Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Computer implementation of the method for electrolytic production of thin films for biomedical applications: short review

  • Optimizing the electrodeposition process condition requires considerable effort and time. The use of modeling and simulations can largely solve this problem. This short review is focused on the development of mathematical models and molecular dynamics simulations, which can be used to predict the electrodeposition of thin silicon and silicon carbide films using the KCl-KF-KI electrolyte. The use of computer simulations to obtain thin films of silicon nitride and silicon dioxide is considered. Silicon, silicon dioxide, silicon nitride, and silicon carbide are important biomedical materials. Additionally, we consider modeling the decomposition process of various precursors used as sources of Si4+ and C4+ ions for electrolytic deposition. The calculation of various physical properties of crystalline silicon and important modifications of silicon carbide, including the thermal conductivity, surface diffusion coefficients, and a detailed structure determined by constructing Voronoi polyhedra, are discussed. A computer model allows one to explore the use of “a defective silicene/silicon carbide” hybrid material as a lithium-ion battery anode. The possibilities for solving problems of processes optimization in modern methods for producing biomedical materials are discussed.

    Citation: Alexander Galashev. Computer implementation of the method for electrolytic production of thin films for biomedical applications: short review[J]. AIMS Biophysics, 2024, 11(1): 39-65. doi: 10.3934/biophy.2024004

    Related Papers:

    [1] Giuseppe Maria Coclite, Lorenzo di Ruvo . A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Networks and Heterogeneous Media, 2016, 11(2): 281-300. doi: 10.3934/nhm.2016.11.281
    [2] Hyeontae Jo, Hwijae Son, Hyung Ju Hwang, Eun Heui Kim . Deep neural network approach to forward-inverse problems. Networks and Heterogeneous Media, 2020, 15(2): 247-259. doi: 10.3934/nhm.2020011
    [3] Anya Désilles, Hélène Frankowska . Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8(3): 727-744. doi: 10.3934/nhm.2013.8.727
    [4] Tong Yan . The numerical solutions for the nonhomogeneous Burgers' equation with the generalized Hopf-Cole transformation. Networks and Heterogeneous Media, 2023, 18(1): 359-379. doi: 10.3934/nhm.2023014
    [5] Jinyi Sun, Weining Wang, Dandan Zhao . Global existence of 3D rotating magnetohydrodynamic equations arising from Earth's fluid core. Networks and Heterogeneous Media, 2025, 20(1): 35-51. doi: 10.3934/nhm.2025003
    [6] Guillermo Reyes, Juan-Luis Vázquez . The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1(2): 337-351. doi: 10.3934/nhm.2006.1.337
    [7] Caihong Gu, Yanbin Tang . Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005
    [8] Bendong Lou . Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7(4): 857-879. doi: 10.3934/nhm.2012.7.857
    [9] Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016
    [10] Elisabeth Logak, Isabelle Passat . An epidemic model with nonlocal diffusion on networks. Networks and Heterogeneous Media, 2016, 11(4): 693-719. doi: 10.3934/nhm.2016014
  • Optimizing the electrodeposition process condition requires considerable effort and time. The use of modeling and simulations can largely solve this problem. This short review is focused on the development of mathematical models and molecular dynamics simulations, which can be used to predict the electrodeposition of thin silicon and silicon carbide films using the KCl-KF-KI electrolyte. The use of computer simulations to obtain thin films of silicon nitride and silicon dioxide is considered. Silicon, silicon dioxide, silicon nitride, and silicon carbide are important biomedical materials. Additionally, we consider modeling the decomposition process of various precursors used as sources of Si4+ and C4+ ions for electrolytic deposition. The calculation of various physical properties of crystalline silicon and important modifications of silicon carbide, including the thermal conductivity, surface diffusion coefficients, and a detailed structure determined by constructing Voronoi polyhedra, are discussed. A computer model allows one to explore the use of “a defective silicene/silicon carbide” hybrid material as a lithium-ion battery anode. The possibilities for solving problems of processes optimization in modern methods for producing biomedical materials are discussed.



    The equation:

    {tu+xf(u)β22xu+δ3xu+κu+γ2|u|u=0,0<t<T,xR,u(0,x)=u0(x),xR, (1.1)

    was originally derived in [14,17] with f(u)=au2 focusing on microbubbles coated by viscoelastic shells. These structures are crucial in ultrasound diagnosis using contrast agents, and the dynamics of individual coated bubbles are explored, taking into account nonlinear competition and dissipation factors such as dispersion, thermal effects, and drag force.

    The coefficients β2, δ, κ, and γ2 are related to the dissipation, the dispersion, the thermal conduction dissipation, and to the drag force, repsctively.

    If κ=γ=0, we obtain the Kudryashov-Sinelshchikov [18] Korteweg-de Vries-Burgers [3,20] equation

    tu+axu2β22xu+δ3xu=0, (1.2)

    that models pressure waves in liquids with gas bubbles, taking into account heat transfer and viscosity. The mathematical results on Eq (1.2) are the following:

    ● analysis of exact solutions in [13],

    ● existence of the traveling waves in [2],

    ● well-posedness and asymptotic behavior in [7,11].

    If β=0, we derive the Korteweg-de Vries equation:

    tu+axu2+δ3xu=0, (1.3)

    which describes surface waves of small amplitude and long wavelength in shallow water. Here, u(t,x) represents the wave height above a flat bottom, x corresponds to the distance in the propagation direction, and t denotes the elapsed time. In [4,6,10,12,15,16], the completele integrability of Eq (1.3) and the existence of solitary wave solutions are proved.

    Through the manuscript, we will assume

    ● on the coefficients

    β,δ,κ,γR,β,δ,γ0; (1.4)

    ● on the flux f, one of the following conditions:

    f(u)=au2+bu3, (1.5)
    fC1(R),|f(u)|C0(1+|u|),uR, (1.6)

    for some positive constant C0;

    ● on the initial value

    u0H1(R). (1.7)

    The main result of this paper is the following theorem.

    Theorem 1.1. Assume Eqs (1.5)–(1.7). For fixed T>0, there exists a unique distributional solution u of Eq (1.1), such that

    uL(0,T;H1(R))L4(0,T;W1,4(R))L6(0,T;W1,6(R))2xuL2((0,T)×R). (1.8)

    Moreover, if u1 and u2 are solutions to Eq (1.1) corresponding to the initial conditions u1,0 and u2,0, respectively, it holds that:

    u1(t,)u2(t,)L2(R)eC(T)tu1,0u2,0L2(R), (1.9)

    for some suitable C(T)>0, and every, 0tT.

    Observe that Theorem 1.1 gives the well-posedness of (1.1), without conditions on the constants. Moreover, the proof of Theorem 1.1 is based on the Aubin-Lions Lemma [5,21]. The analysis of Eq (1.1) is more delicate than the one of Eq (1.2) due to the presence of the nonlinear sources and the very general assumptions on the coefficients.

    The structure of the paper is outlined as follows. Section 2 is dedicated to establishing several a priori estimates for a vanishing viscosity approximation of Eq (1.1). These estimates are crucial for proving our main result, which is presented in Section 3.

    To establish existence, we utilize a vanishing viscosity approximation of equation (1.1), as discussed in [19]. Let 0<ε<1 be a small parameter, and denote by uεC([0,T)×R) the unique classical solution to the following problem [1,9]:

    {tuε+xf(uε)β22xuε+δ3xuε+κu+γ2|u|u=ε4xuε,0<t<T,xR,uε(0,x)=uε,0(x),xR, (2.1)

    where uε,0 is a C approximation of u0, such that

    uε,0H1(R)u0H1(R). (2.2)

    Let us prove some a priori estimates on uε, denoting with C0 constants which depend only on the initial data, and with C(T) the constants which depend also on T.

    We begin by proving the following lemma:

    Lemma 2.1. Let T>0 be fixed. There exists a constant C(T)>0, which does not depend on ε, such that

    uε(t,)2L2(R)+2γ2e|κ|tt0Re|κ|su2ε|uε|dsdx+2β2e|κ|tt0e|κ|sxuε(s,)2L2(R)ds+2εe|κ|tt0e|κ|s2xuε(s,)2L2(R)C(T), (2.3)

    for every 0tT.

    Proof. For 0tT. Multiplying equations (2.1) by 2uε, and integrating over R yields

    ddtuε(t,)2L2(R)=2Ruεtuεdx=2Ruεf(uε)xuεdx=0+2β2Ruε2xuεdx2δRuε3xuεdxκuε(t,)2L2(R)2γ2R|uε|u2εdx2εRuε4xuεdx=2β2xuε(t,)2L2(R)+2δRxuε2xuεdxκuε(t,)2L2(R)2γ2R|uε|u2εdx+2εRxuε3xuεdx=2β2xuε(t,)2L2(R)κuε(t,)2L2(R)2γ2R|uε|u2εdx2ε2xuε(t,)2L2(R).

    Thus, it follows that

    ddtuε(t,)2L2(R)+2β2xuε(t,)2L2(R)+2γ2R|uε|u2εdx+2ε2xuε(t,)2L2(R)=κuε(t,)2L2(R)|κ|uε(t,)2L2(R).

    Therefore, applying the Gronwall's lemma and using Eq (2.2), we obtain

    uε(t,)2L2(R)+2β2e|κ|tt0e|κ|sxuε(s,)2L2(R)ds+2γ2e|κ|tt0Re|κ|t|uε|u2εdsdx+2ε2xuε(t,)2L2(R)+2εe|κ|tt0e|κ|s2xuε(s,)2L2(R)dsC0e|κ|tC(T),

    which gives Eq (2.3).

    Lemma 2.2. Fix T>0 and assume (1.5). There exists a constant C(T)>0, independent of ε, such that

    uεL((0,T)×R)C(T), (2.4)
    xuε(t,)2L2(R)+β2t02xuε(s,)2L2(R)ds (2.5)
    +2εt03xuε(s,)2L2(R)dsC(T),t0xuε(s,)4L4(R)dsC(T), (2.6)

    holds for every 0tT.

    Proof. Let 0tT. Consider A,B as two real constants, which will be specified later. Thanks to Eq (1.5), multiplying Eq (2.1) by

    22xuε+Au2ε+Bu3ε,

    we have that

    (22xuε+Au2ε+Bu3ε)tuε+2a(22xuε+Au2ε+Bu3ε)uεxuε+3b(22xuε+Au2ε+Bu3ε)u2εxuεβ2(22xuε+Au2ε+Bu3ε)2xuε+δ(22xuε+Au2ε+Bu3ε)3xuε+κ(22xuε+Au2ε+Bu3ε)uε+γ2(22xuε+Au2ε+Bu3ε)|uε|uε=ε(22xuε+Au2ε+Bu3ε)4xuε. (2.7)

    Observe that

    R(22xuε+Au2ε+Bu3ε)tuεdx=ddt(xuε(t,)2L2(R)+A3Ru3εdx+B4Ru4εdx),2aR(22xuε+Au2ε+Bu3ε)uεxuεdx=4aRuεxuε2xuεdx,3bR(22xuε+Au2ε+Bu3ε)u2εxuεdx=6bRu2εxuε2xuεdx,β2R(22xuε+Au2ε+Bu3ε)2xuεdx=2β22xuε(t,)2L2(R)+2Aβ2Ruε(xuε)2dx+3Bβ2Ru2ε(xuε)2dx,δR(22xuε+Au2ε+Bu3ε)3xuεdx=2AδRuεxuε2xuεdx3BδRu2εxuε2xuεdx,κR(22xuε+Au2ε+Bu3ε)uεdx=2κxuε(t,)2L2(R)+AκRu3εdx+BκRu4εdx,γ2R(22xuε+Au2ε+Bu3ε)|uε|uεdx=2γ2R|uε|uε2xuεdx+Aγ2R|u|u3εdx+Bγ2R|uε|u4dx,εR(22xuε+Au2ε+Bu3ε)4xuεdx=2ε3xuε(t,)2L2(R)+2AεRuεxuε3xuεdx+3BεRu2εxuε3xuεdx=2ε3xuε(t,)2L2(R)AεR(xuε)3dx6BεRuε(xuε)22xuεdx3Bεuε(t,)2xuε(t,)2L2(R)=2ε3xuε(t,)2L2(R)AεR(xuε)3dx+2BεR(xuε)4dx3Bεuε(t,)2xuε(t,)2L2(R).

    Therefore, an integration on R gives

    ddt(xuε(t,)2L2(R)+A3Ru3εdx+B4Ru4εdx)+β22xuε(t,)2L2(R)+2ε3xuε(t,)2L2(R)=(4a+Aδ)Ruεxuε2xuεdx3(2b+Bδ)Ru2εxuε2xuεdx2Aβ2Ruε(xuε)2dx3Bβ2Ru2ε(xuε)2dxκxuε(t,)2L2(R)Aκ3Ru3εdxBκ4Ru4εdx+2γ2R|uε|uε2xuεdxAγ2R|uε|u3εdxBγ2R|uε|u4εdxAεR(xuε)3dx+2BεR(xuε)4dx3Bεuε(t,)2xuε(t,)2L2(R).

    Taking

    (A,B)=(4aδ,2bδ),

    we get

    ddt(xuε(t,)2L2(R)4a3δRu3εdxbδRu4εdx)+2β22xuε(t,)2L2(R)+2ε3xuε(t,)2L2(R)=8aβ2δRuε(xuε)2dx+6bβ2δRu2ε(xuε)2dxκxuε(t,)2L2(R)+4aκ3δRu3εdx+bκ2Ru4εdx+2γ2R|uε|uε2xuεdx+4aγ2δR|uε|u3εdx+2bγ2δR|uε|u4εdx+4aεδR(xuε)3dx4bεδR(xuε)4dx+6bεδuε(t,)2xuε(t,)2L2(R). (2.8)

    Since 0<ε<1, due to the Young inequality and (2.3),

    8aβ2δR|uε|(xuε)2dx4Ru2ε(xuε)2dx+4a2β4δ2xuε(t,)2L2(R)4uε2L((0,T)×R)xuε(t,)2L2(R)+4a2β4δ2xuε(t,)2L2(R)C0(1+uε2L((0,T)×R))xuε(t,)2L2(R),|6bβ2δ|Ru2ε(xuε)2dx|6bβ2δ|uε2L((0,T)×R)xuε(t,)2L2(R),|4aκ3δ|R|uε|3dx|4aκ3δ|uεL((0,T)×R)uε(t,)2L2(R)C(T)uεL((0,T)×R),|bκ2|Ru4εdx|bκ2|uε2L((0,T)×R)uε(t,)2L2(R)C(T)uε2L((0,T)×R),2γ2R|uε|uε2xuεdx2R|γ2|uε|uεβ||β2xuε|dxγ4β2Ruε4dx+β22xuε(t,)2L2(R)γ4β2uε2L((0.T)×R)uε(t,)2L2(R)+β22xuε(t,)2L2(R)C(T)uε2L((0,T)×R)+β22xuε(t,)2L2(R),|4aγ2δ|R|uε||uε|3dx=|4aγ2δ|Ru4εdx|4aγ2δ|uε2L((0,T)×R)uε(t,)2L2(R)C(T)uε2L((0,T)×R),|2bγ2δ|R|uε|uε4dx|2bγ2δ|uε3L((0,T)×R)uε(t,)2L2(R)C(T)uε3L((0,T)×R),|4aεδ|R|xuε|3dx|4aεδ|xuε(t,)2L2(R)+|4aεδ|R(xuε)4dx|4aδ|xuε(t,)2L2(R)+|4aεδ|R(xuε)4dx.

    It follows from Eq (2.8) that

    ddt(xuε(t,)2L2(R)4a3δRu3εdxbδRu4εdx)+β22xuε(t,)2L2(R)+2ε3xuε(t,)2L2(R)C0(1+uε2L((0,T)×R))xuε(t,)2L2(R)+C(T)uεL((0,T)×R)+C(T)uε2L((0,T)×R)+C(T)uε3L((0,T)×R)+C0εR(xuε)4dx+C0εuε(t,)2xuε(t,)2L2(R)+C0xuε(t,)2L2(R). (2.9)

    [8, Lemma 2.3] says that

    R(xuε)4dx9Ru2ε(2xuε)2dx9uε2L((0,T)×R)2xuε(t,)2L2(R). (2.10)

    Moreover, we have that

    uε(t,)2xuε(t,)2L2(R)=Ru2ε(2xuε)2dxuε2L((0,T)×R)2xuε(t,)2L2(R). (2.11)

    Consequentially, by Eqs (2.9)–(2.11), we have that

    ddt(xuε(t,)2L2(R)4a3δRu3εdxbδRu4εdx)+β22xuε(t,)2L2(R)+2ε3xuε(t,)2L2(R)C0(1+uε2L((0,T)×R))xuε(t,)2L2(R)+C(T)uεL((0,T)×R)+C(T)uε2L((0,T)×R)+C(T)uε3L((0,T)×R)+C0εuε2L((0,T)×R)2xuε(t,)2L2(R)+C0xuε(t,)2L2(R).

    An integration on (0,t) and Eqs (2.2) and (2.3) give

    xuε(t,)2L2(R)4a3δRu3εdxbδRu4εdx+β2t02xuε(s,)2L2(R)ds+2εt03xuε(s,)2L2(R)dsC0(1+uε2L((0,T)×R))t0xuε(s,)2L2(R)ds+C(T)uεL((0,T)×R)t+C(T)uε2L((0,T)×R)t+C(T)uε3L((0,T)×R)t+C0εuε2L((0,T)×R)t02xuε(s,)2L2(R)ds+C0t0xuε(s,)2L2(R)dsC(T)(1+uεL((0,T)×R)+uε2L((0,T)×R)+uε3L((0,T)×R)).

    Therefore, by Eq (2.3),

    xuε(t,)2L2(R)+β2t02xuε(s,)2L2(R)ds+2εt03xuε(s,)2L2(R)dsC(T)(1+uεL((0,T)×R)+uε2L((0,T)×R)+uε3L((0,T)×R))+4a3δRu3εdx+bδRu4εdxC(T)(1+uεL((0,T)×R)+uε2L((0,T)×R)+uε3L((0,T)×R))+|4a3δ|R|uε|3dx+|bδ|Ru4εdxC(T)(1+uεL((0,T)×R)+uε2L((0,T)×R)+uε3L((0,T)×R))+|4a3δ|uεL((0,T)×R)uε(t,)2L2(R)+|bδ|uε2L((0,T)×R)uε(t,)2L2(R)C(T)(1+uεL((0,T)×R)+uε2L((0,T)×R)+uε3L((0,T)×R)). (2.12)

    We prove Eq (2.4). Thanks to the Hölder inequality,

    u2ε(t,x)=2xuεxuεdx2R|uε||xuε|dx2uε(t,)L2(R)xuε(t,)L2(R).

    Hence, we have that

    uε(t,)4L(R)4uε(t,)2L2(R)xuε(t,)2L2(R). (2.13)

    Thanks to Eqs (2.3) and (2.12), we have that

    uε4L((0,T)×R)C(T)(1+uεL((0,T)×R)+uε2L((0,T)×R)+uε3L((0,T)×R)). (2.14)

    Due to the Young inequality,

    C(T)uε3L((0,T)×R)12uε4L((0,T)×R)+C(T)uε2L((0,T)×R),C(T)uεL((0,T)×R)C(T)uε2L((0,T)×R)+C(T).

    By Eq (2.14), we have that

    12uε4L((0,T)×R)C(T)uε2L((0,T)×R)C(T)0,

    which gives Eq (2.4).

    Equation (2.5) follows from Eqs (2.4) and (2.12).

    Finally, we prove Eq (2.6). We begin by observing that, from Eqs (2.4) and (2.10), we have

    xuε(t,)4L4(R)C(T)2xuε(t,)2L2(R).

    An integration on (0,t) and Eqs (2.5) give Eq (2.6).

    Lemma 2.3. Fix T>0 and assume (1.6). There exists a constant C(T)>0, independent of ε, such that Eq (2.4) holds. Moreover, we have Eqs (2.5) and (2.6).

    Proof. Let 0tT. Multiplying Eq (2.1) by 22xuε, an integration on R gives

    ddtxuε(t,)2L2(R)=2R2xuεtuεdx=2Rf(uε)xuε2xuεdx2β22xuε(t,)2L2(R)2δR2xuε3xuεdx2κRuε2xuεdx2γ2R|uε|uε2xuεdx+2εR2xuε4xuεdx=2Rf(uε)xuε2xuεdx2β22xuε(t,)2L2(R)+2κxuε(t,)2L2(R)+2γ2R|uε|uε2xuεdx2ε3xuε(t,)2L2(R).

    Therefore, we have that

    ddtxuε(t,)2L2(R)+2β22xuε(t,)2L2(R)+2ε3xuε(t,)2L2(R)=2Rf(uε)xuε2xuεdx+2κxuε(t,)2L2(R)+2γ2R|uε|uε2xuεdx. (2.15)

    Due Eqs (1.6) and (2.3) and the Young inequality,

    2R|f(uε)||xuε||2xuε|dxC0R|xuε2xuε|dx+C0R|uεxuε||2xuε|dx=2R|C03xuε2β||β2xuε3|dx+2R|C03uεxuε2β||3β2xuε|dxC0xuε(t,)2L2(R)+C0Ru2ε(xuε)2dx+2β232xuε(t,)2L2(R)C0xuε(t,)2L2(R)+C0uε2L((0,T)×R)xuε(t,)2L2(R)+2β232xuε(t,)2L2(R)C0(1+uε2L((0,T)×R))xuε(t,)2L2(R)+2β232xuε(t,)2L2(R),2γ2R|uε|uε2xuεdx2γ2Ru2ε|2xuε|dx=2R|3γ2u2εβ||β2xuε3|dx3γ4β2Ru4εdx+β232xuε(t,)2L2(R)3γ4β2uε2L((0,T)×R)uε(t,)2L2(R)+β232xuε(t,)2L2(R)C(T)uε2L((0,T)×R)+β232xuε(t,)2L2(R).

    It follows from Eq (2.15) that

    ddtxuε(t,)2L2(R)+β22xuε(t,)2L2(R)+2ε3xuε(t,)2L2(R)C0(1+uε2L((0,T)×R))xuε(t,)2L2(R)+C(T)uε2L((0,T)×R).

    Integrating on (0,t), by Eq (2.3), we have that

    xuε(t,)2L2(R)+β2t02xuε(s,)2L2(R)ds+2εt03xuε(s,)2L2(R)C0+C0(1+uε2L((0,T)×R))t0xuε(s,)2L2(R)ds+C(T)uε2L((0,T)×R)tC(T)(1+uε2L((0,T)×R)). (2.16)

    Thanks to Eqs (2.3), (2.13), and (2.16), we have that

    uε4L((0,T)×R)C(T)(1+uε2L((0,T)×R)).

    Therefore,

    uε4L((0,T)×R)C(T)uε2L((0,T)×R)C(T)0,

    which gives (2.4).

    Equation (2.5) follows from (2.4) and (2.16), while, arguing as in Lemma 2.2, we have Eq (2.6).

    Lemma 2.4. Fix T>0. There exists a constant C(T)>0, independent of ε, such that

    t0xuε(s,)6L6(R)dsC(T), (2.17)

    for every 0tT.

    Proof. Let 0tT. We begin by observing that,

    R(xuε)6dxxuε(t,)4L(R)xuε(t,)2L2(R). (2.18)

    Thanks to the Hölder inequality,

    (xuε(t,x))2=2xxuε2xuεdy2R|xuε||2xuε|dx2xuε(t,)L2(R)2xuε(t,)2L2(R).

    Hence,

    u(t,)4L(R)4xuε(t,)2L2(R)2xuε(t,)2L2(R).

    It follows from Eq (2.18) that

    R(xuε)6dx4xuε(t,)4L2(R)2xuε(t,)2L2(R).

    Therefore, by Eq (2.5),

    R(xuε)6dxC(T)2xuε(t,)2L2(R).

    An integration on (0,t) and Eq (2.5) gives (2.17).

    This section is devoted to the proof of Theorem 1.1.

    We begin by proving the following result.

    Lemma 3.1. Fix T>0. Then,

    the family {uε}ε>0 is compact in L2loc((0,T)×R). (3.1)

    Consequently, there exist a subsequence {uεk}kN and uL2loc((0,T)×R) such that

    uεku in L2loc((0,T)×R) and a.e. in (0,T)×R. (3.2)

    Moreover, u is a solution of Eq (1.1), satisfying Eq (1.8).

    Proof. We begin by proving Eq (3.1). To prove Eq (3.1), we rely on the Aubin-Lions Lemma (see [5,21]). We recall that

    H1loc(R)↪↪L2loc(R)H1loc(R),

    where the first inclusion is compact and the second one is continuous. Owing to the Aubin-Lions Lemma [21], to prove Eq (3.1), it suffices to show that

    {uε}ε>0 is uniformly bounded in L2(0,T;H1loc(R)), (3.3)
    {tuε}ε>0 is uniformly bounded in L2(0,T;H1loc(R)). (3.4)

    We prove Eq (3.3). Thanks to Lemmas 2.1–2.3,

    uε(t,)2H1(R)=uε(t,)2L2(R)+xuε(t,)2L2(R)C(T).

    Therefore,

    {uε}ε>0 is uniformly bounded in L(0,T;H1(R)),

    which gives Eq (3.3).

    We prove Eq (3.4). Observe that, by Eq (2.1),

    tuε=x(G(uε))f(uε)xuεκuεγ2|uε|uε,

    where

    G(uε)=β2xuεδ2xuεε3xuε. (3.5)

    Since 0<ε<1, thanks to Eq (2.5), we have that

    β2xuε2L2((0,T)×R),δ22xuε2L2((0,T)×R)C(T),ε23xuε2L2((0,T)×R)C(T). (3.6)

    Therefore, by Eqs (3.5) and (3.6), we have that

    {x(G(uε))}ε>0 is bounded in L2(0,T;H1(R)). (3.7)

    We claim that

    T0R(f(uε))2(xuε)2dtdxC(T). (3.8)

    Thanks to Eqs (2.4) and (2.5),

    T0R(f(uε))2(xuε)2dtdxf2L(C(T),C(T))T0xuε(t,)2L2(R)dtC(T).

    Moreover, thanks to Eq (2.3),

    |κ|T0R(uε)2dxC(T). (3.9)

    We have that

    γ2T0R(|uε|uε)2dsdxC(T). (3.10)

    In fact, thanks to Eqs (2.3) and (2.4),

    γ2T0R(|uε|uε)2dsdxγ2uε2L((0,T)×R)T0R(uε)2dsdxC(T)T0R(uε)2dsdxC(T).

    Therefore, Eq (3.4) follows from Eqs (3.7)–(3.10).

    Thanks to the Aubin-Lions Lemma, Eqs (3.1) and (3.2) hold.

    Consequently, arguing as in [5, Theorem 1.1], u is solution of Eq (1.1) and, thanks to Lemmas 2.1–2.3 and Eqs (2.4), (1.8) holds.

    Proof of Theorem 1.1. Lemma 3.1 gives the existence of a solution of Eq (1.1).

    We prove Eq (1.9). Let u1 and u2 be two solutions of Eq (1.1), which verify Eq (1.8), that is,

    {tui+xf(ui)β22xui+δ3xui+κui+γ2|ui|ui=0,0<t<T,xR,ui(0,x)=ui,0(x),xR,i=1,2.

    Then, the function

    ω(t,x)=u1(t,x)u2(t,x), (3.11)

    is the solution of the following Cauchy problem:

    {tω+x(f(u1)f(u2))β22xω+δ2xω+κω+γ2(|u1|u1|u2|u2)=0,0<t<T,xR,ω(0,x)=u1,0(x)u2,0(x),xR. (3.12)

    Fixed T>0, since u1,u2H1(R), for every 0tT, we have that

    u1L((0,T)×R),u2L((0,T)×R)C(T). (3.13)

    We define

    g=f(u1)f(u2)ω (3.14)

    and observe that, by Eq (3.13), we have that

    |g|fL(C(T),C(T))C(T). (3.15)

    Moreover, by Eq (3.11) we have that

    ||u1||u2|||u1u2|=|ω|. (3.16)

    Observe that thanks to Eq (3.11),

    |u1|u1|u2|u2=|u1|u1|u1|u2+|u1|u2|u2|u2=|u1|ω+u2(|u1||u2|). (3.17)

    Thanks to Eqs (3.14) and (3.17), Equation (3.12) is equivalent to the following one:

    tω+x(gω)β22xω+δ3xω+κω+γ2|u1|ω+γ2u2(|u1||u2|)=0. (3.18)

    Multiplying Eq (3.18) by 2ω, an integration on R gives

    dtdtω(t,)2L2(R)=2Rωtω=2Rωx(gω)dx+2β2Rω2xωdx2δRω3xωdx2κω(t,)2L2(R)2γ2R|u1|ω2dx2γ2Ru2(|u1||u2|)ωdx=2Rgωxωdx2β2xω(t,)2L2(R)+2δRxω2xωdx2κω(t,)2L2(R)2γ2R|u1|ω2dx2γ2Ru2(|u1||u2|)ωdx=2Rgωxωdx2β2xω(t,)2L2(R)2κω(t,)2L2(R)2γ2R|u1|ω2dx2γ2Ru2(|u1||u2|)ωdx.

    Therefore, we have that

    ω(t,)2L2(R)+2β2xω(t,)2L2(R)+2γ2R|u1|ω2dx=2Rgωxωdxκω(t,)2L2(R)2γ2Ru2(|u1||u2|)ωdx. (3.19)

    Due to Eqs (3.13), (3.15) and (3.16) and the Young inequality,

    2R|g||ω||xω|dx2C(T)R|ω||xω|dx=2R|C(T)ωβ||βxω|dxC(T)ω(t,)2L2(R)+β2xω(t,)2L2(R),2γ2R|u2||(|u1||u2|)||ω|dx2γ2u2L((0,T)×R)R|(|u1||u2|)||ω|dxC(T)ω(t,)2L2(R).

    It follows from Eq (3.19) that

    ω(t,)2L2(R)+β2xω(t,)2L2(R)+2γ2R|u1|ω2dxC(T)ω(t,)2L2(R).

    The Gronwall Lemma and Eq (3.12) give

    ω(t,)2L2(R)+β2eC(T)tt0eC(T)sxω(s,)2L2(R)ds+2γ2eC(T)tt0ReC(T)s|u1|ω2dsdxeC(T)tω02L2(R). (3.20)

    Equation (1.9) follows from Eqs (3.11) and (3.20).

    Giuseppe Maria Coclite and Lorenzo Di Ruvo equally contributed to the methodologies, typesetting, and the development of the paper.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Giuseppe Maria Coclite is an editorial boardmember for [Networks and Heterogeneous Media] and was not involved inthe editorial review or the decision to publish this article.

    GMC is member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). GMC has been partially supported by the Project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 -Call for tender No. 3138 of 16/12/2021 of Italian Ministry of University and Research funded by the European Union -NextGenerationEUoAward Number: CN000023, Concession Decree No. 1033 of 17/06/2022 adopted by the Italian Ministry of University and Research, CUP: D93C22000410001, Centro Nazionale per la Mobilità Sostenibile, the Italian Ministry of Education, University and Research under the Programme Department of Excellence Legge 232/2016 (Grant No. CUP - D93C23000100001), and the Research Project of National Relevance "Evolution problems involving interacting scales" granted by the Italian Ministry of Education, University and Research (MIUR Prin 2022, project code 2022M9BKBC, Grant No. CUP D53D23005880006). GMC expresses its gratitude to the HIAS - Hamburg Institute for Advanced Study for their warm hospitality.

    The authors declare there is no conflict of interest.


    Acknowledgments



    This work was supported by Ministry of Science and Higher Education of the Russian Federation and is executed in the frame of the scientific theme of Institute of high-temperature electrochemistry UB RAS, number FUME-2022-0005, registration number 122020100205-5.

    Conflict of interest



    The author declares no conflict of interest.

    [1] Schoen FJ, Levy RJ, Tam H, et al. (2020) Pathological calcification of biomaterials. Biomaterials Science. London: Elsevier 973-994. https://doi.org/10.1016/B978-0-12-816137-1.00065-9
    [2] Sastri VR (2013) Plastics in Medical Devices, Properties, Requirements, and Applications. Amsterdam: Elsevier. https://doi.org/10.1016/C2012-0-05946-7
    [3] Yesilirmak N, Altinors DD (2013) A silicone hydrogel contact lens after 7 years of continuous wear. Cont Lens Anterior Eye 36: 204-206. https://doi.org/10.1016/j.clae.2013.03.001
    [4] Saddow SE (2012) Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications. Amsterdam: Elsevier. https://doi.org/10.1016/C2014-0-03629-5
    [5] Oliveros A, Guiseppi-Elie A, Saddow SE (2013) Silicon carbide: a versatile material for biosensor applications. Biomed Microdevices 15: 353-368. https://doi.org/10.1007/s10544-013-9742-3
    [6] Cruz RLJ, Ross MT, Powell SK, et al. (2020) Advancements in soft-tissue prosthetics part B: The chemistry of imitating life. Front Bioeng Biotechnol 8: 147. https://doi.org/10.3389/fbioe.2020.00147
    [7] Coletti C, Jaroszeski M, Pallaoro A, et al. (2007) Biocompatibility and wettability of crystalline SiC and Si surfaces. Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, France: 5849-5852. https://doi.org/10.1109/IEMBS.2007.4353678
    [8] Saddow SE (2022) Silicon carbide technology for advanced human healthcare applications. Micromachines (Basel) 13: 346. https://doi.org/10.3390/mi13030346
    [9] Yunus G, Singh R, Raveendran S, et al. (2023) Electrochemical biosensors in healthcare services: bibliometric analysis and recent developments. PeerJ 11: e15566. https://doi.org/10.7717/peerj.15566
    [10] Jiang F, Liu Y, Yang Y, et al. (2012) Research progress of optical fabrication and surface-microstructure modification of SiC. J Nanomater 2012: 984048. https://doi.org/10.1155/2012/984048
    [11] Marsil N, Majlis BY, Mohd-Yasin F, et al. (2020) A review: properties of silicon carbide materials in MEMS application. Int J Nanoelectron Mater 13: 113-128. http://hdl.handle.net/10072/411838
    [12] Jani DB (2020) An overview on use of renewable solar energy in desiccant based thermal cooling systems. J Algerian Studies 1: 38-42. https://doi.org/10.5281/zenodo.4403022
    [13] Arvanitopoulos A, Antoniou M, Li F (2022) 3C-SiC-on-Si MOSFETs: Overcoming material technology limitations. IEEE T Ind Appl 58: 565-575. https://doi.org/10.1109/tia.2021.3119269
    [14] Toure M, Berenguier B, Kobor D (2018) Study by numerical simulation of a PN solar cell in 3C-SiC/Si. Afr J Environ Sci Technol 12: 532-537. https://doi.org/10.5897/AJEST2018.2565
    [15] Alkhaldi ND, Barman SK, Huda MN (2019) Crystal structures and the electronic properties of silicon-rich silicon carbide materials by first principle calculations. Heliyon 5: e02908. https://doi.org/10.1016/j.heliyon.2019.e02908
    [16] Lynch ME, Mebane D, Liu M (2010) Numerical continuum modeling and simulation of mixed-conducting thin film and patterned electrodes. Ceramic Engineering and Science Proceedings 30: 129-138. https://doi.org/10.1002/9780470584316.ch12
    [17] Kang KH, Eun T, Jun MC, et al. (2014) Governing factors for the formation of 4H or 6H-SiC polytype during SiC crystal growth: An atomistic computational approach. J Cryst Growth 389: 120. https://doi.org/10.1016/j.jcrysgro.2013.12.007
    [18] Fiorentis E, Gatou MA, Lagopati N, et al. (2023) Biomedical applications of silica (SiO2) nanoparticles. J Sci Tech Res 51: 42382-42389. https://doi.org/10.26717/BJSTR.2023.51.008057
    [19] Wei J, Ong PL, Tay FEH, et al. (2008) A new fabrication method of low stress PECVD SiNx layers for biomedical applications. Thin Solid Films 516: 5181-5188. https://doi.org/10.1016/j.tsf.2007.07.051
    [20] Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuators B: Chem 92: 315-325. https://doi.org/10.1016/S0925-4005(03)00266-1
    [21] Lin Z, Chen K, Zhang P, et al. (2017) Improved power efficiency in phosphorus doped n-a-SiNxOy/p-Si heterojunction light emitting diode. Appl Phys Lett 110: 081109. https://doi.org/10.1063/1.4977419
    [22] Paviet-Salomon B, Gall S, Monna R, et al. (2011) Laser doping using phosphorus-doped silicon nitrides. Energy Procedia 8: 700-705. https://doi.org/10. 1016/j.egypro.2011.06.204
    [23] Arl D, Roge V, Adjeroud N, et al. (2020) SiO2 thin film growth through a pure atomic layer deposition technique at room temperature. RSC Adv 10: 18073-18081. https://doi.org/10.1039/d0ra01602k
    [24] Gil-Ocaña V, Jimenez IM, Mayorga C, et al. (2021) Multiepitope dendrimeric antigen-silica particle composites as nano-based platforms for specific recognition of IgEs. Front Immunol 12: 750109. https://doi.org/10.3389/fimmu.2021.750109
    [25] Pandit B, Goda ES, Shaikh SF (2023) Electrochemical deposition toward thin films. Simple Chemical Methods for Thin Film Deposition: Synthesis and Applications. Singapore: Springer 245-304. https://doi.org/10.1007/978-981-99-0961-2-6
    [26] Yan Z, Liu R, Liu B, et al. (2023) Molecular dynamics simulation studies of properties, preparation, and performance of silicon carbide materials: a review. Energies 16: 1176. https://doi.org/10.3390/en16031176
    [27] Guan K, Zeng Q, Liu Y, et al. (2021) A multiscale model for CVD growth of silicon carbide. Comp Mater Sci 196: 110512. https://doi.org/10.1016/j.commatsci.2021.110512
    [28] Bhowmik S, Raian AG (2022) Chemical vapor deposition of 2D materials: a review of modeling, simulation, and machine learning studies. Review 25: 103832. https://doi.org/10.1016/j.isci2022.103832
    [29] Wu K, Mei Q, Liu H, et al. (2023) Vapor deposition growth of SiC crystal on 4H-SiC substrate by molecular dynamics simulation. Crystals 13: 715. https://doi.org/10.3390/cryst13050715
    [30] Ivanichkina KA, Galashev AY, Isakov AV (2021) Computational modeling of electrolytic deposition of a single-layer silicon film on silver and graphite substrates. Appl Surf Sci 561: 149959. https://doi.org/10.1016/j.apsusc.2021.149959
    [31] Galashev AY, Abramova KA (2023) Computer simulation of obtaining thin films of silicon carbide. Phys Chem Chem Phys 25: 3834-3847. https://doi.org/10.1039/d2cp04208h
    [32] Laptev MV, Isakov AV, Grishenkova OV (2020) Electrodeposition of thin silicon films from the KF-KCl-KI-K2SiF6 melt. J Electrochem Soc 167: 04206. https://doi.org/10.1149/1945-7111/ab7aec
    [33] Ewald P (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys-Berlin 369: 253-287. https://doi.org/10.1002/andp.19213690304
    [34] Hockney RW, Eastwood JW (1988) Computer Simulation Using Particles. Philadelphia: Taylor & Francis. https://doi.org/10.1201/9780367806934
    [35] Yu R, Zhai P, Li G, et al. (2012) Molecular dynamics simulation of the mechanical properties of single-crystal bulk Mg2Si. J Electron Mater 41: 1465-1469. https://doi.org/10.1007/s11664-012-1916-x
    [36] Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-methode functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys. Phys Rev B 33: 7983. https://doi.org/10.1103/PhysRevB.33.7983
    [37] Tersoff J (1989) Modelng solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B: Condens Matter Mater Phys 39: 5566-5568. https://doi.org/10.1103/PhysRevB.39.5566
    [38] Daw MS, Baskes MI (1984) Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29: 6443. https://doi.org/10.1103/PhysRevB.29.6443
    [39] Finney JL (1979) A procedure for the construction of Voronoi polyhedral. J Comput Phys 32: 137-143. https://doi.org/10.1016/0021-9991(79)90146-3
    [40] Galashev AE, Skripov VP (1984) Investigation on the disordering of the argon hexagonal closed packed (HCP) crystals by the method of statistical geometry. J Struct Chem 25: 734-740. https://doi.org/10.1007/BF00747917
    [41] Galashev AE, Ivanichkina KA (2017) Computational study of the properties of silicon thin films on graphite. Rus J Phys Chem A 91: 2448-2452. https://doi.org/10.1134/S003602441712007X
    [42] Filatova EA, Hausmann D, Elliott SD (2018) Understanding the mechanism of SiC plasma-enhanced chemical vapor deposition (PECVD) and developing routes toward SiC atomic layer deposition (ALD) with density functional theory. ACS Appl Mater Interfaces 10: 15216-15225. https://doi.org/10.1021/acsami.8b00794
    [43] Daoud S, Bouarissa N, Rekab-Djabri H, et al. (2022) Structural and thermo-physical properties of 3C-SiC: high-temperature and high-pressure effects. Silicon 14: 6299-6309. https://doi.org/10.1007/s12633-021-01387-8
    [44] Thakur S, Dionne CJ, Karna P, et al. (2022) Density and atomic coordination dictate vibrational characteristics and thermal conductivity of amorphous silicon carbide. Phys Rev Mater 6: 094601. https://doi.org/10.1103/PhysRevMaterials.6.094601
    [45] Isakov A, Apisarov A, Khudorozhkova AO, et al. (2018) Electrodeposition of silicon onto copper substrate from KF-KCl-KI-K2SiF6 melt. J Phys Conf Series 1134: 012021. https://doi.org/10.1088/1742-6596/1134/1/012021
    [46] Deng J, Liu JZ, Medhekar NV (2013) Enhanced lithium adsorption and diffusion on silicene nanoribbons. RSC Adv 3: 20338-20344. https://doi.org/10.1039/C3RA43326A
    [47] Galashev AY, Abramova KA (2023) Molecular dynamics simulation of thin silicon carbide films formation by the electrolytic method. Materials 16: 3115. https://doi.org/10.3390/ma16083115
    [48] Galashev AY, Rakhmanova OR (2022) Two-layer silicene on the SiC substrate: lithiation investigation in the molecular dynamics experiment. Chemphyschem 23: e202200250. https://doi.org/10.1002/cphc.20220
    [49] Galashev AE (2023) Computer simulation of a silicene anode on a silicon carbide substrate. Rus J Phys Chem B 17: 113-121. https://doi.org/10.1134/S1990793123010190
    [50] Galashev AE (2022) Computer test of a silicene/silicon carbide anode for a lithium ion battery. Rus J Phys Chem A 96: 2757-2762. https://doi.org/10.1134/S0036024422120123
    [51] Rajapakse M, Karki B, Abu UO, et al. (2021) Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. NPJ 2D Mater Appl 5: 30. https://doi.org/10.1038/s41699-021-00211-6
    [52] Bouhadiche A, Touam T (2018) Modeling and control of SiNx thin film surface morphology using kinetic Monte Carlo method. J Mater Sci 6: 134-140. https://doi.org/10.4172/2321-6212.1000224
    [53] Bouhadiche A, Difellah Z, Bouridah H, et al. (2023) Modeling and control of SiNx film growth using the kinetic Monte Carlo method: Impact of gas flow rate on surface roughness and film thickness. Silicon 15: 5209-5220. https://doi.org/10.1007/s12633-023-02415-5
    [54] Grigoriev FV, Sulimov VB, Tikhonravov AV (2022) Atomistic simulation of the ion-assisted deposition of silicon dioxide thin films. Nanomaterials 12: 3242. https://doi.org/10.3390/nano12183242
    [55] Takada A, Richet R, Catlow C (2004) Molecular dynamics simulations of vitreous silica structures. J Non-Cryst Solids 345–346: 224-229. https://doi.org/10.1016/j.jnoncrysol.2004.08.247
    [56] Abraham MJ, Murtola T, Schulz R, et al. (2015) GROMACS: high performance molecularsimulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2: 19-25. https://doi.org/10.1016/j.softx.2015.06.001
    [57] Guo C, Kong M (2020) Fabrication of ultralow stress TiO2/SiO2 optical coatings by plasma ion-assisted deposition. Coatings 10: 720. https://doi.org/10.3390/coatings10080720
    [58] Dickinson EJF, Ekström H, Fontes E (2014) COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review. Electrochem Comm 40: 71-74. http://dx.doi.org/10.1016/j.elecom.2013.12.020
    [59] Datta A, Rakesh V (2009) An Introduction to Modeling of Transport Processes. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511801150
    [60] Mandin P, Fabian C, Lincot D (2006) Importance of the density gradient effects in modelling electro deposition process at a rotating cylinder electrode. Electrochim Acta 51: 4067-4079. http://dx.doi.org/10.1016/j.electacta.2005.11.029
    [61] Hughes M, Strussevitch N, Bailey C, et al. (2010) Numerical algorithms for modelling electrodeposition: tracking the deposition front under forced convection from megasonic agitation. Int J Numer Methods Fluids 64: 237-268. http://dx.doi.org/10.1002/fld.2140
    [62] Mahapatro A, Suggu SK (2018) Modeling and simulation of electrodeposition: Effect of electrolyte current density and conductivity on electroplating thickness. Adv Mater Sci 3: 1-9. http://dx.doi.org/10.15761/AMS.1000143
    [63] Galashev AE, Ivanichkina KA (2019) Numerical simulation of the structure and mechanical properties of silicene layers on graphite during the lithium ion motion. Phys Solid State 61: 233-243. https://doi.org/10.1134/S1063783419020136
    [64] Wu D, Wang SW, Zhang SR, et al. (2019) Stabilization of two-dimensional penta-silicene for flexible lithium-ion battery via surface chemistry reconfiguration. Phys Chem Chem Phys 21: 1029-1037. https://doi.org/10.1039/c8cp05008b
    [65] Houssa M, Dimoulas A, Molle A (2015) Silicene: a review of recent of experimental and theoretical investigation. J Phys: Condens Matter 27: 253002. https://doi.org/10.1088/0953-8984/27/25/253002
    [66] Galashev AE, Ivanichkina KA, Vorobiyev AS, et al. (2017) Structure and stability of defective silicene on Ag(001) and Ag(111) substrates: a computer experiment. Phys Solid State 59: 1242-1252. https://doi.org/10.1134/S1063783417060087
    [67] Jamnig A, Pliatsikas N, Abadias G, et al. (1921) On the effect of copper as wetting agent during growth of thin silver films on silicon dioxide substrates. Appl Surf Sci 538: 148056. https://doi.org/10.1016/j.apsusc.2020.148056
    [68] Galashev AY, Vorob'ev AS (2020) Electronic and mechanical properties of silicene after nuclear transmutation doping with phosphorous. J Mater Sci 55: 11367-11381. https://doi.org/10.1007/s10853-020-04860-8
    [69] Zhang L, Cui Z (2022) First-principles study of metal impurities in silicon carbide: Structural, magnetic, and electronic properties. Front Mater 9: 956675. https://doi.org/10.3389/fmats.2022.956675
    [70] Kimoto T (2022) High-voltage SiC power devices for improved energy efficiency. Proc Jpn Acad Ser B Phys Biol Sci 98: 161-189. https://doi.org/10.2183/pjab.98.011
    [71] Ito Y, Nohira T (2000) Non-conventional electrolytes for electrochemical applications. Electrochim Acta 45: 2611-2622. https://doi.org/10.1016/S0013-4686(00)00341-8
    [72] Grillo F, Van Bui H, Moulijn JA, et al. (2017) Understanding and controlling the aggregative growth of platinum nanoparticles in atomic layer deposition: an avenue to size selection. J Phys Chem Lett 8: 975-983. https://doi.org/10.1021/acs.jpclett.6b02978
    [73] Mallik A, Ray BC (2011) Evolution of principle and practice of electrodeposited thin film: A review on effect of temperature and sonication. Int J Electrochem 2011: 8023. https://doi.org/10.4061/2011/568023
    [74] Zhang S, Fu H, Li T, et al. (2023) Study of effect of coil movement on growth conditions of SiC crystal. Materials (Basel) 16: 281. https://doi.org/10.3390/ma16010281
    [75] Zhang S, Fan G, Lic T, et al. (2022) Optimization of thermal field of 150 mm SiC crystal growth by PVT method. RSC Adv 12: 19936. https://doi.org/10.1039/d2ra02875a
    [76] Yang C, Liu G, Chen C, et al. (2018) Numerical simulation of temperature fields in a three-dimensional SiC crystal growth furnace with axisymmetric and spiral coils. Appl Sci 8: 705. https://doi.org/10.3390/app8050705
    [77] Ma RH, Zhang H, Ha S, et al. (2003) Integrated process modeling and experimental validation of silicon carbide sublimation growth. J Cryst Growth 252: 523-537. https://doi.org/10.1016/S0022-0248(03)00944-8
    [78] Manakov SM, Taurbavev NI (2012) Morphology and structural properties of a-Si:H and a-SiC:H films controlled in nanoscale. J Nanoelectron Optoelectron 7: 619-622. https://doi.org/10.1166/jno.2012.1402
    [79] Lebedev AA (1999) Deep level centers in silicon carbide: a review. Semiconductors 33: 107-130. https://doi.org/10.1134/1.1187657
    [80] Wang M, Zhu F, Xu Y, et al. (2018) Investigation of the differences in nanometric grinding of SiC and Si by molecular dynamics. 2018 International Conference on Electronics Packaging and iMAPS, All Asia Conference (ICEP-IAAC). Mie, Japan: IEEE. https://doi.org/10.23919/ICEP.2018.8374341
    [81] Samanta A, Grinberg I (2018) Investigation of Si/3C-SiC interface properties using classical molecular dynamics. J Appl Phys 124: 175110. https://doi.org/10.1063/1.5042203
    [82] Mazurek P, Vudayagiri S, Skov AL (2019) How to tailor flexible silicone elastomers with mechanical integrity: a tutorial review. Chem Soc Rev 48: 1448-1464. https://doi.org/10.1039/C8CS00963E
    [83] Li L, Li Y, Pei J, et al. (2023) Hotspots and trends of electrochemical biosensor technology: a bibliometric analysis from 2003 to 2023. RSC Adv 13: 30704-30717. https://doi.org/10.1039/D3RA05889A
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1231) PDF downloads(79) Cited by(0)

Figures and Tables

Figures(17)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog