In this article, we consider the global existence and stability issues of the nonlinear Schrödinger equation with partial confinement. First, by establishing some new cross-invariant manifolds and variational problems, a new sharp criterion of global existence is derived in the $ L^{2} $-critical and $ L^{2} $-supercritical cases. Then, the existence of orbitally stable standing waves is obtained in the $ L^{2} $-subcritical and $ L^{2} $-critical cases by taking advantage of the profile decomposition technique. Our work extends and complements some earlier results.
Citation: Min Gong, Hui Jian, Meixia Cai. Sharp criterion of global existence and orbital stability of standing waves for the nonlinear Schrödinger equation with partial confinement[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18207-18229. doi: 10.3934/mbe.2023809
In this article, we consider the global existence and stability issues of the nonlinear Schrödinger equation with partial confinement. First, by establishing some new cross-invariant manifolds and variational problems, a new sharp criterion of global existence is derived in the $ L^{2} $-critical and $ L^{2} $-supercritical cases. Then, the existence of orbitally stable standing waves is obtained in the $ L^{2} $-subcritical and $ L^{2} $-critical cases by taking advantage of the profile decomposition technique. Our work extends and complements some earlier results.
[1] | C. C. Bradley, C. A. Sackett, R. G. Hulet, Bose-Einstein condensation of lithium: observation of limited condensate number, Phys. Rev. Lett., 78 (1997), 985–989. https://doi.org/10.1103/PhysRevLett.78.985 doi: 10.1103/PhysRevLett.78.985 |
[2] | F. Dalfovo, S. Giorgini, L. P. Pitaevskii, Stringari S. Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463–512. https://doi.org/10.1103/RevModPhys.71.463 doi: 10.1103/RevModPhys.71.463 |
[3] | C. Huepe, S. M$\acute{e}$tens, G. Dewel, P. Borckmans, M. E. Brachet, Decay rates in attractive Bose-Einstein condensates, Phys. Rev. Lett., 82 (1999), 1616–1619. https://doi.org/10.1103/PhysRevLett.82.1616 doi: 10.1103/PhysRevLett.82.1616 |
[4] | L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (International Series of Monographs on Physics), Oxford: The Clarendon Press Oxford University Press, 116 (2003). |
[5] | M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567–567. https://doi.org/10.1007/BF01208265 doi: 10.1007/BF01208265 |
[6] | J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal., 48 (2002), 191–207. https://doi.org/10.1016/S0362-546X(00)00180-2 doi: 10.1016/S0362-546X(00)00180-2 |
[7] | H. Berestycki, T. Cazenave, Instabilit$\acute{e}$ des $\acute{e}$tats stationaires dans les $\acute{e}$quations de Schrödinger et de Klein-Gordon non lin$\acute{e}$aires, C. R. Acad. Sci. Paris S$\acute{e}$r. I Math., 293 (1981), 489–492. Available from: http://pascal-francis.inist.fr/vibad/index.php?action = getRecordDetail & idt = PASCAL82X0086180. |
[8] | T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549–561. https://doi.org/10.1007/BF01403504 doi: 10.1007/BF01403504 |
[9] | T. Cazenave, Semilinear Schrödinger Equations, in Courant Lecture Notes in Mathematics, American Mathematical Society, 10 (2003). Available from: https://www.ams.org/books/cln/010/cln010-endmatter.pdf. |
[10] | R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794–1797. https://doi.org/10.1063/1.523491 doi: 10.1063/1.523491 |
[11] | T. Hmidi, S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not., 2005 (2005), 2815–2828. https://doi.org/10.1155/IMRN.2005.2815 doi: 10.1155/IMRN.2005.2815 |
[12] | T. Ogawa, Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differ. Equations, 92 (1991), 317–330. https://doi.org/10.1016/0022-0396(91)90052-B doi: 10.1016/0022-0396(91)90052-B |
[13] | B. H. Feng, Sharp threshold of global existence and instability of standing wave for the Schrödinger-Hartree equation with a harmonic potential, Nonlinear Anal.: Real World Appl., 31 (2016), 132–145. https://doi.org/10.1016/j.nonrwa.2016.01.012 doi: 10.1016/j.nonrwa.2016.01.012 |
[14] | R. Fukuizumi, Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential, Discrete Contin. Dyn. Syst., 7 (2001), 525–544. https://doi.org/10.3934/dcds.2001.7.525 doi: 10.3934/dcds.2001.7.525 |
[15] | J. Huang, J. Zhang, X. G. Li, Stability of standing waves for the $L^{2}$-critical Hartree equations with harmonic potential, Appl. Anal., 92 (2013), 2076–2083. https://doi.org/10.1080/00036811.2012.716512 doi: 10.1080/00036811.2012.716512 |
[16] | M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac., 61 (2018), 135–143. https://doi.org/10.1619/fesi.61.135 doi: 10.1619/fesi.61.135 |
[17] | J. Zhang, Stability of attractive Bose-Einstein condensates, J. Stat. Phys., 101 (2000), 731–746. https://doi.org/10.1023/A:1026437923987 doi: 10.1023/A:1026437923987 |
[18] | Y. J. Wang, Strong instability of standing waves for Hartree equation with harmonic potential, Physica D, 237 (2008), 998–1005. https://doi.org/10.1016/j.physd.2007.11.018 doi: 10.1016/j.physd.2007.11.018 |
[19] | J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Commun. Partial Differ. Equations, 30 (2005), 1429–1443. https://doi.org/10.1080/03605300500299539 doi: 10.1080/03605300500299539 |
[20] | J. Shu, J. Zhang, Sharp criterion of global existence for nonlinear Schrödinger equation with a harmonic potential, Acta Math. Sin. Engl. Ser., 25 (2009), 537–544. https://doi.org/10.1007/s10114-009-7473-4 doi: 10.1007/s10114-009-7473-4 |
[21] | M. Y. Zhang, M. S. Ahmed, Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential, Adv. Nonlinear Anal., 9 (2020), 882–894. https://doi.org/10.1515/anona-2020-0031 doi: 10.1515/anona-2020-0031 |
[22] | P. Antonelli, R. Carles, J. D. Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Commun. Math. Phys., 334 (2015), 367–396. https://doi.org/10.1007/s00220-014-2166-y doi: 10.1007/s00220-014-2166-y |
[23] | J. Zhang, Sharp threshold of global existence for nonlinear Schrödinger equation with partial confinement, Nonlinear Anal., 196 (2020), 111832. https://doi.org/10.1016/j.na.2020.111832 doi: 10.1016/j.na.2020.111832 |
[24] | T. X. Gou, Existence and orbital stability of standing waves to nonlinear Schrödinger system with partial confinement, J. Math. Phys., 59 (2018), 071508. https://doi.org/10.1063/1.5028208 doi: 10.1063/1.5028208 |
[25] | J. Bellazzini, N. Boussaïd, L. Jeanjean, N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Commun. Math. Phys., 353 (2017), 229–251. https://doi.org/10.1007/s00220-017-2866-1 doi: 10.1007/s00220-017-2866-1 |
[26] | M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement, Commun. Pure Appl. Anal., 17 (2018), 1671–1680. https://doi.org/10.3934/cpaa.2018080 doi: 10.3934/cpaa.2018080 |
[27] | L. Xiao, Q. Geng, J. Wang, M. C. Zhu, Existence and stability of standing waves for the Choquard equation with partial confinement, Topol. Methods Nonlinear Anal., 55 (2020), 451–474. https://doi.org/10.12775/TMNA.2019.079 doi: 10.12775/TMNA.2019.079 |
[28] | J. J. Pan, J. Zhang, Mass concentration for nonlinear Schrödinger equation with partial confinement, J. Math. Anal. Appl., 481 (2020), 123484. https://doi.org/10.1016/j.jmaa.2019.123484 doi: 10.1016/j.jmaa.2019.123484 |
[29] | C. L. Wang, J. Zhang, Cross-constrained variational method and nonlinear Schrödinger equation with partial confinement, Math. Control Relat. Fields, 12 (2022), 611–619. https://doi.org/10.3934/mcrf.2021036 doi: 10.3934/mcrf.2021036 |
[30] | C. L. Wang, J. Zhang, Sharp condition for global existence of supercritical nonlinear Schrödinger equation with a partial confinement, Acta Math. Appl. Sin. Engl. Ser., 39 (2023), 202–210. https://doi.org/10.1007/s10255-023-1035-x doi: 10.1007/s10255-023-1035-x |
[31] | H. F. Jia, G. B. Li, X. Luo, Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement, Discrete Contin. Dyn. Syst., 40 (2020), 2739–2766. https://doi.org/10.3934/dcds.2020148 doi: 10.3934/dcds.2020148 |
[32] | B. H. Feng, L. J. Cao, J. Y. Liu, Existence of stable standing waves for the Lee-Huang-Yang corrected dipolar Gross-Pitaevskii equation, Appl. Math. Lett., 115 (2021), 106952. https://doi.org/10.1016/j.aml.2020.106952 doi: 10.1016/j.aml.2020.106952 |
[33] | J. Y. Liu, Z. Q. He, B. H. Feng, Existence and stability of standing waves for the inhomogeneous Gross-Pitaevskii equation with a partial confinement, J. Math. Anal. Appl., 506 (2022), 125604. https://doi.org/10.1016/j.jmaa.2021.125604 doi: 10.1016/j.jmaa.2021.125604 |
[34] | C. Ji, N. Su, Existence and stability of standing waves for the mixed dispersion nonlinear Schrödinger equation with a partial confinement in $ \mathbb{R}^{N}$, J. Geom. Anal., 33 (2023), 171. https://doi.org/10.1007/s12220-023-01207-y doi: 10.1007/s12220-023-01207-y |
[35] | M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $ \mathbb{R}^{N}$, Arch. Rational Mech. Anal., 105 (1989), 243–266. https://doi.org/10.1007/BF00251502 doi: 10.1007/BF00251502 |