Research article Special Issues

SEINN: A deep learning algorithm for the stochastic epidemic model


  • Received: 16 May 2023 Revised: 04 July 2023 Accepted: 09 July 2023 Published: 14 August 2023
  • Stochastic modeling predicts various outcomes from stochasticity in the data, parameters and dynamical system. Stochastic models are deemed more appropriate than deterministic models accounting in terms of essential and practical information about a system. The objective of the current investigation is to address the issue above through the development of a novel deep neural network referred to as a stochastic epidemiology-informed neural network. This network learns knowledge about the parameters and dynamics of a stochastic epidemic vaccine model. Our analysis centers on examining the nonlinear incidence rate of the model from the perspective of the combined effects of vaccination and stochasticity. Based on empirical evidence, stochastic models offer a more comprehensive understanding than deterministic models, mainly when we use error metrics. The findings of our study indicate that a decrease in randomness and an increase in vaccination rates are associated with a better prediction of nonlinear incidence rates. Adopting a nonlinear incidence rate enables a more comprehensive representation of the complexities of transmitting diseases. The computational analysis of the proposed method, focusing on sensitivity analysis and overfitting analysis, shows that the proposed method is efficient. Our research aims to guide policymakers on the effects of stochasticity in epidemic models, thereby aiding the development of effective vaccination and mitigation policies. Several case studies have been conducted on nonlinear incidence rates using data from Tennessee, USA.

    Citation: Thomas Torku, Abdul Khaliq, Fathalla Rihan. SEINN: A deep learning algorithm for the stochastic epidemic model[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16330-16361. doi: 10.3934/mbe.2023729

    Related Papers:

  • Stochastic modeling predicts various outcomes from stochasticity in the data, parameters and dynamical system. Stochastic models are deemed more appropriate than deterministic models accounting in terms of essential and practical information about a system. The objective of the current investigation is to address the issue above through the development of a novel deep neural network referred to as a stochastic epidemiology-informed neural network. This network learns knowledge about the parameters and dynamics of a stochastic epidemic vaccine model. Our analysis centers on examining the nonlinear incidence rate of the model from the perspective of the combined effects of vaccination and stochasticity. Based on empirical evidence, stochastic models offer a more comprehensive understanding than deterministic models, mainly when we use error metrics. The findings of our study indicate that a decrease in randomness and an increase in vaccination rates are associated with a better prediction of nonlinear incidence rates. Adopting a nonlinear incidence rate enables a more comprehensive representation of the complexities of transmitting diseases. The computational analysis of the proposed method, focusing on sensitivity analysis and overfitting analysis, shows that the proposed method is efficient. Our research aims to guide policymakers on the effects of stochasticity in epidemic models, thereby aiding the development of effective vaccination and mitigation policies. Several case studies have been conducted on nonlinear incidence rates using data from Tennessee, USA.



    加载中


    [1] S. Ghamizi, R. Rwemalika, M. Cordy, L. Veiber, T. F. Bissyandé, M. Papadakis, et al., Data-driven simulation and optimization for COVID-19 exit strategies, in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, (2020), 3434–3442. https://doi.org/10.1145/3394486.3412863
    [2] N. Dalal, D. Greenhalgh, X. Mao, A stochastic model of AIDS and condom use, J. Math. Anal. Appl., 325 (2007), 36–53. https://doi.org/10.1016/j.jmaa.2006.01.055 doi: 10.1016/j.jmaa.2006.01.055
    [3] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, in Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118
    [4] T. A. Biala, Y. O. Afolabi, A. Q. M. Khaliq, How efficient is contact tracing in mitigating the spread of COVID-19? a mathematical modeling approach, Appl. Math. Modell., 103 (2022), 714–730. https://doi.org/10.1016/j.apm.2021.11.011 doi: 10.1016/j.apm.2021.11.011
    [5] K. M. Furati, I. O. Sarumi, A. Q. M. Khaliq, Fractional model for the spread of COVID-19 subject to government intervention and public perception, Appl. Math. Modell., 95 (2021), 89–105. https://doi.org/10.1016/j.apm.2021.02.006 doi: 10.1016/j.apm.2021.02.006
    [6] E. Kharazmi, M. Cai, X. Zheng, Z. Zhang, G. Lin, G. E. Karniadakis, Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks, Nat. Comput. Sci., 1 (2021), 744–753.
    [7] J. Long, A. Q. M. Khaliq, K. M. Furati, Identification and prediction of time-varying parameters of COVID-19 model: a data-driven deep learning approach, Int. J. Comput. Math., 98 (2021), 1617–1632. https://doi.org/10.1080/00207160.2021.1929942 doi: 10.1080/00207160.2021.1929942
    [8] K. D. Olumoyin, A. Q. M. Khaliq, K. M. Furati, Data-driven deep-learning algorithm for asymptomatic COVID-19 model with varying mitigation measures and transmission rate, Epidemiologia, 2 (2021), 471–489. https://doi.org/10.3390/epidemiologia2040033 doi: 10.3390/epidemiologia2040033
    [9] T. K. Torku, A. Q. M. Khaliq, K. M. Furati, Deep-data-driven neural networks for COVID-19 vaccine efficacy, Epidemiologia, 2 (2021), 564–586. https://doi.org/10.3390/epidemiologia2040039 doi: 10.3390/epidemiologia2040039
    [10] F. A. Rihan, U. Kandasamy, H. J. Alsakaji, N. Sottocornola, Dynamics of a fractional-order delayed model of COVID-19 with vaccination efficacy, Vaccines, 11 (2023), 758. https://doi.org/10.3390/vaccines11040758 doi: 10.3390/vaccines11040758
    [11] M. Rafiq, A. Raza, M. U. Iqbal, Z. Butt, H. A. Naseem, M. A. Akram, et al., Numerical treatment of stochastic heroin epidemic model, Adv. Differ. Equations, 2019 (2019), 1–17.
    [12] Z. T. Win, M. A. Eissa, B. Tian, Stochastic epidemic model for COVID-19 transmission under intervention strategies in China, Mathematics, 10 (2022), 3119. https://doi.org/10.3390/math10173119 doi: 10.3390/math10173119
    [13] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Processes Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
    [14] A. Miao, X. Wang, T. Zhang, W. Wang, B. G. Sampath Aruna Pradeep, Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis, Adv. Differ. Equations, 2017 (2017), 1–27.
    [15] D. J. Higham, An algorithmic introduction to numerical simulation of SDEs, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
    [16] J. O'Leary, J. A. Paulson, A. Mesbah, Stochastic physics-informed neural networks (SPINN): A moment-matching framework for learning hidden physics within SDEs, preprint, arXiv: 2109.01621.
    [17] Y. Cai, Y. Kang, W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003
    [18] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge, 2016.
    [19] P. Ren, C. Rao, Y. Liu, J. X. Wang, H. Sun, PhyCRNet: Physics-informed convolutional-recurrent network for solving spatiotemporal PDEs, preprint, arXiv: 2106.14103v1.
    [20] S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci., 113 (2016), 3932–3937. https://doi.org/10.1073/pnas.1517384113 doi: 10.1073/pnas.1517384113
    [21] M. Raissi, N. Ramezani, P. Seshaiyer, On parameter estimation approaches for predicting disease transmission through optimization, deep learning and statistical inference methods, Lett. Biomath., 6 (2019), 1–26. https://doi.org/10.30707/LiB6.2Raissi doi: 10.30707/LiB6.2Raissi
    [22] K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks, Neural Networks, 3 (1990), 551–560. https://doi.org/10.1016/0893-6080(90)90005-6 doi: 10.1016/0893-6080(90)90005-6
    [23] L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nat. Mach. Intell., 3 (2021), 218–229.
    [24] A. Zeroual, F. Harrou, A. Dairi, Y. Sun, Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study, Chaos, Solitons Fractals, 140 (2020), 110121. https://doi.org/10.1016/j.chaos.2020.110121 doi: 10.1016/j.chaos.2020.110121
    [25] A. Dairi, F. Harrou, A. Zeroual, M. M. Hittawe, Y. Sun, Comparative study of machine learning methods for COVID-19 transmission forecasting, J. Biomed. Inf., 118 (2021), 103791. https://doi.org/10.1016/j.jbi.2021.103791 doi: 10.1016/j.jbi.2021.103791
    [26] L. Wang, T. Xu, T. Stoecker, Y. Jiang, K. Zhou, Machine learning spatiotemporal epidemiological model to evaluate Germany-county-level COVID-19 risk, Mach. Learn. Sci. Technol., 2 (2021), 035031. https://doi.org/10.1088/2632-2153/ac0314 doi: 10.1088/2632-2153/ac0314
    [27] S. Han, L. Stelz, H. Stoecker, L. Wang, K. Zhou, Approaching epidemiological dynamics of COVID-19 with physics-informed neural networks, preprint, arXiv: 2302.08796.
    [28] P. E. Kloeden, E. Platen, SDEs, in Numerical Solution of SDEs, Springer, (1992), 103–160.
    [29] G. Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, Infect. Dis. Modell., 2 (2017), 379–398. https://doi.org/10.1016/j.idm.2017.08.001 doi: 10.1016/j.idm.2017.08.001
    [30] J. Kukačka, V. Golkov, D. Cremers, Regularization for deep learning: A taxonomy, preprint, arXiv: 1710.10686.
    [31] E. Gobet, J. P. Lemor, X. Warin, A regression-based Monte Carlo method to solve backward SDEs, Ann. Appl. Probab., 15 (2014) 2172–2202. https://doi.org/10.1214/105051605000000412
    [32] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980.
    [33] B. Alain, M. Barthelemy, V. Alessandro, Dynamical Processes on Complex Networks, Cambridge University Press, Cambridge, 2008.
    [34] Y. Wang, Z. Wei, J. Cao, Epidemic dynamics of influenza-like diseases spreading in complex networks, Nonlinear Dyn., 101 (2020), 1801–1820. https://doi.org/10.1007/s11071-020-05867-1 doi: 10.1007/s11071-020-05867-1
    [35] B. Frank, N. Peter, Network epidemic models with two levels of mixing, Math. Biosci., 212 (2008), 69–87. https://doi.org/10.1016/j.mbs.2008.01.001 doi: 10.1016/j.mbs.2008.01.001
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1700) PDF downloads(253) Cited by(1)

Article outline

Figures and Tables

Figures(16)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog