We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms. The determined parameter values closely align with experimental data, providing insights into the mechanisms that govern Geobacter proliferation. Furthermore, the model has been transformed into a scaleless equation with only two parameters to simplify the exploration of qualitative properties. This allowed us to conduct stability analysis of the fixed point and construct a co-dimension two bifurcation diagram.
Citation: Virgínia Villa-Cruz, Sumaya Jaimes-Reátegui, Juana E. Alba-Cuevas, Lily Xochilt Zelaya-Molina, Rider Jaimes-Reátegui, Alexander N. Pisarchik. Quantifying Geobacter sulfurreducens growth: A mathematical model based on acetate concentration as an oxidizing substrate[J]. Mathematical Biosciences and Engineering, 2024, 21(5): 5972-5995. doi: 10.3934/mbe.2024263
We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms. The determined parameter values closely align with experimental data, providing insights into the mechanisms that govern Geobacter proliferation. Furthermore, the model has been transformed into a scaleless equation with only two parameters to simplify the exploration of qualitative properties. This allowed us to conduct stability analysis of the fixed point and construct a co-dimension two bifurcation diagram.
[1] | A. M. Romero, J. A. Vásquez, Bacteria, source of energy for the future, Tecnura, 16 (2012), 117–142. https://doi.org/10.14483/udistrital.jour.tecnura.2012.2.a10 doi: 10.14483/udistrital.jour.tecnura.2012.2.a10 |
[2] | L. Lui, S. Grot, B. E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci. Technol., 39 (2005), 4317–4320. https://doi.org/10.1021/es050244p doi: 10.1021/es050244p |
[3] | L. Lui, S. Grot, B. E. Logan, A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnol. Adv., 25 (2007), 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004 doi: 10.1016/j.biotechadv.2007.05.004 |
[4] | D. M. Revelo, N. H. Hurtado, J. O. Ruiz, Celdas de combustible microbianas (CCMs): Un reto para la remoción de materia orgánica y la generación de energía eléctrica, Información Tecnológica, 24 (2013), 17–28. http://dx.doi.org/10.4067/S0718-07642013000600004 doi: 10.4067/S0718-07642013000600004 |
[5] | D. R. Lovley, Dissimilatory metal reduction, Annu. Rev. Microbiol., 47 (1993), 263–290. https://doi.org/10.1146/annurev.mi.47.100193.001403 doi: 10.1146/annurev.mi.47.100193.001403 |
[6] | M. Aklujkar, D. R. Lovley, Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus, BMC Evol. Biol., 10 (2010), 1–15. https://doi.org/10.1186/1471-2148-10-230 doi: 10.1186/1471-2148-10-230 |
[7] | M. V. Coppi, C. Leang, S. J. Sandler, D. R. Lovley, Development of a genetic system for Geobacter sulfurreducens, Appl. Environ. Microbiol., 1 (2001), 3180–3187. https://doi.org/10.1128/AEM.67.7.3180-3187.2001 doi: 10.1128/AEM.67.7.3180-3187.2001 |
[8] | J. R. Kim, B. Min, B. C. Logan, Evaluation of procedures to acclimate a microbial fuel cell for electricity production, Appl. Microbiol. Biotechnol., 68 (2005), 23–30. https://doi.org/10.1007/s00253-004-1845-6 doi: 10.1007/s00253-004-1845-6 |
[9] | J. R. Lloyd, C. Leang, A. L. Hodges Myerson, M. V. Coppi, B. Methe, S. J. Sandler, Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens, Biochem. J., 369 (2001), 153–161. https://doi.org/10.1042/bj20020597 doi: 10.1042/bj20020597 |
[10] | I. Park, B. C. Kim, Homologous overexpression of omcZ, a gene for an outer surface c-type cytochrome of Geobacter sulfurreducens by single-step gene replacement, Biotechnol. Lett., 33 (2011), 2043–2048. https://doi.org/10.1007/s10529-011-0668-7 doi: 10.1007/s10529-011-0668-7 |
[11] | J. B. Rollefson, C. E. Levar, D. R. Bond, Identification of genes involved in biofilm formation and respiration via mini-Himar transposon mutagenesis of Geobacter sulfurreducens, J. Bacteriol., 191 (2009), 4207–4217. https://journals.asm.org/doi/10.1128/jb.00057-09 doi: 10.1128/jb.00057-09 |
[12] | T. Ueki, D. R. Lovley, Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species, Nucleic Acid. Res., 38 (2010), 810–821. https://doi.org/10.1093/nar/gkp1085 doi: 10.1093/nar/gkp1085 |
[13] | F. Caccavo, Jr., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, M. J. Mclnerney, Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism, Appl. Environ. Microbiol., 60 (1994), 3752–3759. https://doi.org/10.1128/aem.60.10.3752-3759.1994 doi: 10.1128/aem.60.10.3752-3759.1994 |
[14] | D. R. Lovley, E. J. P. Phillips, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese Appl. Environ. Microbiol., 54 (1988), 1472–1480. https://doi.org/10.1128/aem.54.6.1472-1480.1988 doi: 10.1128/aem.54.6.1472-1480.1988 |
[15] | D. R. Lovley, E. J. P. Phillips, Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments Appl. Environ. Microbiol., 53 (1987), 2636–2641. https://doi.org/10.1128/aem.53.11.2636-2641.1987 doi: 10.1128/aem.53.11.2636-2641.1987 |
[16] | D. R. Lovley, Powering microbes with electricity: direct electron transfer from electrodes to microbes, Environ. Microbiol. Rep., 3 (2011), 27–35. https://doi.org/10.1111/j.1758-2229.2010.00211.x doi: 10.1111/j.1758-2229.2010.00211.x |
[17] | J. E. Butler, R. H. Glaven, A. Esteve-Nuñez, C. Nuñez, E. S. Shelobolina, D. R. Bond, et al., Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens, J. Bacteriol., 188 (2006), 450–455. https://doi.org/10.1128/jb.188.2.450-455.2006 doi: 10.1128/jb.188.2.450-455.2006 |
[18] | D. R. Lovley, Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy, Rev. Environ. Sci. Biol., 10 (2011), 101–105. https://doi.org/10.1007/s11157-011-9236-9 doi: 10.1007/s11157-011-9236-9 |
[19] | R. T Anderson, J. N. Rooney-Varga, C. V. Gaw, D. R. Lovley, Anaerobic benzene oxidation in the Fe (Ⅲ) reduction zone of petroleum-contaminated aquifers, Environ. Sci. Technol., 32 (1998), 1222–1229. https://doi.org/10.1021/es9704949 doi: 10.1021/es9704949 |
[20] | D. E. Holmes, D. R. Bond, R. A. O'Neil, C. E. Reimers, L. R. Tender, D. R. Lovley, Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments, Microb. Ecol., 48 (2004), 178–190. https://doi.org/10.1007/s00248-003-0004-4 doi: 10.1007/s00248-003-0004-4 |
[21] | K. P. Nevin, B. C. Kim., R. H. Glaven, J. P. Johnson, T. L. Woodard, B. A. Methé, et al., Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells, PLoS One, 4 (2009), 1–11. https://doi.org/10.1371/journal.pone.0005628 doi: 10.1371/journal.pone.0005628 |
[22] | D. R. Lovley, Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer, Appl. Environ. Microbiol., 65 (1999), 3056–3063. https://doi.org/10.1128/AEM.65.7.3056-3063.1999 doi: 10.1128/AEM.65.7.3056-3063.1999 |
[23] | D. R. Lovley, Cleaning up with genomics: Applying molecular biology to bioremediation, Nat. Rev. Microbiol., 1 (2003), 34–44. https://doi.org/10.1038/nrmicro731 doi: 10.1038/nrmicro731 |
[24] | A. E. Rotaru, P. M. Shrestha, F. Liu, B. Markovaite, S. Chen, K. P. Nevin, et al., Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri, Appl. Environ. Microbiol., 2014 (80), 4599–4605. https://doi.org/10.1128/AEM.00895-14 |
[25] | A. L. N'Guessan, H. A Vrionis, C. T. Resch, P. E. Long, D. R. Lovley, Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction, Environ. Sci. Technol., 2008 (42), 2999–3004. https://doi.org/10.1021/es071960p |
[26] | K. H. Williams, J. R. Bargar, J. R. Lloyd, D. R. Lovley, Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry, Curr. Opin. Biotechnol., 2013 (24), 489–497. https://doi.org/10.1016/j.copbio.2012.10.008 |
[27] | V. M. Pérez-García, S. Fitzpatrick, L. A. Pérez-Romasanta, M. Pesic, P. Schucht, E. Arana, et al., Applied mathematics and nonlinear sciences in the war on cancer, Appl. Math. Nonlin, Sci., 1 (2016), 423–436. https://doi.org/10.21042/AMNS.2016.2.00036 doi: 10.21042/AMNS.2016.2.00036 |
[28] | A. R. Anderson, V. Quaranta, Integrative mathematical oncology, Nat. Rev. Cancer, 8 (2008), 227–234. https://doi.org/10.1038/nrc2329 doi: 10.1038/nrc2329 |
[29] | L. C. Burnett, G. Lunn, R. Coico, Biosafety: guidelines for working with pathogenic and infectious microorganisms, Curr. Protoc. Microbiol., 13 (2009), 1A.1.1-1A.1.14. https://doi.org/10.1002/9780471729259.mc01a01s13 doi: 10.1002/9780471729259.mc01a01s13 |
[30] | J. P. O'Brien, M. Nikhil, A simple and low-cost procedure for growing Geobacter sulfurreducens cell cultures and biofilms in bioelectrochemical systems, Curr. Protoc. Microbiol., 43 (2016), 1–27. https://doi.org/10.1002/cpmc.20 doi: 10.1002/cpmc.20 |
[31] | F. Caccavo, Jr., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, M. McInerney, Geobacter sulfurreducens sp. nov., a hydrogen- and acetate- oxidizing dissimilatory metal-reducing microorganism, Appl. Environ.l Microbiol., 60 (1994), 3753–3759. https://doi.org/10.1128/aem.60.10.3752-3759.1994 doi: 10.1128/aem.60.10.3752-3759.1994 |
[32] | R. Mahadevan, D. R Bond, J. Butler, A. Esteve‐Núñez, M. V. Coppi, B. O. Palsson, et al., Characterization of metabolism in the Fe(Ⅲ)-reducing organism Geobacter sulfurreducens by constraint-based modeling, Appl. Environ. Microbiol., 72 (2006), 1558–1568. https://doi.org/10.1128/AEM.72.2.1558-1568.2006 doi: 10.1128/AEM.72.2.1558-1568.2006 |
[33] | A. Esteve‐Núñez, M. Rothermich, M. Sharma, D. R. Lovley, Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture, Environ. Microbiol., 7 (2005), 641–648. https://doi.org/10.1111/j.1462-2920.2005.00731.x doi: 10.1111/j.1462-2920.2005.00731.x |
[34] | T. Khare, A. Esteve‐Núñez, K. P. Nevin, W. Zhu, J. R.Yates, D. R. Lovley, et al., Differential protein expression in the metal‐reducing bacterium Geobacter sulfurreducens strain PCA grown with fumarate or ferric citrate, Proteomics, 6 (2006), 632–640. https://doi.org/10.1002/pmic.200500137 doi: 10.1002/pmic.200500137 |
[35] | M. Izallalen, R. Mahadevan, A. P. Burgard, B. L. Postier, R. J. DiDonato, J. Sun, et al., Geobacter sulfurreducens strain engineered for increased rates of respiration, Metab. Eng., 10 (2008), 267–275. https://doi.org/10.1016/j.ymben.2008.06.005 doi: 10.1016/j.ymben.2008.06.005 |
[36] | D. Ludwig, D. D. Jones, C. S. Holling, Qualitative analysis of insect outbreak systems: the spruce budworm and forest, J. Anim. Ecol., 47 (1978), 315–332. doi/10.7208/chicago/9780226125534-035 doi: 10.7208/chicago/9780226125534-035 |
[37] | S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering, 2$^{nd}$ edition, CRC Press, Boca Raton, 2018. https://doi.org/10.1201/9780429492563 |
[38] | C. S. Holling, The components of predation as revealed by a study of small mammal predation on the European pine sawfly, Can. Entomol., 91 (1959), 293–320. https://doi.org/10.4039/Ent91293-5 doi: 10.4039/Ent91293-5 |
[39] | V. M. Pérez-García, L. E. Ayala-Hernández, J. Belmonte-Beitia, P. Schucht, M. Murek, A. Raabe, et al., Computational design of improved standardized chemotherapy protocols for grade Ⅱ oligodendrogliomas, PLoS Comput. Biol., 15 (2019), 1–17. https://doi.org/10.1371/journal.pcbi.1006778 doi: 10.1371/journal.pcbi.1006778 |
[40] | K. M. Pruitt, R.E. DeMuth, M.E. Turner, Jr., Practical applications of generic growth theory and the significance of the growth curve parameters, Growth, 43 (1979), 19–35. PMID: 378773 |
[41] | K. M. Pruitt, M.E. Turner, Jr., A kinetic theory for analysis of complex systems, In: Biomolecular Structure and Function, (Agris, P.F., ed.) (1978), pp. 257–265, Academic Press, New York. https://api.semanticscholar.org/CorpusID: 100258726 |
[42] | R. J. Allen, B. K. Waclaw, Bacterial growth: a statistical physicist's guide, Rep. Prog. Phys., 82 (2018), 016601. https://doi.org/10.1088/1361-6633/aae546 doi: 10.1088/1361-6633/aae546 |
[43] | H. Fujikawa, A. Kai, S. Morozumi, A new logistic model for bacterial growth, Food Hyg. Safe. Sci., 44 (2003), 155–160. https://doi.org/10.3358/shokueishi.44.155 doi: 10.3358/shokueishi.44.155 |
[44] | H. Fujikawa, A. Kai, S. Morozumi, Improvement of new logistic model for bacterial growth, Food Hyg. Safe. Sci., 45 (2004), 250–254. https://doi.org/10.3358/shokueishi.45.250 doi: 10.3358/shokueishi.45.250 |
[45] | T. Toshiro, F. Yoshimuro, A neo-logistic model for the growth of bacteria, Physica A, 525 (2019), 199–215. https://doi.org/10.1016/j.physa.2019.03.049 doi: 10.1016/j.physa.2019.03.049 |
[46] | C. Pinto, K. Shimakawa, A compressed logistic equation on bacteria growth: inferring time-dependent growth rate, Phys. Biol., 19 (2022). https://doi.org/10.1088/1478-3975/ac8c15 doi: 10.1088/1478-3975/ac8c15 |
[47] | A. Lo Grasso, A. Fort, F. F. Mahdizadeh, A. Magnani, C. Mocenni, Generalized logistic model of bacterial growth, Math. Comp. Model. Dyn., 29 (2023), 169–185. https://doi.org/10.1080/13873954.2023.2236681 doi: 10.1080/13873954.2023.2236681 |
[48] | D. Pinto-Ramos, S. Echeverría-Alar, M. G. Clerc, M. Tlidi, Vegetation covers phase separation in inhomogeneous environments, Chaos Soliton. Fract., 163 (2022), 112518. https://doi.org/10.1016/j.chaos.2022.112518 doi: 10.1016/j.chaos.2022.112518 |
[49] | D. Pinto-Ramos, M. G. Clerc, M. Tlidi, Topological defects law for migrating banded vegetation patterns in arid climates, Sci. Adv., 9 (2023), eadf6620. https://doi.org/10.1126/sciadv.adf6620 doi: 10.1126/sciadv.adf6620 |
[50] | M. G. Clerc, D. Escaff, V. M. Kenkre, Patterns and localized structures in population dynamics, Phys. Rev. E, 72 (2005), 056217. https://doi.org/10.1103/PhysRevE.72.056217 doi: 10.1103/PhysRevE.72.056217 |
[51] | I. Aviram, A. Rabinovitch, Bifurcation analysis of bacteria and bacteriophage coexistence in the presence of bacterial debris, Commun. Nonlin. Sci. Numer. Simul., 17 (2012), 242–254. https://doi.org/10.1016/j.cnsns.2011.04.031 doi: 10.1016/j.cnsns.2011.04.031 |
[52] | C. Giverso, M. Verani, P. Ciarletta, Branching instability in expanding bacterial colonies, J. R. Soc. Interface, 12 (2015), 20141290. https://doi.org/10.1098/rsif.2014.1290 doi: 10.1098/rsif.2014.1290 |
[53] | J. Ren, Q. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124. https://doi.org/10.1063/1.5000152 doi: 10.1063/1.5000152 |
[54] | M. Ma, P. Xia, Q. Zhang, M. Vuorinen, Global bifurcation and stability of steady states for a bacterial colony model with density-suppressed motility, Appl. Math. Model., 88 (2020), 68–82. https://doi.org/10.1016/j.apm.2020.06.024 doi: 10.1016/j.apm.2020.06.024 |
[55] | M. H. Zwietering, I. Jongenburger, F. M. Rombouts, K. Van't Riet, Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 56 (1990), 1875–1881. https://journals.asm.org/doi/10.1128/aem.56.6.1875-1881.1990 doi: 10.1128/aem.56.6.1875-1881.1990 |