanian et al. [55] estimated tumor
origin, diffusivity, and proliferation from one data time point, but only for dimensionless parameters
that cannot be used in a personalized patient context. Scheufele et al. [56] identified the exact pa-
rameters for proliferation rate, migration rate, and tumor origin, but they do not estimate the density
distribution of tumor cells at the time of diagnosis. Tunc et al. [57] calibrated three reaction-diffusion
models from MR imaging clinical data to find that the model with mass effect provided the most accu-
rate prediction of glioma growth. However, the computational load and complexity of the model force
the author to restrict the model to 2D reconstructions. More recently, Martens et al. [52] employed
a deep learning-based approach to establish parameter values for patient-specific reaction-diffusion
modeling. Trained from only two imaging time points over a large dataset of synthetic tumors, the
personalized model presents accurate reconstructive simulations and predictions for glioma growth.
However, this model has not been validated on real patient data, nor does it include the tumor mass
effect of pressure and displacement, a significant factor in solid tumor mechanics [57].
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Focusing on clinical imaging data from pancreatic neuroendocrine tumors, Wong et al. [43] reme-
died this parameter estimation problem by non-dimensionalizing the algorithm: dividing both sides by
K and transforming values into their ratios to the carrying capacity of the population:

∂θ

∂t
= div(D∇θ) + ρθ(1 − θ) (2.11)

where θ = N
K , representing the tumor cell ratio. With this transformation, Wong et al. created easily

attainable parameters: the ratio θ is proportional to the total space occupied by the tumor, so it can be
approximated to the proportion of intracellular space to tissue volume, or the ICVF [43]. The authors
take advantage of contrast-enhanced CT imaging to calculate the ICVF of the tumor from the baseline
blood tissue ICVF. Equation (2.11) can then be simulated, refined with further scans, and personalized
to a patient’s needs and treatment schedule. By establishing free parameters that can be derived directly
from medical imaging, the authors create a foundation for patient-specific simulations.

Figure 3 shows how the simulated ICVF image informs about the macroscopic shape and nature
of the mass in the surrounding environment. This demonstrates the tumor mass effect and invasion
without participating in the trade-off between realism and computational efficiency.

Reaction-diffusion modeling has successfully simulated microenvironmental conditions, fronts of
expansion, and invasive mechanisms. Although a considerable portion of literature surrounding
reaction-diffusion modeling relates to patient specificity in model applications, the PDE approach
forces significant trade-offs in estimating important parameters, simplifying simulation complexity,
or neglecting biophysical phenomena. For glioma research especially, reaction-diffusion models suffer
from the lack of clinically available values that are integral to the simulations’ success. Further research
should apply successful cases of non-glioma tumor modeling, like Wong et al. [43], to construct per-
sonalized glioma reaction-diffusion models. Increased patient-specificity and model robustness would
improve the diagnosis and treatment of cancer cases in clinical settings.

Continuum models in general face a common set of difficulties. The heterogeneity of the tumor
subject, especially regarding individual cell phenotypes and behaviors, is often neglected. Focusing
the model on cell-scale (20 µm) rather than tissue-scale (100–200 µm) resolution would contradict the
premise behind the continuum approach, and therefore cannot be performed with biological signifi-
cance [58]. Also, calibrating these models to experimental data, especially when parameters involve
more than one biological meaning, require iterative trial-and-error until the resultant growth curve cor-
roborates the given data points. The discrete models described in Section 3 address these obstacles by
examining a cellular perspective, from which global tumor-level trends can be understood.

3. Discrete modeling

Discrete modeling deviates from the continuum approach by considering time and space as discrete
systems, inside which cells adhere to predefined rules of motility and proliferation. With the initial
condition of the system xn assigned to t = 0, every additional time-step xn+1(where the unit of time
is biologically relevant to tumor growth) observes a change so that dynamical phenomena can be
simulated as a series of steps. Figure 4 visualizes this discrete-time system, where both time and
cellular agents are modeled as distinct quantities [59].

By constraining xn + 1 to only depend on xn, a rudimentary equation can be constructed:
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Figure 4. Simulation of cell populations in a discrete-time system where existing conditions
(such as the addition of immune checkpoint inhibitor therapy) redetermine spatial distribution
at every step. Here, the tumor population (blue) and the lymphocyte population (orange)
exhibit organizational changes as the system jumps from t = 10 to t = 25 to t = 35 to t = 40.
From Retzlaff et al. 2023 [59], used under Creative Commons CC-BY license.

xn+1 = f (xn) (3.1)

where the function f simulates population growth with a desired behavior [60]. With this foundation, a
discrete algorithm could take into consideration cell identities (cell cycle phases and stem cell stages)
and the transition rates between states (proliferative capacity, quiescence, necrosis, apoptosis) [5]. Or,
the equation may only take into account the number of living tumor cells at a given time. Kamel
[61] considers this approach in their generic discrete-time system of equations, one part of which is
demonstrated in Eq (3.2):

xn+1 = s1xn

(
1 −

xn

q1

)
− p12xnyn − p13xnzn. (3.2)

Here, x represents the number of cancer cells, y represents healthy host cells, and z the immune
cells. s1 denotes the free growth rate of cancer cells, q1 is the maximum carrying capacity, p12 is
the death rate from host cells, and p13 is the death rate from immune cells. With these parameters,
the discrete equation models the tumor population as it depends on cellular growth rate (first term,
positive), cellular death rate from neighboring host cells (second term, negative), and cellular death rate
from immune cells (third term, negative). The author assembles this differential equation, along with
two more modeling the temporal evolution of healthy and immune cells, to demonstrate the chaotic
dynamics of a discretized cancer system.

Like continuum modeling, discrete-time models that transform biological phenomena into math-
ematical expressions can be adapted into reconstructive or predictive simulations. This format of
modeling provides exceptional insight into tumor microstructure, including heterogeneity in density
and cell types. By reconstructing (rather than averaging or simplifying) individual cellular dynamics,
the discrete-time system informs about intra-tumor changes and patterns throughout the cancer’s lifes-
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pan [61]. These algorithms require a predetermined set of rules that methodically make and execute
decisions at every time step. A simplified model of discretization logic is shown in Figure 5, which is
loosely based on the more specialized simulation described in Kolokotroni et al. [5].

Figure 5. Flow chart of standard discrete-time simulation procedure that evaluates factors of
tumor mass population at each time step.

Alongside these models’ descriptive and predictive capabilities, there are additional considerations
and obstacles to determining the best model for a specific context due to the nature of the discrete
approach. These include assessing the availability of parameters for a specific circumstance, deter-
mining the computational load or complexity needed, and considering a lattice-based or lattice-free
approach. The cellular scale that most discrete models operate in requires parameter values that are
not easily attainable in a patient setting, so simulations are often confined to theoretical applications
or in vitro wet-lab experimental procedures. Computational load and complexity of the model exist
in a trade-off with each other, often leading studies to simplify the number of free parameters or use
small population sizes. The last consideration of operating on or off a lattice motivates the outline for
this section: Section 4.1 discusses lattice-based cellular automata models, while Section 4.2 explores
lattice-free agent-based modeling approaches. Section 4.3 contains an overview of chaos behavior and
its potential applications to mathematical oncology.

3.1. Cellular automata

Cellular automata models consider agents as confined to a regular spatial lattice, disregarding cel-
lular properties but maintaining cellular identities [21]. In the context of tumor growth dynamics, this
approach mathematically formalizes the stochastic nature of cell kinetics to estimate population-level
dynamics [62].

Figure 6 visualizes the concept of cancer cells occupying grid points on a square lattice [62]. Each
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cell retains identity parameters, including cell cycle stage, proliferation potential, and migration po-
tential. When cells migrate or divide to form two daughter cells, they require space adjacent to them.
If the tumor environment is unsaturated, cell movements into vacant spaces occur at random, as seen
in Figure 8. These vacant spaces may be occupied by migrated tumor cells or new daughter cells at
every step in the simulation. Saturated spaces where the cell is unable to move or proliferate lead to
the cell becoming quiescent. Cell transition into quiescence or spontaneous death is recalculated and
simulated at every time step [62].

Figure 6. Visualization of tumor cell migration and proliferation in computational lat-
tice structure. Agents in green are quiescent, while those in blue are proliferating. From
Poleszczuk and Enderling 2014 [62], used under Creative Commons CC-BY license.

This modeling approach originates from the Game of Life, a mathematical machine invented by
John Conway in 1970 [63]. The game’s premise is to develop a logical structure that contains the
instructions to replicate itself. Established within a 2D square lattice, cells assume one of two statuses,
living or dead. At every timestep, the cell state is updated depending on its previous identity and the
identities of cells in its immediate neighborhood. Game of Life rules entail that all neighbors of a
candidate cell are treated equally (a Moore neighborhood) and that any random configurations must
stabilize or exhibit bounded growth eventually. Conway’s concept of a lattice configuration, where
agent behaviors are determined by their local environment and re-evaluated every generation, later
became the abstract mathematical representation for the cellular automata approach.

In cellular automata, similar automata, or agents, are connected together in a regular pattern. Al-
though these agents are typically individual cells, they may instead represent clusters of heterogeneous
cells, such as in Kolokotroni et al. [5]. In this manner, the tumor cells within clusters are simulated as
their cell identity (stem, apoptotic, necrotic) to determine the creation, deletion, or preservation of their
geometric cell. The homogeneous condition for the tumor, along with the cluster-method approach,
simplifies an otherwise computationally intensive simulation that is performed stepwise.

Although the cellular automata approach presents a common set of obstacles when weighing com-
putational efficiency against complexity, recent studies have navigated this difficulty differently. For
example, the amount and type of information known a priori can help determine the degree of com-
plexity that the model can possess. Garcia-Morales et al. [64] constructed a cellular automata model
with only two free parameters: the strength of the global coupling of cells due to confinement pressure,
and the strength of intercellular coupling, where Game of Life rules govern local dynamics. By sim-
plifying the simulation to only two inputs, the authors assign the first parameter to the type of tumor
modeled and the second parameter to growth inhibition, tumor volume, and other phenomena influ-
enced by mechanical pressures. To further streamline this simulation, the authors establish a lattice
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size beforehand to preserve memory load, optimize resources, and ensure consistency of results for all
studies they attempt to reproduce. The paper successfully simulates the microscopic growth dynamics
of emergent tumors, taken from previous studies’ experimental observations. While this model’s sim-
plicity lends itself to the ability to predict future growth for various datasets, Migliaccio et al. [65] favor
increased complexity by simulating infinite grid space with dynamically expanding boundaries. Like
the previous model, these authors require two free parameters to predict migration rates and simulate
the spatiotemporal evolution of their samples. However, in contrast to Garcia-Morales et al., these au-
thors sacrifice the optimization of resources for higher grid resolution and accuracy, and as a result, the
model requires extensive calibration with in vitro data of tumor and control cell line assays to ensure
outputs are accurate and meaningful.

Having prior access to specific information, such as the appropriate lattice size for the simulation,
proves to be a difficult endeavor in certain cases. Valentim et al. [66] constructs and runs a cellular
automata model through different scenarios, such as growth from a stem cell, growth from a clonogenic
cell, and variable apoptosis rates. The model captures the heterogeneity of individual cells and the
expanding boundaries of the tumor region on a 2D lattice. The decision to not encode a constant
matrix size is rooted in two factors. First, the final tumor size is unknown prior to observing the
cancer development or running the simulation, like in this circumstance. Second, restricting the matrix
borders may lead to an undesirable level of detail or granularity if the domain is too large or small.
Also, dynamically expanding borders comes with a considerable computational cost since the model
must account for the new spatial configuration at every repetition, and larger lattices strain the memory
capacity.

A lattice model often indicates that the resulting model or simulation operates on a two-dimensional
grid. Migliaccio et al. [65] and Pourhasanzade and Sabzpoushan [67] exemplify this characteristic of
most cellular automata models. These 2D simulations lack applicability to circumstances that demand
a three-dimensional output, such as investigations into tumor architecture, the extracellular matrix
(ECM), and some in vivo environments. 2D explorations are therefore limited to earlier stages of re-
search, including the use of assays. Late-stage research into tumor spheroids and biopsies must there-
fore work with models that are capable of 3D reconstructions. Santos and Monteagudo [68] provide
one example of a cellular automata model with a novel 3D grid environment of in vitro multicellular
tumor spheroids. Experimenting with a tissue-like environment, the authors model tumor initiation
at a high level of complexity–expanding the grid to a third dimension and incorporating seven free
parameters for each cell to understand the effect of mutation rates on morphology.

Additionally, recent studies have investigated ways to minimize computational load while preserv-
ing model accuracy. Poleszczuk and Enderling [62] sought to illustrate the cell neighborhood vacan-
cies in a computationally efficient manner with a coded lattice structure, rather than a simple Boolean
method. Shown in Figure 7, traditional simple lattices for diffuse tumors store Boolean information
for occupied (1) or vacant (0) status in every cell. Especially dense or complex tumors require a more
effective representation of data, like the coded array. In this version, each grid cell contains informa-
tion about the number of vacant spots in the immediate cell neighborhood (0-8 spots, and 9 denoting
empty). Both models can illustrate migratory/proliferative cells (white) and quiescent (grey) tumor
cells. As cells reach or surpass the current lattice boundary, the grid is extended in the direction of
expansion to model dynamically growing domains. In this respect, boundary tumor cells may become
significant agents in tumor mass growth and population expansion. With this coded lattice approach
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and restricting simulations to small populations, the authors can afford an increased computational load
with a dynamically expanding lattice.

Figure 7. Translating a simple lattice array of individual grid point occupation into a coded
lattice of neighborhood information. From Poleszczuk and Enderling 2014 [62], used under
Creative Commons CC-BY license.

Another example is Tanade et al. [69], which extends an existing 2D simulation into a 3D growth
model through parallelization. Typically, increasing the dimensionality of a cellular automata model
would strain its memory capabilities and disrupt the integrity of the model over long durations. The
authors choose to parallelize cell movement through an N-body scheme and cell lattices through halo
exchanges, overlapping layers once cells reach the end of their domain and consolidating lattice values
of comparable layers. By parallelizing the chosen model, larger and more complex tumor morphology
can be investigated efficiently and without burdening the system. This proof-of-concept approach
provides an opportunity for existing cellular automata models to increase their applicability to in vivo
datasets, patient cases, and biopsies, without drastically straining computational systems.

Cellular automata leverage a regular lattice framework to simulate cell behavior, interactions, and
spatiotemporal evolution, providing insights into the cancer system not obtainable by experimental
methods or imaging data. However, challenges such as parameter sensitivity and computational de-
mands require careful calibration and optimization. Depending on the amount of information learned
a priori, the type of data being reconstructed or validated, and the dimensionality needed to accomplish
the research goal, various applications of the cellular automata approach have been proven successful.
For any of these models, tools such as a coded array and 3D parallelization can be integrated to increase
complexity and lower load constraints. Future avenues of research involve applying these modeling
tools to existing simulations to confirm their applicability and scalability to diverse scenarios.

3.2. Agent-based models

Also known as individual-based models, agent-based models (ABM) simulate cells as free agents
that interact with each other and the environment under specific conditions. ABM represents an off-
lattice alternative to grid-based models, but the underlying premises remain the same. Simple behav-
ioral rules and initial conditions direct the evolution and movement of agents in a designated space.
The Boids model demonstrates how ABM maintains organized patterns despite not having a structured
lattice: a cell’s behavior is governed by cohesive forces to neighboring cells, separation tendencies to
avoid overcrowding, and alignment, where it moves in the same direction as other cells [70]. Natural

Mathematical Biosciences and Engineering Volume 21, Issue 7, 6659–6693.



6677

manifestations of agent interactions found in ABM are animal flocking behavior or swarm intelligence.
Similar to cellular automata, these cells are assigned intrinsic physical properties, including their size,
cell state, and duration in that state [21].

This modeling approach can simulate changes in the microenvironment and cell-level heterogeneity,
as well as explore patterns in movement that influence tumor morphology and geometry. To accomplish
this, models consider structural changes in DNA; molecular interactions like signaling and nutrient
behavior; cellular identities like phenotypic transformations; multicellular relationships like space,
motility, and dimensional structure; and tissue/macroscale imaging like drug distribution, tissue pH,
hormones, and vascularization [10]. This section will highlight the merits and caveats of a lattice-free
approach as a whole, compared to cellular automata or continuum modeling. For a detailed breakdown
of ABM subcategorizations, see Liedekerke and Buttenschon [71].

Tumors are in constant communication with the surrounding microenvironment, and the ECM heav-
ily influences the development of cancerous bodies. Whereas cell phenotypes cannot be accurately
represented through continuum modeling, ABM address individual cellular identities that affect the
environment, which in turn affects tissue mechanics [72]. Kim et al. [73] and Kolokotroni et al. [5]
represent examples of adapting continuum approaches to an easily manipulated discretized system: the
authors solve PDEs for O2 diffusion, nutrient diffusion, and hormonal distribution, across the tumor.
Estrella et al. [74] also notably concluded that increasing the concentration of H+ in the ECM (thereby
lowering the pH in the surrounding tissue) acidifies the host regions and increases tumor invasiveness.
This multiscalar, high-power benefit makes the ABM approach appealing to simulate and predict cellu-
lar competition [9]. El-Kenawi et al. [75] also found from prostate cancer patient case data that acidic
environments (lowered pH) influence cell phenotypes to activate available macrophages, which play a
key role in tumor progression and development.

Beyond tumor heterogeneity, ABM successfully captures cellular behaviors and stochastic tenden-
cies, such as mutation accumulations. Probabilistic realizations generate a distribution of outcomes,
rather than forcing the simulation to over-simplify like some continuous algorithms [9]. Using a
branching process model, which takes advantage of mean-field approximations and stochastic uncer-
tainty, Bozic et al. [76] simulated the effect of single-driver mutations that accelerate the rate of clonal
expansion at every subsequent time step. Another example is found in Colom et al. [14], who took ad-
vantage of deep sequencing to identify key genes susceptible to mutations, which can induce changes
in cell phenotypes and therefore overall tumor morphology. This finding helps determine probabilities
and possibilities for genetic risks to evolve into masses, and masses to evolve into invasive tumors. By
producing a distribution of outcomes, ABM can simulate error-prone sequencing to match the limited
depth of current medical technology and imaging, meaning that precise parameters are not required to
provide clinically relevant outputs [9].

Additionally, compared to cellular automata, the lattice-free approach enables increased flexibility
and spatial heterogeneity, advantages that outweigh the greater uncertainty and computational costs in
certain scenarios. Kennedy et al. [77] highlighted their preference for an irregular grid when establish-
ing a framework for basic cell behavior because it allows the cell to determine the level of granularity
at different regions in the tumor. The agent-based model enables the emergence of a dynamic spatial
structure, a key factor in ensuring biological realism. Even though the off-lattice approach is computa-
tionally expensive in determining local neighbor identities and constantly updating the filled space, it
is necessary for cases like tumor morphogenesis, interfacial regions, epithelial irregularities, and tissue
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repair, where tumor shapes are uncertain and cell patterns are unknown. This trade-off between uncer-
tainty and heterogeneity is again found in Jamous et al. [78], which investigates glioma pattern forma-
tion within in vivo mouse models. The authors explore how tumor cells follow self-organizing patterns
that create the resulting tumor form, and ABM allows for greater spatial heterogeneity to account for
the lack of pre-existing information on glioma morphology. The model uses several parameters to de-
termine cellular configurations–in ‘flocks’ or ‘streams’–that cannot be realistically conveyed through
a grid format.

The advantage that ABM provides for understanding cellular mechanics is apparent in lattice-free
modeling of ductal carcinoma in situ (DCIS). Originating in the milk ducts, this cancerous lesion dis-
plays a unique morphology that cannot be accurately conveyed through the low-resolution cellular
automata lattice, which imposes restraints on cell arrangements, orientation, and interaction. Many
studies that focus on DCIS take advantage of ABM to accurately display the radial tumor dynamics
characteristic of the cancer. Macklin et al. [79] developed a personalizable calibration technique that
could render an agent-based model available for patient-specific circumstances, using pathology data
from a single time point. The authors demonstrate how cellular automata fails to model a key char-
acteristic of DCIS–the phenomenon of tumor cell proliferation when the cell is already surrounded.
Agent-based modeling is an optimal choice to simulate highly motile cells or cells that self-organize
regularly. Cristini and Lowengrub [58], Butner et al. [80], and Butner et al. [81] also construct and
apply agent-based models specifically for DCIS application use. The considerable literature on tumor
modeling opens up an interesting pathway for exploration. Agent-based models show great success in
simulating the radial geometry of breast ducts, so they have the potential to do the same for other types
of tumors with high motility rates and axial developments. Lesions in prostate ductal structures, breast
lobules, and epithelial layers could be successfully modeled by lattice-free simulations.

Several examples of open-access software demonstrate the adaptability of the ABM approach.
Ghaffarizadeh et al. [82] constructed a 3D agent-based modeling toolkit, understanding cell pheno-
types within the context of available substrates and signaling factors in the local microenvironment.
This model has since been integrated with a Boolean modeling platform to incorporate physical di-
mension in the multicellular simulation [83], and it has also been combined with a computational
model exploration manager to establish a high-throughput workflow for large, computationally inten-
sive datasets [84].

In comparison to lattice-based models, ABM requires more computational effort because the spa-
tial organization of cells must be reevaluated for every generation of cells, and, unlike some cellular
automata, the tumor is simulated in a dynamically growing region. Additionally, this modeling ap-
proach’s algorithmic nature and sequential dependencies make parallelizing ABM algorithms more
difficult to implement. The computational cost of agent-based models also restrict the approach to
smaller cell populations. That said, these models are highly effective for scenarios involving irregu-
larly arranged cells, high degrees of cellular movement, and unknown spatial arrangements. For cases
like angiogenesis, metastasis, and certain cancers, ABM’s flexibility and level of detail make it more
suitable than the more restrictive cellular automata alternative. This complexity is also apparent in its
ability to model a variety of scales: signaling pathways, cellular phenotypes, and substrate production
within the tissue. Recent developments in computational frameworks have also improved the com-
putational load that hinders the applicability of agent-based modeling to large populations and long
durations. Moreover, extending the success of ABM in DCIS context to similar cancer formations may
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be a promising avenue of research exploration. Lastly, in Section 4, agent-based modeling is discussed
in a joint hybrid approach with continuum simulations. This expands the range of ABM applications,
most notably into microenvironment interactions and molecular signaling [8, 85, 86].

3.3. Chaos behavior

Although discussion of chaos theory and chaotic behavior in tumor growth is beyond the scope
of this paper, we find a brief overview of the current literature to be beneficial. Mathematical chaos
can simply be defined as a system that is bounded within a specific orbit, deterministic when given
the same initial conditions, and experiences large amplifications with small perturbations from the
system’s fixed points [87]. A system can only be considered chaotic if its data is not stochastic and the
signal undergoes a de-noising method to effectively correct any variation.

Several publications have found tumor growth dynamics to exhibit chaotic behavior. Kamel [61]
implements a fixed Marotto theorem [88] on nontrivial fixed points to prove the chaotic dynamics of
the cancer system, and Saeed et al. [89] discretized data adapted from the continuous AIMS model [90]
(which models cell-cell interaction and competition as a differential equation set). Discrete methods,
rather than continuous modeling, are more effective at treating and controlling unpredictable behavior.
Saeed et al. and Letellier et al. [91] found that increasing the growth rate of host cells increases the
range in which the global population can fluctuate (between 0 and 1) but decreases the frequency
of oscillations between maximal and minimal values. This mathematical foundation informs clinical
cases of both host-cell-dominant environments and tumor-cell-dominant environments (faster, more
aggressive cancers). The stability of a biological environment and maintenance of homeostasis rests on
the population of host cells rather than the number of tumor cells—a finding supported by Debbouche
et al. [92] as well. Additionally, rather than exploring fixed points, these authors performed a non-
conventional analysis of observability and topological analysis. This finding creates two significant
pursuits for further study: first, a new track for controlling chaos in the cancer system beyond fixed
points and chaotic attractor analysis; and second, the formation of a mathematically-informed cancer
therapy that acts on stimulating healthy host cells.

Chaotic dynamics also manifest very differently (or possibly not at all) in different types of tumors
[93]. A possible direction for research is to understand the relationship between chaos dynamics and
cancers derived from different origin tissues.

4. Hybrid modeling

A more recent evolution in this field is the use of hybrid models. These algorithms integrate various
approaches to tumor modeling in one simulation–such as continuum and discrete models, or physics-
based and data-drive models. Hybrid tumor growth models typically resolve obstacles of their com-
ponent functions, including computational load, complexity, data limitations, and scales of interest.
Section 4.1 reviews traditional hybrid models that employ discrete and continuous algorithms to de-
scribe tumor growth. Section 4.2 explores a multi-resolution example of mechanistic hybrid models
that varies the level of resolution at different tumor regions of interest. Section 4.3 examines a more
recently emerging literature of hybrid models that combine physics-based models with artificial intel-
ligence (AI) deep learning algorithms to improve the predictive power and reduce load constraints of
the simulation.

Mathematical Biosciences and Engineering Volume 21, Issue 7, 6659–6693.



6680

4.1. Classical models

By consolidating cellular interactions and global morphological change, hybrid approaches enable
the representation of cancerous growth on multiple spatial and temporal scales. They can be used to
examine the impact of gene expression/mutation, in/extracellular signaling, cellular migration, mul-
ticellular proliferation, and tumor architecture, as well as being applied on and off the lattice struc-
ture [94]. Hybrid tumor growth models share their structure with hybrid engineering systems, which
explore dynamical systems subject to both continuous-time and discrete-time dynamics [95, 96]. In a
biological context, tumor dynamics can be approached as a collection of multi-particle systems with
agents that interact with one another [97]. Tumor agents can exhibit both discrete and continuous be-
haviors (biological cells and environmental substrates/nutrients, respectively), and they are in constant
communication with each other. Moreover, they hold a degree of uncertainty that is best captured by
transition probabilities. These characteristics–contradictory behaviors, interactions, and stochasticity–
form the foundation of the hybrid modeling approach [97].

A standard hybrid approach is to model the cells as discrete entities, either on or off-lattice, and the
agents in the ECM as continuous concentrations or density fields. Although PDEs provide flexibility
in describing tumor growth over detailed spatial and temporal scales, they cannot characterize mech-
anisms at the cellular scale. Hybrid models incorporate discrete agents into these continuous fields to
provide a local and global perspective of tumor dynamics [98]. As a result, stochastic probabilities are
preserved on the cellular scale, while environmental trends can be standardized with continuous PDEs
to reduce simulation load [9].

Robertson-Tessi et al. [85] examined how variations in the spatial and temporal field create selec-
tion pressures for the existing tumor cells. The fluctuations in environmental factors are modeled as
reaction-diffusion functions that interact with cellular automata agent cells on a lattice. A standard
diffusible molecule has a concentration modeled as

∂C
∂t
= D∇2C + f (C,p) (4.1)

where D is the diffusion constant, and f is the function for production/consumption of the molecule that
depends on the concentration (C(x)) of all extracellular molecules (oxygen, glucose, protons (pH)) and
cell-specific parameters at position x (p(x)) [85]. The Laplacian operator provides a scalar metric for
how these free molecules may diverge from the calculated diffusion gradient due to stochastic tendency.

While this equation provides the foundation for molecular movement, tumor cells are simulated on
a lattice grid with one cell type confined to one grid point. Each phenotype undergoes a decision pro-
cess based on its cell death risk, metabolic state, and nutrient concentrations in that position by solving
Eq (4.1) for each cell position and timestep. As cells gain metabolic/proliferative advantages from
substrate conditions, the tumor experiences organizational and morphological changes that, in turn, af-
fect the environment [85]. Frankenstein et al. [99] shared this approach when modeling prostate tumor
evolution as a result of stromal interactions. The heterogeneity of the tumor/stroma boundary demands
detailed insight into cellular mechanics, so cells are organized on a 2D lattice within a continuum field.
Lopez et al. [100] similarly takes advantage of the alternating scales to explore tumor-immune interac-
tions, restricting cells to orthogonal motion while diffusion of nutrients and growth factors are modeled
by reaction-diffusion equations. Additionally, Messina et al. [101] investigated mechanisms of inva-
siveness and growth by discretizing tumor spheroid in a lattice and modeling the glucose concentration
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field as a continuous function.

Another interesting application is found in Anderson [86], which simultaneously employs continu-
ous and discrete variables, but treats all within a lattice. The author models one discrete variable (tumor
cells) and three continuous concentrations (host tissue, matrix-degradative enzymes (MDE), and O2).
The PDE system of these four variables is discretized to find probabilities of an individual cell’s behav-
ior in its environment. Through this technique, the author follows the stepwise path of an individual
tumor cell. However, certain assumptions must still be made: MDE production and oxygen can only be
nonzero at a grid point when occupied by a cell. Otherwise, it is assumed to be n = 0 during vacancy.
This hybrid approach leans much more heavily into a discrete analysis of tumor growth, and as such,
it requires alterations in how oxygen and MDE are modeled to retain their diffusive properties in a
lattice if they are to be discretized. Suveges et al. [102] and Gallaher et al. [103] further demonstrate
examples of off-lattice cellular entities (allowing greater flexibility and fewer assumptions) within a
continuously modeled ECM.

The hybrid approach also allows for detailed insight into tumor vasculature. Whereas many stan-
dalone discrete models focus on avascular tumors to simplify an already granular simulation, hybrid
models can explore the effects of tumor-induced angiogenesis because they integrate cellular and
tissue-level scales [67, 104, 105]. Stephanou et al. [104], for example, employed a lattice grid to rep-
resent tumor cells and vasculature, as well as continuous equations to model the kinetics of growth
factors, oxygen, and enzymes [104]. With this model, they can successfully simulate tumor-induced
vascular changes observed experimentally through in vivo samples. More examples of hybrid mod-
eling of angiogenesis can be found in Kremheller et al. [106], Phillips et al. [107], and Duswald et
al. [108].

4.2. Multi-resolution

A unique deviation from the literature on hybrid models is found in Wang and Deisboeck [10],
who optimized for a multi-resolution approach. While previous examples consider interactions of both
continuum and discrete variables simultaneously at all locations, these authors use different modeling
techniques on different regions of interest (ROIs) within a single tumor. The discrete function becomes
necessary for small numbers of cells, like at boundary regions. In these regions, discretized agents are
more effective at revealing the significant mechanisms of tumor growth. However, the high compu-
tational power required to simulate discrete entities weakens the algorithm’s applicability if modeling
the entire tumor at large. As a result, a continuum approach captures the homogeneous growth of the
internal mass, neglecting or averaging cell/gene/protein variables.

This establishes a model formula that is hybrid, multi-scale, and multi-resolution, as shown in
Figure 8: High resolution is enabled for ROIs with large datasets requiring maximized predictive
power, but the model optimizes macroscopic continuum techniques where it is possible [10]. Although
the simulation theory is not yet prepared for clinical application, the proposal offers an extremely
effective roadmap of compromise between the advantages of different models. The authors analyze
large-scale environmental changes in the tumor, maintaining the efficiency of low computational cost
while exploring (sub-)cellular dynamics of tumor-host and tumor-tumor interactions at the boundaries
of development.
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Figure 8. Imaging example of distinct ROIs requiring different modeling resolutions, and
therefore different techniques. Green regions depict tumor tissue easily modeled with the
continuum approach, while blue regions represent boundary tissue best modeled with the
discrete approach. From Wang and Deisboeck 2008 [10], used with permission.

4.3. Integrated frameworks

An interesting research pathway that has increased in popularity over the last five years is the inte-
gration of deep learning networks in hybrid tumor growth modeling. Chamseddine and Rejniak [109]
provide a detailed overview of hybrid modeling frameworks–namely, tumor growth models that in-
corporate physics-based models, data-driven models, or optimization models. Physics-based models
include the classical discrete/continuous models, optimization models seek to optimize the system re-
garding a specific criterion, and data-driven models often refer to machine learning approaches.

Recently, the heightened usage of AI has led to the emergence of deep learning (DL) algorithms
in tumor development research [98]. This approach involves training deep neural networks to learn
patterns from imaging or quantitative datasets, often to extrapolate future behaviors. The availability
of medical imaging creates an opportunity for DL algorithms to identify, quantify, and predict patterns
in clinical or experimental data better than standalone discrete/continuum hybrid models. Additionally,
the risk of DL networks overfitting the training set is addressed by employing a large mechanistic
model dataset to fully investigate tumor heterogeneity. The feedback loop between the parameter
optimization of traditional hybrid models and the robust behavior analysis of DL algorithms provides
a strong foundation for a new hybrid modeling framework.

Gerlee and Anderson [25] present an early example of incorporating an artificial neural network in a
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hybrid cellular automata model to study tumor evolution. By simulating cellular pathways with a deep
learning decision mechanism, the model can express a variety of phenotypes and cellular responses to
the environment, adding greater complexity. The authors find a relationship between oxygen concen-
trations influencing tumor growth dynamics and clonal evolutionary dynamics. Much more recently,
Chen et al. [110] constructed a DL algorithm that consolidated imaging data and physics-based models
of tumor growth. The authors chose to solve the PDE system over a specific duration and implement
medical imaging, a routine tool in clinical settings. Training the simulation with both in vitro imaging
of pancreatic cell cultures and mechanistic (PDE) models, the study successfully predicts tumor growth
within patient-specific contexts.

Matin and Setayeshi [111] integrated the cellular automata approach with deep convolution neural
networks to counter the load of a traditional discrete model. The cellular automata helps capture the
localized interactions between tumor cells, but it is unable to recognize complex global patterns and
extrapolate from them. Rather than restricting their model to repetitive, computationally expensive
Boolean processing, the authors leverage DL algorithms to understand behaviors, find patterns, and
generate predictions about future growth trends. Both cellular automata and DL networks share the
ability to process individual units simultaneously, whether these units are cells in a lattice or pixels in
an image. This fundamental compatibility allows for the integration of both into a single simulation.
The author’s hybridized model explores both the microscopic, cellular dynamics as well as the macro-
scopic, population-level changes that tumors undergo. The resulting model is scalable and adaptable to
new conditions, parameter settings, or patient-specific contexts. Amanzholova and Coskun [112] sim-
ilarly constructed a hybrid AI-based model to predict the emergence of cancers, for timely detection
and treatment. Incorporating the DL approach with traditional hybrid simulations has created a more
effective, timely, and practical alternative to current diagnosis methods and treatment assessments.

Further investigation is required to fully integrate DL neural network algorithms in traditional mod-
els, as AI continues to advance rapidly. Its applicability to tumor development, and more specif-
ically mechanistic modeling of tumor development, harbors strong potential in updating diagnostic
approaches, facilitating medical imaging, and improving clinical assessments.

5. Conclusions

In this paper, we survey the current literature on cancer growth modeling, discussing continuum,
discrete, and hybrid approaches. Each modeling approach is explored for its advantages, disadvantages,
appropriate scenarios for application, and potential areas for additional investigation.

Continuum models typically treat the tumor as a continuous mass, focusing on tumor-level popula-
tion growth rather than individual cell behaviors. Exponential models, which assume constant condi-
tions of space and nutrients, have demonstrated success in modeling early phases of growth or small
windows of data collection, but become inaccurate as the cancer matures. Depleting nutrients, angio-
genesis, and cell death decrease the growth rate, leading to the more prevalent use of limited growth
models. Among these, logistic and Gompertzian growth curves fit and predict experimental data but
lack biological motivations for their successes. On the other hand, Bertalanffy models, which also cap-
ture complex trends with a strong model fit, have a physiological basis rooted in metabolic growth and
decline. This model requires further research to determine appropriate scenarios for use, such as stages
of growth, specific conditions within tumors, and experimental or clinical settings. Reaction-diffusion
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models, a class of PDE simulations, are an example of continuous models that have been successfully
applied to patient-specific circumstances, especially for brain cancer research. Future directions for
reaction-diffusion models include applying successful non-glioma simulations to address the lack of
clinically available parameters and model simplicity of glioma cases. In many instances, the contin-
uum approach does not resolve the heterogeneity of cellular behaviors and phenotypes, and calibration
of population data to parameter quantities requires repetitive testing to determine accurate values.

Discrete models explore tumor development through cell-scale interactions, where cells move
through discrete time and space systems with predetermined rules for proliferation. Implementing
these models often requires considerations of parameter availability, the complexity required, the ac-
ceptable computational load, and the decision of a lattice-based or lattice-free approach. Cellular
automata, a lattice approach based on the Game of Life simulation, confines cellular agents to a grid.
Successful cellular automata models that simulate tumor spatiotemporal evolution have used prede-
termined matrix sizes or lattice borders that dynamically expand with the tumor, which increases the
computational load. Recent tools such as coded arrays and 3D parallelization can be integrated to im-
prove model accuracy while reducing load constraints, and these techniques should be implemented
to understand the extent of their scalability and applicability to different circumstances. Agent-based
models allow more flexibility in spatial organizations by not using a lattice grid, but the demand to
reprocess the exact organization of cells every generation requires more computational effort. These
models are especially effective in modeling irregularly arranged cells or highly motile cells, such as in
the cases of angiogenesis and metastasis, or cancers like DCIS. They can simulate unknown or stochas-
tic behaviors like phenotypes and mutations, but this approach is often restricted to small populations
or short durations because of its heightened complexity.

Hybrid models traditionally combine continuum and discrete approaches, and these mechanistic
models often model cells as discrete agents over a continuous field of nutrients, growth factors, and en-
zymes, which diffuse throughout the tissue. The integration of both model formats helps resolve issues
of either approach, including computational load and simplistic simulations by being more flexible
in the scales it employs and the detail it demands. More recently, hybrid frameworks have expanded
to include the integration of different model classes, such as physics-based models, data-driven mod-
els, and optimization models. The recent popularity of AI has encouraged the use of DL algorithms
in mechanistic modeling. These neural networks drastically improve how models diagnose current
growth from medical imaging and forecast future growth by extrapolating behavior. DL enhances the
predictive capabilities of discrete and continuous models, and they show a promising avenue for future
research in tumor modeling.

We leave off with two suggestions for continued exploration, based on the limitations identified
in the reviewed models. First, as literature is becoming increasingly dependent on imaging scans to
build and refine simulations, this data must be regularly compiled, published, and maintained for dif-
ferent tumor types and stages in publicly available datasets. Access to high-resolution and robust data
is paramount for scientists to set initial parameters for simulations, as well as the overall predictive
applicability of future models. Moreover, model validity must depend on the biological justification
for future success. Different models we cover have different goals: understanding tumor dynamics and
development, predicting growth, or integrating experimental/imaging data. However, all methodolo-
gies must be firmly rooted in biological justifications for future adjustments or adaptations to other
models. Even experimentally derived algorithms depend on biological explanations so that scientific
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knowledge of tumor behavior can grow alongside the robustness of the models.
Modeling is already lauded as an important tool for advancing scientific understanding of complex

biological processes. For a phenomenon as diverse as cancer development, models offer a standard-
ized approach to cancer research and clinical cases. These reviewed in silico approaches demonstrate
enormous potential in being leveraged to improve patient outcomes.
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20. P. Castorina, D. Carcò, C. Guiot, T. S. Deisboeck, Tumor growth instability and its implications
for chemotherapy, Cancer Res., 69 (2009), 8507–8515. https://doi.org/10.1158/0008-5472.CAN-
09-0653

21. J. T. Oden, E. A. B. F. Lima, R. C. Almeida, Y. Feng, M. N. Rylander, D. Fuentes, et al.,
Toward predictive multiscale modeling of vascular tumor growth: computational and exper-
imental oncology for tumor prediction, Arch. Comput. Methods Eng., 23 (2016), 735–779.
https://doi.org/10.1007/s11831-015-9156-x

22. A. M. Jarrett, E. A. B. F. Lima, D. A. Hormuth, M. T. McKenna, X. Fent, D. A. Ekrut, et al.,
Mathematical models of tumor cell proliferation: A review of the literature, Expert Rev. Anticancer
Ther., 18 (2018), 1271–1286. https://doi.org/10.1080/14737140.2018.1527689

23. H. Murphy, J. Jaafari, H. M. Dobrovolny, Differences in predictions of ODE mod-
els of tumor growth: a cautionary example, BMC Cancer, 16 (2016), 1471–2407.
https://doi.org/10.1186/s12885-016-2164-x

24. B. Heesterman, J. Bokhorst, L. De Point, B. Verbist, J. Bayley, A. Van Der Mey, et al., Mathemat-
ical models for tumor growth and the reduction of overtreatment, J. Neurol. Surg. B., 80 (2019),
72–78. https://doi.org/10.1055/s-0038-1667148

Mathematical Biosciences and Engineering Volume 21, Issue 7, 6659–6693.

https://dx.doi.org/https://doi.org/10.1007/s10820-008-9094-0
https://dx.doi.org/https://doi.org/10.5402/2012/828701
https://dx.doi.org/https://doi.org/10.1186/s12859-016-1010-0
https://dx.doi.org/https://doi.org/10.1002/wsbm.75
https://dx.doi.org/https://doi.org/10.1038/s41588-020-0624-3
https://dx.doi.org/https://doi.org/10.1158/0008-5472.CAN-05-3166
https://dx.doi.org/https://doi.org/10.1002/sapm1972514317
https://dx.doi.org/https://doi.org/10.1016/j.cell.2006.09.042
https://dx.doi.org/https://doi.org/10.1007/s00285-008-0212-0
https://dx.doi.org/https://doi.org/10.1158/0008-5472.CAN-09-0653
https://dx.doi.org/https://doi.org/10.1158/0008-5472.CAN-09-0653
https://dx.doi.org/https://doi.org/10.1007/s11831-015-9156-x
https://dx.doi.org/https://doi.org/10.1080/14737140.2018.1527689
https://dx.doi.org/https://doi.org/10.1186/s12885-016-2164-x
https://dx.doi.org/https://doi.org/10.1055/s-0038-1667148


6687

25. P. Gerlee, A. R. A. Anderson, An evolutionary hybrid cellular automaton model of solid tumour
growth, J. Theor. Biol., 246 (2007), 583–603. https://doi.org/10.1016/j.jtbi.2007.01.027

26. N. M. Dimitriou, E. Demirag, K. Strati, G. D. Mitsis, A calibration and uncertainty quantification
analysis of classical, fractional and multiscale logistic models of tumour growth, Comput. Methods
Programs Biomed., 243 (2024), 107920. https://doi.org/10.1016/j.cmpb.2023.107920

27. H. J. Huber, H. B. Mistry, Explaining in-vitro to in-vivo efficacy correlations in oncology pre-
clinical development via a semi-mechanistic mathematical model, J. Pharmacokinet. Pharmaco-
dyn., 51 (2024), 169–185. https://doi.org/10.1007/s10928-023-09891-7

28. D. Tatro, The Mathematics of Cancer: Fitting the Gompertz Equation to Tumor Growth, Ph.D
thesis, Bard College, 2018.

29. P. Gerlee, The model muddle: In search of tumor growth laws, Cancer Res., 73 (2013), 2407–
2411. https://doi.org/10.1158/0008-5472.CAN-12-4355

30. A. Talkington, R. Durrett, Estimating tumor growth laws in vivo, Bull. Math. Biol., 77 (2015),
1934–1954. https://doi.org/10.1007/s11538-015-0110-8

31. C. Vaghi, A. Rodallec, R. Fanciullino, J. Ciccolini, J. P. Mochel, M. Mastri, et al., Pop-
ulation modeling of tumor growth curves and the reduced Gompertz model improve pre-
diction of the age of experimental tumors, PLoS Comput. Biol., 16 (2020), e1007178.
https://doi.org/10.1371/journal.pcbi.1007178

32. S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. L. Ebos, L. Hlatky, et al., Classical mathe-
matical models for description and prediction of experimental tumor growth, PLoS Comput. Biol.,
10 (2014), e1003800. https://doi.org/10.1371/journal.pcbi.1003800

33. S. Vieira, R. Hoffman, Comparison of the logistic and the Gompertz growth functions
considering additive and multiplicative error terms, J. R. Stat., 26 (1977), 143–148.
https://doi.org/10.2307/2347021

34. N. M. Dimitriou, S. Flores-Torres, J. M. Kinsella, G. D. Mitsis, Quantifying the mor-
phology and mechanisms of cancer progression in 3D in-vitro environments: Integrating
experiments and multiscale models, IEEE Trans. Biomed. Eng., 70 (2023), 1318–1329.
https://doi.org/10.1109/TBME.2022.3216231

35. N. C. Atuegwu, L. R. Arlinghaus, X. Li, A. B. Chakravarthy, V. G. Abramson, M. E. Sanders, et
al., Parameterizing the logistic model of tumor growth by DW-MRI and DCE-MRI data to predict
treatment response and changes in breast cancer cellularity during neoadjuvant chemotherapy,
Transl. Oncol., 6 (2013), 256–264. https://doi.org/10.1593/tlo.13130

36. A. K. Laird, Dynamics of tumor growth, Br. J. Cancer, 18 (1964), 490–502.
https://doi.org/10.1038/bjc.1964.55

37. B. Gompertz, XXIV. On the nature of the function expressive of the law of human mortality, and
on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F.
R. S. &c, Phil. Trans. R. Soc., 115 (1825), 513–583. https://doi.org/10.1098/rstl.1825.0026

38. C. L. Frenzen, J. D. Murray, A cell kinetics justification for Gompertz’ Equation, SIAP, 46 (1986),
614–629. https://doi.org/10.1137/0146042

Mathematical Biosciences and Engineering Volume 21, Issue 7, 6659–6693.

https://dx.doi.org/https://doi.org/10.1016/j.jtbi.2007.01.027
https://dx.doi.org/https://doi.org/10.1016/j.cmpb.2023.107920
https://dx.doi.org/https://doi.org/10.1007/s10928-023-09891-7
https://dx.doi.org/https://doi.org/10.1158/0008-5472.CAN-12-4355
https://dx.doi.org/https://doi.org/10.1007/s11538-015-0110-8
https://dx.doi.org/https://doi.org/10.1371/journal.pcbi.1007178
https://dx.doi.org/https://doi.org/10.1371/journal.pcbi.1003800
https://dx.doi.org/https://doi.org/10.2307/2347021
https://dx.doi.org/https://doi.org/10.1109/TBME.2022.3216231
https://dx.doi.org/https://doi.org/10.1593/tlo.13130
https://dx.doi.org/https://doi.org/10.1038/bjc.1964.55
https://dx.doi.org/https://doi.org/10.1098/rstl.1825.0026


6688

39. R. Chignola, A. Schenetti, G. Andrighetto, E. Chiesa, R. Foroni, S. Sartoris, et al., Forecasting the
growth of multicell tumour spheroids: implications for the dynamic growth of solid tumours, Cell
Prolif., 33 (2000), 219–229. https://doi.org/10.1046/j.1365-2184.2000.00174.x

40. L. Von Bertalanffy, Quantitative laws in metabolism and growth, Q. Rev. Biol., 32 (1957), 217–
231. https://doi.org/10.1086/401873

41. K. Renner-Martin, N. Brunner, M. Kühleitner, W. G. Nowak, K. Scheicher, On the exponent in the
Von Bertalanffy growth model, PeerJ, 6 (2018), e4205. https://doi.org/10.7717/peerj.4205

42. H. H. Diebner, T. Zerjatke, M. Griehl, I. Roeder, Metabolism is the tie: The Bertalanffy-type
cancer growth model as common denominator of various modelling approaches, Biosystems, 167
(2018), 1–23. https://doi.org/10.1016/j.biosystems.2018.03.004

43. K. C. L. Wong, R. M. Summers, E. Kebebew, J. Yao, Tumor growth prediction with reaction-
diffusion and hyperelastic biomechanical model by physiological data fusions, MedIA, 25 (2015),
72–85. https://doi.org/10.1016/j.media.2015.04.002

44. R. A. Gatenby, E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56
(1996), 5745–5753.

45. V. Cristini, J. Lowengrub, Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46 (2003),
191–224. https://doi.org/10.1007/s00285-002-0174-6

46. C. Hogea, C. Davatzikos, G. Biros, An image-driven parameter estimation problem for a re-
action–diffusion glioma growth model with mass effects, J. Math. Biol., 56 (2008), 793–825.
https://doi.org/10.1007/s00285-007-0139-x

47. O. Clatz, M. Sermesant, P. Y. Bondiau, H. Delingette, S. K. Warfield, G. Malandain, et
al., Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffu-
sion with biomechanical deformation, IEEE Trans. Med. Imaging, 24 (2005), 1334–1346.
https://doi.org/10.1109/TMI.2005.857217

48. X. Chen, R. M. Summers, J. Yao, Kidney tumor growth prediction by coupling reaction-
diffusion and biomechanical model, IEEE Trans. Biomed. Eng., 60 (2013), 169–173.
https://doi.org/10.1109/TBME.2012.2222027

49. E. Konukoglu, O. Clatz, P. Bondiau, H. Delingette, N. Ayache, Extrapolating glioma invasion mar-
gin in brain magnetic resonance images: Suggesting new irradiation margins, MedIA, 14 (2010),
111–125. https://doi.org/10.1016/j.media.2009.11.005

50. Y. Liu, S. M. Sadowski, A. B. Weisbrod, E. Kebebew, R. M. Summers, J. Yao, Patient
specific tumor growth prediction using multimodal images, MedIA, 18 (2014), 555–566.
https://doi.org/10.1016/j.media.2014.02.005

51. B. H. Menze, K. Van Leemput, A. Honkela, E. Konukoglu, M. Weber, N. Ayache, et al., A gener-
ative approach for image-based modeling of tumor growth, in Information Processing in Medical
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