Research article Special Issues

Mathematical modeling in semelparous biological species through two-sex branching processes

  • Received: 14 February 2024 Revised: 29 May 2024 Accepted: 12 June 2024 Published: 27 June 2024
  • This research focused its interest on the mathematical modeling of the demographic dynamics of semelparous biological species through branching processes. We continued the research line started in previous papers, providing new methodological contributions of biological and ecological interest. We determined the probability distribution associated with the number of generations elapsed before the possible extinction of the population in its natural habitat. We mathematically modeled the phenomenon of populating or repopulating habitats with semelparous species. We also proposed estimates for the offspring parameters governing the reproductive strategies of the species. To this purpose, we used the maximum likelihood and Bayesian estimation methodologies. The statistical results are illustrated through a simulated example contextualized with Labord chameleon (Furcifer labordi) species.

    Citation: Manuel Molina, Manuel Mota, Alfonso Ramos. Mathematical modeling in semelparous biological species through two-sex branching processes[J]. Mathematical Biosciences and Engineering, 2024, 21(6): 6407-6424. doi: 10.3934/mbe.2024280

    Related Papers:

  • This research focused its interest on the mathematical modeling of the demographic dynamics of semelparous biological species through branching processes. We continued the research line started in previous papers, providing new methodological contributions of biological and ecological interest. We determined the probability distribution associated with the number of generations elapsed before the possible extinction of the population in its natural habitat. We mathematically modeled the phenomenon of populating or repopulating habitats with semelparous species. We also proposed estimates for the offspring parameters governing the reproductive strategies of the species. To this purpose, we used the maximum likelihood and Bayesian estimation methodologies. The statistical results are illustrated through a simulated example contextualized with Labord chameleon (Furcifer labordi) species.


    加载中


    [1] E. Ranta, D. Tesar, V. Kaitala, Environmental variability and semelparity vs. iteroparity as life histories, J. Theor. Biol., 217 (2002), 391–396. https://doi.org/10.1006/jtb.2002.3029 doi: 10.1006/jtb.2002.3029
    [2] A. Margalida, M. Colomer, D. Oro, R. Arlettaz, J. Donázar, Assesing the impact of removal scenarios on population viability of a threatened long-lived avian scavenger, Sci. Rep., 5 (2015), 16962. https://doi.org/10.1038/srep16962 doi: 10.1038/srep16962
    [3] H. Tauler, J. Real, A. Hernández-Matías, P. Aymerich, J. Baucells, C. Martorell, et al., Identifying key demographic parameters for the viability of a growing population of the endangered Egyptian Vulture Neophron pernopterus, Bird Conserv. Int., 25 (2015), 246–439. https://doi.org/10.1017/S0959270914000392 doi: 10.1017/S0959270914000392
    [4] M. J. Faddy, Stochastic compartmental models as approximations to more general stochastic systems with the general stochastic epidemic as an example, Adv. Appl. Probab., 9 (1977), 448–461. https://doi.org/10.2307/1426108 doi: 10.2307/1426108
    [5] J. H. Matis, T. E. Wehrly, Stochastic models of compartmental systems, Biometrics, 35 (1979), 199–220. https://doi.org/10.2307/2529945 doi: 10.2307/2529945
    [6] K. B. Athreya, P. E. Ney, Branching Processes, Springer-Verlag Berlin, Heidelberg, 1972. https://doi.org/10.1007/978-3-642-65371-1
    [7] P. Guttorp, Statistical Inference for Branching Processes, Wiley, New York, 1991.
    [8] P. Haccou, P. Jagers, V. Vatutin, Branching Processes: Variation, Growth, and Extinction of Population, Cambridge University Press, Cambridge, 5 (2005).
    [9] I. Pázsit, Symmetries and asymmetries in branching processes, Symmetry, 15 (2023), 1154. http://doi.org/10.3390/sym15061154 doi: 10.3390/sym15061154
    [10] L. A. Keating, J. P. Gleeson, D. J. O'Sullivan, Multitype branching process method for modeling complex contagion on clustered networks, Phys. Rev. E, 105 (2022), 034306. http://doi.org/10.1103/PhysRevE.105.034306 doi: 10.1103/PhysRevE.105.034306
    [11] D. M. Hull, A survey of the literature associated with the bisexual Galton-Watson branching process, Extracta Math., 18 (2003), 321–343.
    [12] M. Molina, Two-sex branching process literature, in Workshop on Branching Processes and Their Applications, Springer Berlin Heidelberg, Berlin, 197 (2010), 279–293. https://doi.org/10.1007/978-3-642-11156-3-20
    [13] D. J. Daley, D. M. Hull, J. M. Taylor, Bisexual Galton-Watson branching processes with superadditive mating functions, J. Appl. Probab., 23 (1986), 585–600. https://doi.org/10.2307/3213999 doi: 10.2307/3213999
    [14] D. M. Hull, A necessary condition for extinction in those bisexual Galton-Watson branching processes governed for superadditive mating functions, J. Appl. Probab., 19 (1982), 847–850. https://doi.org/10.2307/3213838 doi: 10.2307/3213838
    [15] S. Ma, Y. Xing, The asymptotic properties of supercritical bisexual Galton-Watson branching processes with immigration of mating units, Acta Math. Sci., 26 (2006), 603–609. https://doi.org/10.1016/S0252-9602(06)60086-6 doi: 10.1016/S0252-9602(06)60086-6
    [16] M. Molina, C. Jacob, A. Ramos, Bisexual branching processes with offspring and mating depending on the number of couples in the population, Test, 17 (2008), 265–281. https://doi.org/10.1007/s11749-006-0031-9 doi: 10.1007/s11749-006-0031-9
    [17] Y. Xing, Y. Wang, On the extinction of one class of population-size dependent bisexual branching processes, J. Appl. Probab., 42 (2005), 175–184. https://doi.org/10.1239/jap/1110381379 doi: 10.1239/jap/1110381379
    [18] Y. Xing, Y. Wang, On the extinction of population-size dependent bisexual Galton-Watson processes, Acta Math. Sci., 42 (2008), 210–216. https://doi.org/10.1016/S0252-9602(08)60022-3 doi: 10.1016/S0252-9602(08)60022-3
    [19] M. Molina, M. Mota, A. Ramos, Stochastic modeling in biological populations with sexual reproduction through branching models: application to coho salmon populations, Math. Biosci., 258 (2014), 182–188. https://doi.org/10.1016/j.mbs.2014.10.007 doi: 10.1016/j.mbs.2014.10.007
    [20] M. Molina, M. Mota, A. Ramos, Two-sex branching processes with several mating and reproduction strategies: Extinction versus survival, Branching Processes Appl., 219 (2016), 307–317. https://doi.org/10.1007/978-3-319-31641-3-18 doi: 10.1007/978-3-319-31641-3-18
    [21] M. Molina, M. Mota, A. Ramos, Estimation of parameters in biological species with several mating and reproduction alternatives, Math. Biosci., 329 (2020), 108471. https://doi.org/10.1016/j.mbs.2020.108471 doi: 10.1016/j.mbs.2020.108471
    [22] V. K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley, New York, 1976.
    [23] B. W. Silverman, Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1986.
    [24] R Development Core Team, a Language and Enviroment for Statistical Computing, 2009. Available from: http://www.r-project.org.
    [25] K. B. Karsten, L. N. Andriamandimbiarisoa, S. F. Fox, C. J. Raxworthy, A unique life history among tetrapods: An annual chameleon living mostly as an egg, Proc. Natl. Acad. Sci. USA, 105 (2008), 8980–8984. https://doi.org/10.1073/pnas.0802468105 doi: 10.1073/pnas.0802468105
    [26] F. Eckhardt, P. M. Kappeler, C. Kraus, Highly variable lifespan in an annual reptile, Labord's chameleon (Furcifer labordi), Sci. Rep., 7 (2017), 11397. https://doi.org/10.1038/s41598-017-11701-3 doi: 10.1038/s41598-017-11701-3
    [27] F. Eckhardt, A Short Story: Senescence in an Annual Reptile, Labord's Cahameleon (Furcifer Labordi), Ph.D thesis, Georg-August University School of Science, 2019. Available from: http://dx.doi.org/10.53846/goediss-8355.
    [28] L. Hudei, P. M. Kappeler, Sex-specific movement ecology of the shortest-lived tetrapod during the mating season, Sci. Rep., 12 (2022), 10053. https://doi.org/10.1038/s41598-022-14156-3 doi: 10.1038/s41598-022-14156-3
    [29] J. Ewald, P. Sieber, R. Garde, S. N. Lang, S. Schuster, B. Ibrahim, Trend in mathematical modeling of host-pathogen interactions, Cell. Mol. Life Sci., 77 (2020), 467–480. https://doi.org/10.1007/s00018-019-03382-0 doi: 10.1007/s00018-019-03382-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(576) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog