Research article

The effect of screening on the health burden of chlamydia: An evaluation of compartmental models based on person-days of infection

  • Received: 01 June 2023 Revised: 17 July 2023 Accepted: 30 July 2023 Published: 09 August 2023
  • Sexually transmitted diseases (STDs) are detrimental to the health and economic well-being of society. Consequently, predicting outbreaks and identifying effective disease interventions through epidemiological tools, such as compartmental models, is of the utmost importance. Unfortunately, the ordinary differential equation compartmental models attributed to the work of Kermack and McKendrick require a duration of infection that follows the exponential or Erlang distribution, despite the biological invalidity of such assumptions. As these assumptions negatively impact the quality of predictions, alternative approaches are required that capture how the variability in the duration of infection affects the trajectory of disease and the evaluation of disease interventions. So, we apply a new family of ordinary differential equation compartmental models based on the quantity person-days of infection to predict the trajectory of disease. Importantly, this new family of models features non-exponential and non-Erlang duration of infection distributions without requiring more complex integral and integrodifferential equation compartmental model formulations. As proof of concept, we calibrate our model to recent trends of chlamydia incidence in the U.S. and utilize a novel duration of infection distribution that features periodic hazard rates. We then evaluate how increasing STD screening rates alter predictions of incidence and disability adjusted life-years over a five-year horizon. Our findings illustrate that our family of compartmental models provides a better fit to chlamydia incidence trends than traditional compartmental models, based on Akaike information criterion. They also show new asymptomatic and symptomatic infections of chlamydia peak over drastically different time frames and that increasing the annual STD screening rates from 35% to 40%-70% would annually avert 6.1-40.3 incidence while saving 1.68-11.14 disability adjusted life-years per 1000 people. This suggests increasing the STD screening rate in the U.S. would greatly aid in ongoing public health efforts to curtail the rising trends in preventable STDs.

    Citation: Jack Farrell, Owen Spolyar, Scott Greenhalgh. The effect of screening on the health burden of chlamydia: An evaluation of compartmental models based on person-days of infection[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16131-16147. doi: 10.3934/mbe.2023720

    Related Papers:

  • Sexually transmitted diseases (STDs) are detrimental to the health and economic well-being of society. Consequently, predicting outbreaks and identifying effective disease interventions through epidemiological tools, such as compartmental models, is of the utmost importance. Unfortunately, the ordinary differential equation compartmental models attributed to the work of Kermack and McKendrick require a duration of infection that follows the exponential or Erlang distribution, despite the biological invalidity of such assumptions. As these assumptions negatively impact the quality of predictions, alternative approaches are required that capture how the variability in the duration of infection affects the trajectory of disease and the evaluation of disease interventions. So, we apply a new family of ordinary differential equation compartmental models based on the quantity person-days of infection to predict the trajectory of disease. Importantly, this new family of models features non-exponential and non-Erlang duration of infection distributions without requiring more complex integral and integrodifferential equation compartmental model formulations. As proof of concept, we calibrate our model to recent trends of chlamydia incidence in the U.S. and utilize a novel duration of infection distribution that features periodic hazard rates. We then evaluate how increasing STD screening rates alter predictions of incidence and disability adjusted life-years over a five-year horizon. Our findings illustrate that our family of compartmental models provides a better fit to chlamydia incidence trends than traditional compartmental models, based on Akaike information criterion. They also show new asymptomatic and symptomatic infections of chlamydia peak over drastically different time frames and that increasing the annual STD screening rates from 35% to 40%-70% would annually avert 6.1-40.3 incidence while saving 1.68-11.14 disability adjusted life-years per 1000 people. This suggests increasing the STD screening rate in the U.S. would greatly aid in ongoing public health efforts to curtail the rising trends in preventable STDs.



    加载中


    [1] Reported STDs Reach All-time High for 6th Consecutive Year, CDC. (2021). Available from: https://www.cdc.gov/media/releases/2021/p0413-stds.html
    [2] Impact of COVID-19 on STDs, (2022). Available from: https://www.cdc.gov/std/statistics/2020/2020-SR-4-10-2023.pdf#page = 12
    [3] E. R. Haut, I. L. Leeds, D. H. Livingston, The effect on trauma care secondary to the COVID-19 Pandemic, Ann. Surg., 272 (2020), e204–e207. https://doi.org/10.1097/SLA.0000000000004105 doi: 10.1097/SLA.0000000000004105
    [4] Reported STDs in the United States, 2019, Centers Dis. Control Prev., (2020). Available from: https://www.cdc.gov/nchhstp/newsroom/docs/factsheets/std-trends-508.pdf
    [5] Chlamydia—CDC Basic Fact Sheet, (2022). Available from: https://www.cdc.gov/std/chlamydia/stdfact-chlamydia.htm
    [6] L. G. Passos, P. Terraciano, N. Wolf, F. dos S. de Oliveira, I. de Almeida, E. P. Passos, The correlation between chlamydia trachomatis and female infertility: A systematic review, Rev. Bras. Ginecol. e Obs. / RBGO Gynecol. Obstet., 44 (2022), 614–620. https://doi.org/10.1055/s-0042-1748023 doi: 10.1055/s-0042-1748023
    [7] Y. Hughes, M. Y. Chen, C. K. Fairley, J. S. Hocking, D. Williamson, J. J. Ong, et al., Universal lymphogranuloma venereum (LGV) testing of rectal chlamydia in men who have sex with men and detection of asymptomatic LGV, Sex. Transm. Infect., 98 (2022), 582–585. https://doi.org/10.1136/sextrans-2021-055368 doi: 10.1136/sextrans-2021-055368
    [8] S. M. Garland, A. Malatt, S. Tabrizi, D. Grando, M. I. Lees, J. H. Andrew, et al., Chlamydia trachomatis conjunctivitis, Prevalence and association with genital tract infection., Med. J. Aust., 162 (1995), 363–366. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7715517
    [9] D. T. Fleming, J. N. Wasserheit, From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection, Sex. Transm. Infect., 75 (1999), 3–17. https://doi.org/10.1136/sti.75.1.3 doi: 10.1136/sti.75.1.3
    [10] K. A. T. M. Theunissen, A. E. R. Bos, C. J. P. A. Hoebe, G. Kok, S. Vluggen, R. Crutzen, et al., Chlamydia trachomatis testing among young people: what is the role of stigma?, BMC Public Health., 15 (2015), 651. https://doi.org/10.1186/s12889-015-2020-y doi: 10.1186/s12889-015-2020-y
    [11] CDC, About STD Awareness Week, Centers Dis. Control Prev., (2022). Available from: https://www.cdc.gov/std/saw/about.htm.
    [12] F. Y., S. Kong, J. S. Hocking, Treatment challenges for urogenital and anorectal Chlamydia trachomatis, BMC Infect. Dis., 15 (2015), 293. https://doi.org/10.1186/s12879-015-1030-9 doi: 10.1186/s12879-015-1030-9
    [13] F. Y. S. Kong, S. N. Tabrizi, M. Law, L. A. Vodstrcil, M. Chen, C. K. Fairley, et al., Azithromycin versus doxycycline for the treatment of genital chlamydia infection: A meta-analysis of randomized controlled trials, Clin. Infect. Dis., 59 (2014), 193–205. https://doi.org/10.1093/cid/ciu220 doi: 10.1093/cid/ciu220
    [14] Sexually Transmitted Infections Treatment Guidelines, 2021, (2022). Available from: https://www.cdc.gov/std/treatment-guidelines/chlamydia.htm
    [15] H. R. Thieme, Z. Feng, Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model, SIAM J. Appl. Math., 61 (2000), 803–833. https://doi.org/10.1137/S0036139998347834 doi: 10.1137/S0036139998347834
    [16] Z. Feng, D. Xu, H. Zhao, Epidemiological models with non-exponentially distributed disease stages and applications to disease control., Bull. Math. Biol., 69 (2007), 1511–1536. https://doi.org/10.1007/s11538-006-9174-9 doi: 10.1007/s11538-006-9174-9
    [17] M. Roberts, V. Andreasen, A. Lloyd, L. Pellis, Nine challenges for deterministic epidemic models., Epidemics, 10 (2015), 49–53. https://doi.org/10.1016/j.epidem.2014.09.006 doi: 10.1016/j.epidem.2014.09.006
    [18] S. Greenhalgh, C. Rozins, A generalized differential equation compartmental model of infectious disease transmission, Infect. Dis. Model., 6 (2021). https://doi.org/10.1016/j.idm.2021.08.007
    [19] S. Greenhalgh, A. Dumas, A generalized ODE susceptible-infectious-susceptible compartmental model with potentially periodic behavior, BioRxiv, (2022). https://doi.org/2022.06.10.22276255v1.full
    [20] L. Basnarkov, SEAIR Epidemic spreading model of COVID-19, Chaos Solit. Fract., 142 (2021), 110394. https://doi.org/10.1016/j.chaos.2020.110394 doi: 10.1016/j.chaos.2020.110394
    [21] H. S. Bakouch, C. Chesneau, J. Leao, A new lifetime model with a periodic hazard rate and an application, J. Stat. Comput. Simul., 88 (2018), 2048–2065.
    [22] J. C. M. Heijne, S. A. Herzog, C. L. Althaus, N. Low, M. Kretzschmar, Case and partnership reproduction numbers for a curable sexually transmitted infection, J. Theor. Biol., 331 (2013), 38–47. https://doi.org/10.1016/j.jtbi.2013.04.010 doi: 10.1016/j.jtbi.2013.04.010
    [23] M. J. Price, A. Ades, K. Soldan, N. J. Welton, J. Macleod, I. Simms, et al., The natural history of Chlamydia trachomatis infection in women: A multi-parameter evidence synthesis, Health Technol. Assess. (Rockv)., 20 (2016), 1–250. https://doi.org/10.3310/hta20220 doi: 10.3310/hta20220
    [24] M. J. Price, A. E. Ades, K. Soldan, N. J. Welton, J. Macleod, I. Simms, et al., Duration of asymptomatic Chlamydia trachomatis infection, in: Nat. Hist. Chlamydia Trach. Infect. Women a Multi-Param. Evid. Synth., NIHR Journals Library, 2016.
    [25] S. Greenhalgh, R. Schmidt, T. Day, Fighting the public health burden of AIDS with the human pegivirus, Am. J. Epidemiol., 188 (2019). https://doi.org/10.1093/aje/kwz139
    [26] C. L. Althaus, J. C. M. Heijne, A. Roellin, N. Low, Transmission dynamics of Chlamydia trachomatis affect the impact of screening programmes, Epidemics, 2 (2010), 123–131. https://doi.org/10.1016/j.epidem.2010.04.002 doi: 10.1016/j.epidem.2010.04.002
    [27] T. A. Farley, D. A. Cohen, W. Elkins, Asymptomatic sexually transmitted diseases: The case for screening, Prev. Med. (Baltim)., 36 (2003), 502–509. https://doi.org/10.1016/S0091-7435(02)00058-0 doi: 10.1016/S0091-7435(02)00058-0
    [28] K. Hsu, Clinical manifestations and diagnosis of Chlamydia trachomatis infections, UpToDate. (2022). Available from: https://www.uptodate.com/contents/clinical-manifestations-and-diagnosis-of-chlamydia-trachomatis-infections/print
    [29] M. Bonner, J. M. Sheele, S. Cantillo-Campos, J. M. Elkins, A descriptive analysis of men diagnosed with epididymitis, orchitis, or both in the emergency department, Cureus, 13 (2021).
    [30] Global Burden of Disease Collaborative Network, Global Burden of Disease Study 2019 Disability Weights, Glob. Heal. Data Exch., (2022). https://doi.org/10.6069/1W19-VX76
    [31] Sexually transmitted disease surveillance, 2019, (2022). Available from: https://www.cdc.gov/std/statistics/2019/std-surveillance-2019.pdf.
    [32] S. Greenhalgh, T. Day, Time-varying and state-dependent recovery rates in epidemiological models, Infect. Dis. Model., 2 (2017). https://doi.org/10.1016/j.idm.2017.09.002
    [33] R. C. Gupta, D. M. Bradley, Representing the mean residual life in terms of the failure rate, Math. Comput. Model., 37 (2003), 1271–1280. https://doi.org/10.1016/S0895-7177(03)90038-0 doi: 10.1016/S0895-7177(03)90038-0
    [34] K. M. M. Islam, O. M. Araz, Evaluating the Effectiveness of targeted public health control strategies for chlamydia transmission in Omaha, Nebraska: A mathematical modeling approach, Adv. Infect. Dis., 04 (2014), 142–151. https://doi.org/10.4236/aid.2014.43021
    [35] S. Portet, A primer on model selection using the Akaike Information Criterion, Infect Dis Model., 5 (2020), 111–128.
    [36] Weekly statistics from the National Notifiable Diseases Surveillance System (NNDSS), 2019. Available from: https://wonder.cdc.gov/nndss/nndss_weekly_tables_menu.asp?comingfrom = 202220 & savedmode = & mmwr_year = 2019 & mmwr_week = 01
    [37] J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, W. M. Getz, Superspreading and the effect of individual variation on disease emergence, Nature, 438 (2005), 355–359. https://doi.org/10.1038/nature04153 doi: 10.1038/nature04153
    [38] E.-J. Wagenmakers, S. Farrell, AIC model selection using Akaike weights, Psychon. Bull. Rev., 11 (2004), 192–196. https://doi.org/10.3758/BF03206482 doi: 10.3758/BF03206482
    [39] Y. Zheng, Q. Yu, Y. Lin, Y. Zhou, L. Lan, S. Yang, et al., Global burden and trends of sexually transmitted infections from 1990 to 2019: An observational trend study, Lancet Infect. Dis., 22 (2022), 541–551. https://doi.org/10.1016/S1473-3099(21)00448-5 doi: 10.1016/S1473-3099(21)00448-5
    [40] R. J. M. Bom, K. van der Linden, A. Matser, N. Poulin, M. F. Schim van der Loeff, B. H. W. Bakker, et al., The effects of free condom distribution on HIV and other sexually transmitted infections in men who have sex with men, BMC Infect. Dis., 19 (2019), 222. https://doi.org/10.1186/s12879-019-3839-0 doi: 10.1186/s12879-019-3839-0
    [41] G. Ramjee, A. van der Straten, T. Chipato, G. de Bruyn, K. Blanchard, S. Shiboski, et al., The diaphragm and lubricant gel for prevention of cervical sexually transmitted infections: Results of a randomized controlled trial, PLoS One, 3 (2008), e3488. https://doi.org/10.1371/journal.pone.0003488 doi: 10.1371/journal.pone.0003488
    [42] J. C. M. Heijne, C. L. Althaus, S. A. Herzog, M. Kretzschmar, N. Low, The role of reinfection and partner notification in the efficacy of chlamydia screening programs, J. Infect. Dis., 203 (2011), 372–377. https://doi.org/10.1093/infdis/jiq050 doi: 10.1093/infdis/jiq050
    [43] L. Corey, A. Wald, R. Patel, S. L. Sacks, S. K. Tyring, T. Warren, et al., Once-daily valacyclovir to reduce the risk of transmission of genital herpes, N. Engl. J. Med., 350 (2004), 11–20. https://doi.org/10.1056/NEJMoa035144 doi: 10.1056/NEJMoa035144
    [44] H. W. Chesson, P. Mayaud, S. O. Aral, Sexually transmitted infections: Impact and Cost-effectiveness of prevention, in: Dis. Control Priorities, Third Ed. (Volume 6) Major Infect. Dis., The World Bank, 2017: pp. 203–232. https://doi.org/10.1596/978-1-4648-0524-0_ch10
    [45] R. Steen, M. Chersich, S. J. de Vlas, Periodic presumptive treatment of curable sexually transmitted infections among sex workers, Curr. Opin. Infect. Dis., 25 (2012), 100–106. https://doi.org/10.1097/QCO.0b013e32834e9ad1 doi: 10.1097/QCO.0b013e32834e9ad1
    [46] S. Greenhalgh, A. Klug, Hepatitis B and D: A forecast on actions needed to reduce incidence and achieve elimination, SPORA A J. Biomath., (2022). https://doi.org/10.30707/SPORA8.1.1652717156.650087
    [47] G. S. Kumari, A. Reece, E. Tosun, On the origin of zombies: A modeling approach, ball state undergrad, Math. Exch., 16 (2022), 36–49. Available from: https://digitalresearch.bsu.edu/mathexchange/wp-content/uploads/2022/11/2022-3-KRTG.pdf
    [48] H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335–356. https://doi.org/10.1016/0025-5564(76)90132-2 doi: 10.1016/0025-5564(76)90132-2
    [49] A. Hurford, D. Cownden, T. Day, Next-generation tools for evolutionary invasion analyses, J. R. Soc. Interface., 7 (2010), 561–571. https://doi.org/10.1098/rsif.2009.0448 doi: 10.1098/rsif.2009.0448
    [50] J. Ripoll, J. Font, A discrete model for the evolution of infection prior to symptom onset, Mathematics, 11 (2023), 1092. https://doi.org/10.3390/math11051092 doi: 10.3390/math11051092
    [51] E. Bonyah, M. A. Khan, K. O. Okosun, J. F. Gómez‐Aguilar, On the co‐infection of dengue fever and Zika virus, Optim. Control Appl. Methods., 40 (2019), 394–421. https://doi.org/10.1002/oca.2483 doi: 10.1002/oca.2483
    [52] C. A. Klausmeier, Floquet theory: A useful tool for understanding nonequilibrium dynamics, Theor. Ecol., 1 (2008), 153–161. https://doi.org/10.1007/s12080-008-0016-2 doi: 10.1007/s12080-008-0016-2
    [53] L. J. S. Allen, A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis, Infect. Dis. Model., 2 (2017), 128–142. https://doi.org/10.1016/j.idm.2017.03.001
    [54] O. A. van Herwaarden, J. Grasman, Stochastic epidemics: Major outbreaks and the duration of the endemic period, J. Math. Biol., 33 (1995), 581–601. https://doi.org/10.1007/BF00298644 doi: 10.1007/BF00298644
    [55] T. L. Parsons, A. Lambert, T. Day, S. Gandon, Pathogen evolution in finite populations: Slow and steady spreads the best, J. R. Soc. Interface., 15 (2018), 20180135. https://doi.org/10.1098/rsif.2018.0135 doi: 10.1098/rsif.2018.0135
    [56] J. Feldman, S. Mishra, What could re-infection tell us about R0? A modeling case-study of syphilis transmission, Infect. Dis. Model., 4 (2019), 257–264. https://doi.org/10.1016/j.idm.2019.09.002 doi: 10.1016/j.idm.2019.09.002
    [57] E. Bonyah, M. A. Khan, K. O. Okosun, J. F. Gómez-Aguilar, Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea with optimal control, Math. Biosci., 309 (2019), 1–11. https://doi.org/10.1016/j.mbs.2018.12.015 doi: 10.1016/j.mbs.2018.12.015
    [58] S. Greenhalgh, C. V. C. V. Hobbs, S. Parikh, Brief report: Antimalarial benefit of HIV antiretroviral therapy in areas of low to moderate malaria transmission intensity, J. Acquir. Immune Defic. Syndr., 79 (2018), 249–254. https://doi.org/10.1097/QAI.0000000000001783 doi: 10.1097/QAI.0000000000001783
    [59] M. Kretzschmar, J. C. M. Heijne, Pair formation models for sexually transmitted infections: A primer, Infect. Dis. Model., 2 (2017), 368–378. https://doi.org/10.1016/j.idm.2017.07.002 doi: 10.1016/j.idm.2017.07.002
  • mbe-20-09-720 supplementary.docx
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1476) PDF downloads(155) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog