Research article Special Issues

Preventing online disinformation propagation: Cost-effective dynamic budget allocation of refutation, media censorship, and social bot detection


  • Received: 29 March 2023 Revised: 15 May 2023 Accepted: 23 May 2023 Published: 06 June 2023
  • Disinformation refers to false rumors deliberately fabricated for certain political or economic conspiracies. So far, how to prevent online disinformation propagation is still a severe challenge. Refutation, media censorship, and social bot detection are three popular approaches to stopping disinformation, which aim to clarify facts, intercept the spread of existing disinformation, and quarantine the source of disinformation, respectively. In this paper, we study the collaboration of the above three countermeasures in defending disinformation. Specifically, considering an online social network, we study the most cost-effective dynamic budget allocation (DBA) strategy for the three methods to minimize the proportion of disinformation-supportive accounts on the network with the lowest expenditure. For convenience, we refer to the search for the optimal DBA strategy as the DBA problem. Our contributions are as follows. First, we propose a disinformation propagation model to characterize the effects of different DBA strategies on curbing disinformation. On this basis, we establish a trade-off model for DBA strategies and reduce the DBA problem to an optimal control model. Second, we derive an optimality system for the optimal control model and develop a heuristic numerical algorithm called the DBA algorithm to solve the optimality system. With the DBA algorithm, we can find possible optimal DBA strategies. Third, through numerical experiments, we estimate key model parameters, examine the obtained DBA strategy, and verify the effectiveness of the DBA algorithm. Results show that the DBA algorithm is effective.

    Citation: Yi Wang, Shicheng Zhong, Guo Wang. Preventing online disinformation propagation: Cost-effective dynamic budget allocation of refutation, media censorship, and social bot detection[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 13113-13132. doi: 10.3934/mbe.2023584

    Related Papers:

  • Disinformation refers to false rumors deliberately fabricated for certain political or economic conspiracies. So far, how to prevent online disinformation propagation is still a severe challenge. Refutation, media censorship, and social bot detection are three popular approaches to stopping disinformation, which aim to clarify facts, intercept the spread of existing disinformation, and quarantine the source of disinformation, respectively. In this paper, we study the collaboration of the above three countermeasures in defending disinformation. Specifically, considering an online social network, we study the most cost-effective dynamic budget allocation (DBA) strategy for the three methods to minimize the proportion of disinformation-supportive accounts on the network with the lowest expenditure. For convenience, we refer to the search for the optimal DBA strategy as the DBA problem. Our contributions are as follows. First, we propose a disinformation propagation model to characterize the effects of different DBA strategies on curbing disinformation. On this basis, we establish a trade-off model for DBA strategies and reduce the DBA problem to an optimal control model. Second, we derive an optimality system for the optimal control model and develop a heuristic numerical algorithm called the DBA algorithm to solve the optimality system. With the DBA algorithm, we can find possible optimal DBA strategies. Third, through numerical experiments, we estimate key model parameters, examine the obtained DBA strategy, and verify the effectiveness of the DBA algorithm. Results show that the DBA algorithm is effective.



    加载中


    [1] D. Fallis, What is disinformation?, Library Trends, 63 (2015), 401–426. https://doi.org/10.1353/lib.2015.0014 doi: 10.1353/lib.2015.0014
    [2] J. D. West, C. T. Bergstrom, Misinformation in and about science, Proc. Natl. Acad. Sci., 118 (2021), e1912444117. https://doi.org/10.1073/pnas.1912444117 doi: 10.1073/pnas.1912444117
    [3] T. Lin, M. Chang, C. Chang, Y. Chou, Government-sponsored disinformation and the severity of respiratory infection epidemics including COVID-19: A global analysis, 2001–2020. Soc. Sci. Med., 296 (2022), 114744. https://doi.org/10.1016/j.socscimed.2022.114744 doi: 10.1016/j.socscimed.2022.114744
    [4] S. Bradshaw, P. N. Howard, The global organization of social media disinformation campaigns, J. Int. Aff., 71 (2018), 23–32.
    [5] A. Bessi, E. Ferrara, Social bots distort the 2016 US Presidential election online discussion, First Monday, 21 (2016). https://doi.org/10.5210/FM.V21I11.7090 doi: 10.5210/FM.V21I11.7090
    [6] T. R. Keller, U. Klinger, Social bots in election campaigns: Theoretical, empirical, and methodological implications, Political Commun., 36 (2019), 171–189. https://doi.org/10.1080/10584609.2018.1526238 doi: 10.1080/10584609.2018.1526238
    [7] E. Ferrara, O. Varol, C. Davis, F. Menczer, A. Flammini, The rise of social bots, Commun. ACM, 59 (2016), 96–104. https://doi.org/10.1145/2818717 doi: 10.1145/2818717
    [8] N. J. Cull, V. Gatov, P. Pomerantsev, A. Applebaum, A. Shawcross, Soviet subversion, disinformation and propaganda: How the West fought against it, London LSE Consult., 68 (2017), 1–77.
    [9] Z. Li, Q. Zhang, X. Du, Y. Ma, S. Wang, Social media rumor refutation effectiveness: Evaluation, modelling and enhancement, Inform. Proc. Manage., 58 (2021), 102420. https://doi.org/10.1016/j.ipm.2020.102420 doi: 10.1016/j.ipm.2020.102420
    [10] P. Ozturk, H. Li, Y. Sakamoto, Combating rumor spread on social media: The effectiveness of refutation and warning, in 2015 48th Hawaii international conference on system sciences, IEEE, (2015), 2406–2414. https://dx.doi.org/10.2139/ssrn.2564249
    [11] G. Simons, D. Strovsky, Censorship in contemporary Russian journalism in the age of the war against terrorism: A historical perspective, Eur. J. Commun., 21 (2006), 189–211. https://doi.org/10.1177/0267323105064 doi: 10.1177/0267323105064
    [12] M. Eid, The new era of media and terrorism, Stud. Conflict Terrorism, 36 (2013), 609–615. https://doi.org/10.1080/1057610X.2013.793638 doi: 10.1080/1057610X.2013.793638
    [13] S. M. Alzanin, A. M. Azmi, Detecting rumors in social media: A survey, Proc. Comput. Sci., 142 (2018), 294–300. https://doi.org/10.1016/j.procs.2018.10.495 doi: 10.1016/j.procs.2018.10.495
    [14] F. Xu, V. S. Sheng, M. Wang, Near real-time topic-driven rumor detection in source microblogs, Knowl. Based Syst., 207 (2020), 106391. https://doi.org/10.1016/j.knosys.2020.106391 doi: 10.1016/j.knosys.2020.106391
    [15] E. Alothali, N. Zaki, E. A. Mohamed, H. Alashwal, Detecting social bots on twitter: a literature review, in 2018 International conference on innovations in information technology (IIT), SAGA, (2018), 175–180. https://doi.org/10.1109/INNOVATIONS.2018.8605995
    [16] N. Hajli, U. Saeed, M. Tajvidi, F. Shirazi, Social bots and the spread of disinformation in social media: the challenges of artificial intelligence, Br. J. Manage., 33 (2022), 1238–1253. https://doi.org/10.1111/1467-8551.12554 doi: 10.1111/1467-8551.12554
    [17] C. Cai, L. Li, D. Zengi, Behavior enhanced deep bot detection in social media, in 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), IEEE, (2017), 128–130. https://doi.org/10.1109/ISI.2017.8004887
    [18] J. Li, H. Jiang, X. Mei, C. Hu, G. Zhang, Dynamical analysis of rumor spreading model in multi-lingual environment and heterogeneous complex networks, Inform. Sci., 536 (2020), 391–408. https://doi.org/10.1016/j.ins.2020.05.037 doi: 10.1016/j.ins.2020.05.037
    [19] J. Chen, C. Chen, Q. Song, Y. Zhao, L. Deng, R. Xie, et al., Spread mechanism and control strategies of rumor propagation model considering rumor refutation and information feedback in emergency management, Symmetry, 13 (2021), 1694. https://doi.org/10.3390/sym13091694 doi: 10.3390/sym13091694
    [20] L. Zhu, F. Yang, G. Guan, Z. Zhang, Modeling the dynamics of rumor diffusion over complex networks, Inform. Sci., 562 (2021), 240–258. https://doi.org/10.1016/j.ins.2020.12.071 doi: 10.1016/j.ins.2020.12.071
    [21] S. Yu, Z. Yu, H. Jiang, Stability, hopf bifurcation and optimal control of multilingual rumor-spreading model with isolation mechanism, Mathematics, 10 (2022), 4556. https://doi.org/10.3390/math10234556 doi: 10.3390/math10234556
    [22] T. Li, Y. Guo, Nonlinear dynamical analysis and optimal control strategies for a new rumor spreading model with comprehensive interventions, Qualitative theory of dynamical systems, 20 (2021), 1–24. https://doi.org/10.1007/s12346-021-00520-7 doi: 10.1007/s12346-021-00520-7
    [23] Z. Liu, T. Qin, Q. Sun, S. Li, H. H. Song, Z. Chen, SIRQU: Dynamic quarantine defense model for online rumor propagation control, IEEE Trans. Comput. Soc. Syst., 9 (2022), 1703–1714. https://doi.org/10.1109/TCSS.2022.3161252 doi: 10.1109/TCSS.2022.3161252
    [24] X. Wang, X. Wang, F. Hao, G. Min, L. Wang, Efficient coupling diffusion of positive and negative information in online social networks, IEEE Trans. Network Serv. Manage., 16 (2019), 1226–1239. https://doi.org/10.1109/TNSM.2019.2917512 doi: 10.1109/TNSM.2019.2917512
    [25] J. Zhao, L. Yang, X. Zhong, X. Yang, Y. Wu, Y. Y. Tang, Minimizing the impact of a rumor via isolation and conversion, Phys. A Stat. Mech. Appl., 526 (2019), 120867. https://doi.org/10.1016/j.physa.2019.04.103 doi: 10.1016/j.physa.2019.04.103
    [26] Y. Lin, X. Wang, F. Hao, Y. Jiang, Y. Wu, G. Min, et al., Dynamic control of fraud information spreading in mobile social networks, IEEE Trans. Syst. Man Cybernetics Syst., 51 (2019), 3725–3738. https://doi.org/10.1109/TSMC.2019.2930908 doi: 10.1109/TSMC.2019.2930908
    [27] Y. Cheng, L. Zhao, Dynamical behaviors and control measures of rumor-spreading model in consideration of the infected media and time delay, Inform. Sci., 564 (2021), 237–253. https://doi.org/10.1016/j.ins.2021.02.047 doi: 10.1016/j.ins.2021.02.047
    [28] J. B. Bak-Coleman, I. Kennedy, M. Wack, A. Beers, J. S. Schafer, E. S. Spiro, et al., Combining interventions to reduce the spread of viral misinformation, Nat. Hum. Behav., 6 (2022), 1372–1380. https://doi.org/10.1038/s41562-022-01388-6 doi: 10.1038/s41562-022-01388-6
    [29] Z. Zhao, Y. Liu, K. Wang, An analysis of rumor propagation based on propagation force, Phys. A Stat. Mech. Appl., 443 (2016), 263–271. https://doi.org/10.1016/j.physa.2015.09.060 doi: 10.1016/j.physa.2015.09.060
    [30] A. Yang, X. Huang, X. Cai, X. Zhu, L. Lu, ILSR rumor spreading model with degree in complex network, Phys. A Stat. Mech. Appl., 531 (2019), 121807. https://doi.org/10.1016/j.physa.2019.121807 doi: 10.1016/j.physa.2019.121807
    [31] Z. He, Z. Cai, J. Yu, X. Wang, Y. Sun, Y. Li, Cost-efficient strategies for restraining rumor spreading in mobile social networks, IEEE Trans. Veh. Technol., 66 (2016), 2789–2800. https://doi.org/10.1109/TVT.2016.2585591 doi: 10.1109/TVT.2016.2585591
    [32] L. Zino, M. Cao, Analysis, prediction, and control of epidemics: A survey from scalar to dynamic network models, IEEE Circuits Syst. Mag., 21 (2021), 4–23. https://doi.org/10.1109/MCAS.2021.3118100 doi: 10.1109/MCAS.2021.3118100
    [33] J. Chen, L. Yang, X. Yang, Y. Y. Tang, Cost-effective anti-rumor message-pushing schemes, Phys. A Stat. Mech. Appl., 540 (2020), 123085. https://doi.org/10.1016/j.physa.2019.123085 doi: 10.1016/j.physa.2019.123085
    [34] R. E. Kopp, Pontryagin maximum principle, Math. Sci. Eng., (1962), 255–279. https://doi.org/10.1016/S0076-5392(08)62095-0 doi: 10.1016/S0076-5392(08)62095-0
    [35] S. N. Ha, A nonlinear shooting method for two-point boundary value problems, Comput. Math. Appl., 42 (2001), 1411–1420. https://doi.org/10.1016/S0898-1221(01)00250-4 doi: 10.1016/S0898-1221(01)00250-4
    [36] A. V. Rao, A survey of numerical methods for optimal control, Adv. Astronaut. Sci., 135 (2009), 497–528.
    [37] A. Bodaghi, J. Oliveira, The characteristics of rumor spreaders on Twitter: A quantitative analysis on real data, Comput. Commun., 160 (2020), 674–687. https://doi.org/10.1016/j.comcom.2020.07.017 doi: 10.1016/j.comcom.2020.07.017
    [38] Z. Yu, S. Lu, D. Wang, Z. Li, Modeling and analysis of rumor propagation in social networks, Inform. Sci., 580 (2021), 857–873. https://doi.org/10.1016/j.ins.2021.09.012 doi: 10.1016/j.ins.2021.09.012
    [39] M. Umer, Z. Imtiaz, S. Ullah, A. Mehmood, G. S. Choi, B. On, Fake news stance detection using deep learning architecture (CNN-LSTM), IEEE Access, 8 (2020), 156695–156706. https://doi.org/10.1109/ACCESS.2020.3019735 doi: 10.1109/ACCESS.2020.3019735
    [40] M. Yglesias, This is the real truth about journalists' pay, Vox, 2015.
    [41] Twitter Usage Statistics. Available from: https://www.internetlivestats.com/twitter-statistics/.
    [42] S. Antoniadis, I. Litou, V. Kalogeraki, A model for identifying misinformation in online social networks, in On the Move to Meaningful Internet Systems: OTM 2015 Conferences: Confederated International Conferences, Springer, (2015), 473–482. https://doi.org/10.1007/978-3-319-26148-5_32
    [43] How Much Does a Cloud Server Cost for a Small Business. Available from: https://siriusofficesolutions.com/cloud-server-price/.
    [44] Y. Feng, J. Li, L. Jiao, X. Wu, Towards learning-based, content-agnostic detection of social bot traffic, IEEE Trans. Dependable Secure Comput., 18 (2020), 2149–2163. https://doi.org/10.1109/TDSC.2020.3047399 doi: 10.1109/TDSC.2020.3047399
    [45] D. Huang, L. Yang, P. Li, X. Yang, Y. Y. Tang, Developing cost-effective rumor-refuting strategy through game-theoretic approach, IEEE Syst. J., 15 (2020), 5034–5045. https://doi.org/10.1109/JSYST.2020.3020078 doi: 10.1109/JSYST.2020.3020078
    [46] D. Huang, L. Yang, X. Yang, Y. Y. Tang, J. Bi, Defending against online social network rumors through optimal control approach, Discrete Dyn. Nat. Soc., 2020 (2020), 1–13. https://doi.org/10.1155/2020/6263748 doi: 10.1155/2020/6263748
    [47] S. Asur, B. A. Huberman, G. Szabo, C. Wang, Trends in social media: Persistence and decay, in Proceedings of the International AAAI Conference on Web and Social Media, (2011), 434–437. https://doi.org/10.1609/icwsm.v5i1.14167
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1787) PDF downloads(102) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog