Research article

Prescribed-time cluster practical consensus for nonlinear multi-agent systems based on event-triggered mechanism


  • Received: 17 December 2023 Revised: 18 January 2024 Accepted: 29 January 2024 Published: 27 February 2024
  • This paper investigates the prescribed-time event-triggered cluster practical consensus problem for a class of nonlinear multi-agent systems with external disturbances. To begin, to reach the prescribed-time cluster practical consensus, a new time-varying function is introduced and a novel distributed continuous algorithm is designed. Based on the Lyapunov stability theory and inequality techniques, some sufficient conditions are given, ensuring the prescribed-time cluster practical consensus. Moreover, to avoid different clusters' final states overlapping, a virtual leader is considered for each cluster. In this case, an event-triggered distributed protocol is further established and some related conditions are given for achieving prescribed-time cluster practical consensus. Additionally, it is proven that the Zeno behavior can be avioded by choosing parameters appropriately. Finally, some numerical examples are presented to show the effectiveness of the theoretical results.

    Citation: Wangming Lu, Zhiyong Yu, Zhanheng Chen, Haijun Jiang. Prescribed-time cluster practical consensus for nonlinear multi-agent systems based on event-triggered mechanism[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4440-4462. doi: 10.3934/mbe.2024196

    Related Papers:

  • This paper investigates the prescribed-time event-triggered cluster practical consensus problem for a class of nonlinear multi-agent systems with external disturbances. To begin, to reach the prescribed-time cluster practical consensus, a new time-varying function is introduced and a novel distributed continuous algorithm is designed. Based on the Lyapunov stability theory and inequality techniques, some sufficient conditions are given, ensuring the prescribed-time cluster practical consensus. Moreover, to avoid different clusters' final states overlapping, a virtual leader is considered for each cluster. In this case, an event-triggered distributed protocol is further established and some related conditions are given for achieving prescribed-time cluster practical consensus. Additionally, it is proven that the Zeno behavior can be avioded by choosing parameters appropriately. Finally, some numerical examples are presented to show the effectiveness of the theoretical results.



    加载中


    [1] J. Seo, Y. Kim, S. Kim, A. Tsourdos, Collision avoidance strategies for unmanned aerial vehicles in formation flight, IEEE Trans. Aerosp. Electron. Syst., 53 (2017), 2718–2734. https://doi.org/10.1109/TAES.2017.2714898 doi: 10.1109/TAES.2017.2714898
    [2] H. Wang, D. Xiong, L. Chen, P. Wang, A consensus-based time synchronization scheme with low overhead for clustered wireless sensor networks, IEEE Signal Process. Lett., 25 (2018), 1206–1210. https://doi.org/10.1109/LSP.2018.2847231 doi: 10.1109/LSP.2018.2847231
    [3] E. Semsar-Kazerooni, K. Khorasani, Team consensus for a network of unmanned vehicles in presence of actuator faults, IEEE Trans. Control Syst. Technol., 18 (2010), 1155–1161. https://doi.org/10.1109/TCST.2009.2032921 doi: 10.1109/TCST.2009.2032921
    [4] R. Olfati-Saber, R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520–1533. https://doi.org/10.1109/TAC.2004.834113 doi: 10.1109/TAC.2004.834113
    [5] J. Ma, H. Ji, D. Sun, G. Feng, An approach to quantized consensus of continuous-time linear multi-agent systems, Automatica, 91 (2018), 98–104. https://doi.org/10.1016/j.automatica.2018.01.028 doi: 10.1016/j.automatica.2018.01.028
    [6] C. Hua, S. Liu, Y. Li, X. Guan, Distributed adaptive output feedback leader-following consensus control for nonlinear multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 50 (2020), 4309–4317. https://doi.org/10.1109/TSMC.2018.2849740 doi: 10.1109/TSMC.2018.2849740
    [7] X. Li, H. Jiang, C. Hu, Z. Yu, Scaled consensus of second-order nonlinear multi-agent systems with distributed adaptive control via non-reduced order method, J. Franklin Inst., 360 (2023), 13205–13226. https://doi.org/10.1016/j.jfranklin.2023.09.054 doi: 10.1016/j.jfranklin.2023.09.054
    [8] Z. Yu, H. Jiang, D. Huang, C. Hu, Consensus of nonlinear multi-agent systems with directed switching graphs: A directed spanning tree based error system approach, Nonlinear Anal.: Hybrid Syst., 28 (2018), 123–140. https://doi.org/10.1016/j.nahs.2017.12.001 doi: 10.1016/j.nahs.2017.12.001
    [9] X. Zhang, Q. Han, X. Ge, B. Ning, B. Zhang, Sampled-data control systems with non-uniform sampling: A survey of methods and trends, Annu. Rev. Control, 55 (2023), 70–91. https://doi.org/10.1016/j.arcontrol.2023.03.004 doi: 10.1016/j.arcontrol.2023.03.004
    [10] A. Kazemy, J. Lam, X. Zhang, Event-triggered output feedback synchronization of master-slave neural networks under deception attacks, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 952–961. https://doi.org/10.1109/TNNLS.2020.3030638 doi: 10.1109/TNNLS.2020.3030638
    [11] Q. Wang, W. He, L. Zino, D. Tan, W. Zhong, Bipartite consensus for a class of nonlinear multi-agent systems under switching topologies: a disturbance observer-based approach, Neurocomputing, 488 (2022), 130–143. https://doi.org/10.1016/j.neucom.2022.02.081 doi: 10.1016/j.neucom.2022.02.081
    [12] Y. Xu, M. Fang, P. Shi, Y. Pan, C. K. Ahn, Multileader multiagent systems containment control with event-triggering, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 1642–1651. https://doi.org/10.1109/TSMC.2019.2899967 doi: 10.1109/TSMC.2019.2899967
    [13] V. T. Haimo, Finite time controllers, SIAM J. Control Optim., 24 (1986), 760–770. https://doi.org/10.1137/0324047 doi: 10.1137/0324047
    [14] S. Li, H. Du, X. Lin, Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics, Automatica, 47 (2011), 1706–1712. https://doi.org/10.1016/j.automatica.2011.02.045 doi: 10.1016/j.automatica.2011.02.045
    [15] H. Zhang, D. Yue, X. Yin, S. Hu, C. X. Dou, Finite-time distributed event-triggered consensus control for multi-agent systems, Inf. Sci., 339 (2016), 132–142. https://doi.org/10.1016/j.ins.2015.12.031 doi: 10.1016/j.ins.2015.12.031
    [16] H. Du, G. Wen, X. Yu, S. Li, M. Z. Q. Chen, Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer, Automatica, 62 (2015), 236–242. https://doi.org/10.1016/j.automatica.2015.09.026 doi: 10.1016/j.automatica.2015.09.026
    [17] Y. Cai, H. Zhang, Y. Liu, Q. He, Distributed bipartite finite-time event-triggered output consensus for heterogeneous linear multi-agent systems under directed signed communication topology, Appl. Math. Comput., 378 (2020), 125162. https://doi.org/10.1016/j.amc.2020.125162 doi: 10.1016/j.amc.2020.125162
    [18] J. Duan, H. Zhang, Y. Liang, Y. Cai, Bipartite finite-time output consensus of heterogeneous multi-agent systems by finite-time event-triggered observer, Neurocomputing, 365 (2019), 86–93. https://doi.org/10.1016/j.neucom.2019.07.043 doi: 10.1016/j.neucom.2019.07.043
    [19] H. Lü, W. He, Q. Han, X. Ge, C. Peng, Finite-time containment control for nonlinear multi-agent systems with external disturbances, Inf. Sci., 512 (2020), 338–351. https://doi.org/10.1016/j.ins.2019.05.049 doi: 10.1016/j.ins.2019.05.049
    [20] H. Du, G. Wen, D. Wu, Y. Cheng, J. Lü, Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems, Automatica, 113 (2020), 108797. https://doi.org/10.1016/j.automatica.2019.108797 doi: 10.1016/j.automatica.2019.108797
    [21] Y. Cai, H. Zhang, Y. Wang, J. Zhang, Q. He, Fixed-time time-varying formation tracking for nonlinear multi-agent systems under event-triggered mechanism, Inf. Sci., 564 (2021), 45–70. https://doi.org/10.1016/j.ins.2021.02.071 doi: 10.1016/j.ins.2021.02.071
    [22] A. Sharifi, M. Pourgholi, Fixed-time bipartite consensus of nonlinear multi-agent systems using event-triggered control design, J. Franklin Inst., 358 (2021), 9178–9198. https://doi.org/10.1016/j.jfranklin.2021.09.023 doi: 10.1016/j.jfranklin.2021.09.023
    [23] P. Gong, Q. Han, Fixed-time bipartite consensus tracking of fractional-order multi-agent systems with a dynamic leader, IEEE Trans. Circuits Syst. II: Express Briefs, 67 (2020), 2054–2058. https://doi.org/10.1109/TCSII.2019.2947353 doi: 10.1109/TCSII.2019.2947353
    [24] Y. Cai, J. Dai, H. Zhang, Y. Wang, Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism, Appl. Math. Comput., 396 (2021), 125881. https://doi.org/10.1016/j.amc.2020.125881 doi: 10.1016/j.amc.2020.125881
    [25] X. Li, H. Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simul., 203 (2023), 647–668. https://doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010
    [26] X. Li, H. Wu, J. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth systems and its application to synchronization in networks, Appl. Math. Model., 115 (2023), 385–397. https://doi.org/10.1016/j.apm.2022.10.051 doi: 10.1016/j.apm.2022.10.051
    [27] Y. Wang, Y. Song, D. Hill, M. Krstic, Prescribed-time consensus and containment control of networked multiagent systems, IEEE Trans. Cybern., 49 (2019), 1138–1147. https://doi.org/10.1109/TCYB.2017.2788874 doi: 10.1109/TCYB.2017.2788874
    [28] X. Chen, H. Yu, F. Hao, Prescribed-time event-triggered bipartite consensus of multiagent systems, IEEE Trans. Cybern., 54 (2022), 2589–2598. https://doi.org/10.1109/TCYB.2020.3004572 doi: 10.1109/TCYB.2020.3004572
    [29] X. Chen, Q. Sun, H. Yu, F. Hao, Predefined-time practical consensus for multi-agent systems via event-triggered control, J. Franklin Inst., 360 (2023), 2116–2132. https://doi.org/10.1016/j.jfranklin.2023.01.001 doi: 10.1016/j.jfranklin.2023.01.001
    [30] B. Hou, F. Sun, H. Li, Y. Chen, G. Liu, Scaled cluster consensus of discrete-time multi-agent systems with general directed topologies, Int. J. Syst. Sci., 47 (2016), 3839–3845. https://doi.org/10.1080/00207721.2015.1129675 doi: 10.1080/00207721.2015.1129675
    [31] Ü. Develer, O. Cihan, M. Akar, Cluster consensus with first and higher-order antagonistic interaction dynamics, Neurocomputing, 529 (2023), 33–47. https://doi.org/10.1016/j.neucom.2023.01.025 doi: 10.1016/j.neucom.2023.01.025
    [32] S. Luo, D. Ye, Event-triggered control of leader-following and cluster consensus for MAS under directed graph with designable minimum event interval, J. Franklin Inst., 360 (2023), 6994–7020. https://doi.org/10.1016/j.jfranklin.2023.05.008 doi: 10.1016/j.jfranklin.2023.05.008
    [33] P. Yang, A. Zhang, W. Bi, Finite-time group consensus for second-order multi-agent systems with input saturation, Neural Process. Lett., 54 (2022), 4211–4228. https://doi.org/10.1007/s11063-022-10805-w doi: 10.1007/s11063-022-10805-w
    [34] Y. Yao, Y. Luo, J. Cao, Finite-time $H_\infty$ cluster consensus control for nonlinear multi-agent systems with aperiodically intermittent control, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106677. https://doi.org/10.1016/j.cnsns.2022.106677 doi: 10.1016/j.cnsns.2022.106677
    [35] L. Hao, X. Zhan, J. Wu, T. Han, H. Yan, Fixed-time group consensus of nonlinear multi-agent systems via pinning control, Int. J. Control Autom. Syst., 19 (2021), 200–208. https://doi.org/10.1007/s12555-019-1005-5 doi: 10.1007/s12555-019-1005-5
    [36] X. Liu, T. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Trans. Cybern., 48 (2018), 240–252. https://doi.org/10.1109/TCYB.2016.2630703 doi: 10.1109/TCYB.2016.2630703
    [37] J. Ai, J. Yu, Event-triggered $H_\infty$ leader-follower consensus for nonlinear multi-agent systems with fixed and switching network topologies, J. Franklin Inst., 360 (2023), 1792–1816. https://doi.org/10.1016/j.jfranklin.2022.12.010 doi: 10.1016/j.jfranklin.2022.12.010
    [38] J. Ni, C. Wen, Y. Zhao, Fixed-time leader-follower quantized output consensus of high-order multi-agent systems over digraph, Inf. Sci., 587 (2022), 408–434. https://doi.org/10.1016/j.ins.2021.12.054 doi: 10.1016/j.ins.2021.12.054
    [39] H. Yu, X. Chen, T. Chen, F. Hao, Event-triggered bipartite consensus for multiagent systems: A Zeno-free analysis, IEEE Trans. Autom. Control, 65 (2020), 4866–4873. https://doi.org/10.1109/TAC.2019.2962092 doi: 10.1109/TAC.2019.2962092
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(767) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog