Research article

Effects of congestion charging and subsidy policy on vehicle flow and revenue with user heterogeneity

  • Received: 22 March 2023 Revised: 10 May 2023 Accepted: 17 May 2023 Published: 01 June 2023
  • Traffic congestion is a major issue in urban traffic networks. Both congestion charging and subsidy policy can solve traffic congestion to some extent, but which one is better? Based on this, this paper constructs a typical transit network consisting of three travel tools in four common travel modes. Travelers' values of time affect their choice of transportation in the congestion network, thus a stochastic user equilibrium model is established by considering travelers' heterogenous values of time to evaluate the effects of different combinations of congestion charging and subsidy policies on vehicle flow and revenue. Numerical results indicate that the effectiveness of congestion charging and subsidy policy in alleviating traffic congestion depends on the object of charging or subsidizing. Congestion charging for private cars can reduce traffic flow and alleviate traffic congestion, but charging for ridesharing cars does not reduce traffic flow and may even cause traffic congestion. Subsidizing public buses does not reduce traffic flow, but it can ease congestion by coordinating traffic flow on both edges of the dual-modal transport. The combination of no subsidy for public buses and charging for both private cars and ridesharing cars can obtain the greatest revenue, but it does not alleviate traffic congestion. Although the combination of charging for private cars and subsidizing public buses does not bring the most benefits, it can reduce traffic flow, and its revenue is also considerable. This study can provide quantitative decision support for the government to ease traffic congestion and improve government revenue.

    Citation: Dandan Fan, Dawei Li, Fangzheng Cheng, Guanghua Fu. Effects of congestion charging and subsidy policy on vehicle flow and revenue with user heterogeneity[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12820-12842. doi: 10.3934/mbe.2023572

    Related Papers:

  • Traffic congestion is a major issue in urban traffic networks. Both congestion charging and subsidy policy can solve traffic congestion to some extent, but which one is better? Based on this, this paper constructs a typical transit network consisting of three travel tools in four common travel modes. Travelers' values of time affect their choice of transportation in the congestion network, thus a stochastic user equilibrium model is established by considering travelers' heterogenous values of time to evaluate the effects of different combinations of congestion charging and subsidy policies on vehicle flow and revenue. Numerical results indicate that the effectiveness of congestion charging and subsidy policy in alleviating traffic congestion depends on the object of charging or subsidizing. Congestion charging for private cars can reduce traffic flow and alleviate traffic congestion, but charging for ridesharing cars does not reduce traffic flow and may even cause traffic congestion. Subsidizing public buses does not reduce traffic flow, but it can ease congestion by coordinating traffic flow on both edges of the dual-modal transport. The combination of no subsidy for public buses and charging for both private cars and ridesharing cars can obtain the greatest revenue, but it does not alleviate traffic congestion. Although the combination of charging for private cars and subsidizing public buses does not bring the most benefits, it can reduce traffic flow, and its revenue is also considerable. This study can provide quantitative decision support for the government to ease traffic congestion and improve government revenue.



    加载中


    [1] S. Dornbush, A. Joshi, StreetSmart traffic: Discovering and disseminating automobile congestion using VANET's, in 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring, (2007), 11–15. https://doi.org/10.1109/VETECS.2007.15
    [2] M. Börjesson, C. J. Hamilton, P. Nasman, C. Papaix, Factors driving public support for road congestion reduction policies: congestion charging, free public transport and more roads in Stockholm, Helsinki and Lyon, Transp. Res. Part A Policy Pract., 78 (2015), 452–462. https://doi.org/10.1016/j.tra.2015.06.008 doi: 10.1016/j.tra.2015.06.008
    [3] L. Han, D. Z. Wang, H. K. Lo, C. Zhu, X. Cai, Discrete-time day-to-day dynamic congestion pricing scheme considering multiple equilibria, Transp. Res. Part B Methodol., 104 (2017), 1–16. https://doi.org/10.1016/j.trb.2017.06.006 doi: 10.1016/j.trb.2017.06.006
    [4] S. Liu, K. P. Triantis, S. Sarangi, A framework for evaluating the dynamic impacts of a congestion pricing policy for a transportation socioeconomic system, Transp. Res. Part A Policy Pract., 44 (2010), 596–608. https://doi.org/10.1016/j.tra.2010.04.001 doi: 10.1016/j.tra.2010.04.001
    [5] K. Foreman, Crossing the bridge: The effects of time-varying tolls on curbing congestion, Transp. Res. Part A Policy Pract., 92 (2016), 76–94. https://doi.org/10.1016/j.tra.2016.06.033 doi: 10.1016/j.tra.2016.06.033
    [6] R. Chen, L. Nozick, Integrating congestion pricing and transit investment planning, Transp. Res. Part A Policy Pract., 89 (2016), 124–139. https://doi.org/10.1016/j.tra.2016.04.013 doi: 10.1016/j.tra.2016.04.013
    [7] Y. Bao, E. T. Verhoef, P. Koster, Regulating dynamic congestion externalities with tradable credit schemes: Does a unique equilibrium exist, Transp. Res. Part B Methodol., 127 (2019), 225–236. https://doi.org/10.1016/j.trb.2019.07.012 doi: 10.1016/j.trb.2019.07.012
    [8] B. K. Mohandas, R. Liscano, O. W. W. Yang, Vehicle traffic congestion management in vehicular ad-hoc networks, in 2009 IEEE 34th Conference on Local Computer Networks, (2009), 655–660. https://doi.org/10.1109/LCN.2009.5355052
    [9] A. Padiath, L. Vanajakshi, S. C. Subramanian, H. Manda, Prediction of traffic density for congestion analysis under Indian traffic conditions, in 2009 IEEE 12th Int Conf Intell Trans, (2009), 1–6. https://doi.org/10.1109/ITSC.2009.5309716
    [10] N. Petrovska, A. Stevanovic, Traffic congestion analysis visualisation tool, in 2015 IEEE 18th International Conference on Intelligent Transportation Systems, (2015), 1489–1494. https://doi.org/10.1109/ITSC.2015.243
    [11] D. A. Hensher, S. M. Puckett, Congestion and variable user charging as an effective travel demand management instrument, Transp. Res. Part A Policy Pract., 41 (2007), 615–626. https://doi.org/10.1016/j.tra.2006.07.002 doi: 10.1016/j.tra.2006.07.002
    [12] G. Zhou, K. Huang, L. Mao, Design of commute carpooling based on fixed time and routes, Int. J. Veh. Technol., 2014 (2014), 1–8. https://doi.org/10.1155/2014/634926 doi: 10.1155/2014/634926
    [13] L. J. Basso, C. A. Guevara, A. Gschwender, M. Fuster, Congestion pricing, transit subsidies and dedicated bus lanes: Efficient and practical solutions to congestion, Transp. Policy, 18 (2011), 676–684. https://doi.org/10.1016/j.tranpol.2011.01.002 doi: 10.1016/j.tranpol.2011.01.002
    [14] A. Aboudina, H. Abdelgawad, B. Abdulhai, K. N. Habib, Time-dependent congestion pricing system for large networks: integrating departure time choice, dynamic traffic assignment and regional travel surveys in the Greater Toronto Area, Transp. Res. Part A Policy Pract., 94 (2016), 411–430. https://doi.org/10.1016/j.tra.2016.10.005 doi: 10.1016/j.tra.2016.10.005
    [15] Y. M. Nie, Y. Liu, Existence of self-financing and Pareto-improving congestion pricing: impact of value of time distribution, Transp. Res. Part A Policy Pract., 44 (2010), 39–51. https://doi.org/10.1016/j.tra.2009.09.004 doi: 10.1016/j.tra.2009.09.004
    [16] L. Chen, H. Yang, Managing congestion and emissions in road networks with tolls and rebates, Transp. Res. Part B Methodol., 46 (2012), 933–948. https://doi.org/10.1016/j.trb.2012.03.001 doi: 10.1016/j.trb.2012.03.001
    [17] J. Eliasson, L. Hultkrantz, L. Nerhagen, L. S. Rosqvist, The Stockholm congestion-charging trial 2006: overview of effects, Transp. Res. Part A Policy Pract., 43 (2009), 240–250. https://doi.org/10.1016/j.tra.2008.09.007 doi: 10.1016/j.tra.2008.09.007
    [18] M. Börjesson, I. Kristoffersson, The Swedish congestion charges: Ten years on, Transp. Res. Part A Policy Pract., 107 (2018), 35–51. https://doi.org/10.1016/j.tra.2017.11.001 doi: 10.1016/j.tra.2017.11.001
    [19] M. Gibson, M. Carnovale, The effects of road pricing on driver behavior and air pollution, J. Urban Econ., 89 (2015), 62–73. https://doi.org/10.1016/j.jue.2015.06.005 doi: 10.1016/j.jue.2015.06.005
    [20] P. Beria, Effectiveness and monetary impact of Milan's road charge, one year after implementation, Int. J. Sustainable Transp., 10 (2016), 657–669. https://doi.org/10.1080/15568318.2015.1083638 doi: 10.1080/15568318.2015.1083638
    [21] E. Ayrat, X. Lin, Is congestion pricing effective for traffic jams, Promet- Traffic Transp., 34 (2022), 149–163. https://doi.org/10.7307/ptt.v34i1.3815 doi: 10.7307/ptt.v34i1.3815
    [22] Z. Liu, Q. Meng, Bus-based park-and-ride system: a stochastic model on multimodal network with congestion pricing schemes, Int. J. Syst. Sci., 45 (2014), 994–1006. https://doi.org/10.1080/00207721.2012.743617 doi: 10.1080/00207721.2012.743617
    [23] D. Q. Nguyen-Phuoc, G. Currie, C. de Gruyter, I. Kim, W. Young, Modelling the net traffic congestion impact of bus operations in Melbourne, Transp. Res. Part A Policy Pract., 117 (2018), 1–12. https://doi.org/10.1016/j.tra.2018.08.005 doi: 10.1016/j.tra.2018.08.005
    [24] V. T. Thao, S. Imhof, W. von Arx, Integration of ridesharing with public transport in rural Switzerland: Practice and outcomes, Transp. Res. Interdiscip. Perspect., 10 (2021), 100340. https://doi.org/10.1016/j.trip.2021.100340 doi: 10.1016/j.trip.2021.100340
    [25] Y. Q. Dong, S. F. Wang, L. Li, Z. Zhang, An empirical study on travel patterns of internet based ride-sharing, Transp. Res. Part C Emerging Technol., 86 (2018), 1–22. https://doi.org/10.1016/j.trc.2017.10.022 doi: 10.1016/j.trc.2017.10.022
    [26] J. Ma, M. Xu, Q. Meng, L. Cheng, Ridesharing user equilibrium problem under OD-based surge pricing strategy, Transp. Res. Part B Methodol., 134 (2020), 1–24. https://doi.org/10.1016/j.trb.2020.02.001 doi: 10.1016/j.trb.2020.02.001
    [27] C. Song, J. Monteil, J. L. Ygnace, D. Rey, Incentives for ridesharing: A case study of welfare and traffic congestion, J. Adv. Transp., 5 (2021), 1–15. https://doi.org/10.1155/2021/6627660 doi: 10.1155/2021/6627660
    [28] S. Li, H. Yang, K. Poolla, P. Varaiya, Spatial pricing in ride-sourcing markets under a congestion charge, Transp. Res. Part B Methodol., 152 (2021), 18–45. https://doi.org/10.1016/j.trb.2021.07.004 doi: 10.1016/j.trb.2021.07.004
    [29] H. Yang, Q. Meng, T. D. Hau, Optimal integrated pricing in a bi-modal transportation network, in Urban and Regional Transportation Modeling: Essays in Honor of David Boyce, United Kingdom: Edward Elgar Publishing Ltd, (2004), 134–156. https://doi.org/10.4337/9781845420536
    [30] Y. Liu, X. Guo, H. Yang, Pareto-improving and revenue-neutral congestion pricing schemes in two-mode traffic networks, NETNOMICS: Econ. Res. Electron. Networking, 10 (2009), 123–140. https://doi.org/10.1007/s11066-008-9018-x doi: 10.1007/s11066-008-9018-x
    [31] L. J. Basso, S. R. Jara-Diaz, Integrating congestion pricing, transit subsidies and mode choice, Transp. Res. Part A Policy Pract., 46 (2012), 890–900. https://doi.org/10.1016/j.tra.2012.02.013 doi: 10.1016/j.tra.2012.02.013
    [32] C. Y. Yan, M. B. Hu, R. Jiang, J. Long, J. Y. Chen, H. X. Liu, Stochastic ridesharing user equilibrium in transport networks, Network Spatial Econ., 19 (2019), 1007–1030. https://doi.org/10.1007/s11067-019-9442-5 doi: 10.1007/s11067-019-9442-5
    [33] Y. Li, Y. Liu, J. Xie, A path-based equilibrium model for ridesharing matching, Transp. Res. Part B Methodol., 138 (2020), 373–405. https://doi.org/10.1016/j.trb.2020.05.007 doi: 10.1016/j.trb.2020.05.007
    [34] T. Li, M. Xu, H. Sun, J. Xiong, X. Dou, Stochastic ridesharing equilibrium problem with compensation optimization, Transp. Res. Part E Logist. Transp. Rev., 170 (2023), 102999. https://doi.org/10.1016/j.tre.2022.102999 doi: 10.1016/j.tre.2022.102999
    [35] X. Li, J. Bai, A ridesharing choice behavioral equilibrium model with users of heterogeneous values of time, Int. J. Environ. Res. Public Health, 18 (2021), 1197. https://doi.org/10.3390/ijerph18031197 doi: 10.3390/ijerph18031197
    [36] N. Mouter, C. Chorus, Value of time-A citizen perspective, Transp. Res. Part A Policy Pract., 91 (2016), 317–329. https://doi.org/10.1016/j.tra.2016.02.014 doi: 10.1016/j.tra.2016.02.014
    [37] Z. Li, D. A. Hensher, Estimating values of travel time savings for toll roads: Avoiding a common error, Transp. Policy, 24 (2012), 60–66. https://doi.org/10.1016/j.tranpol.2012.06.015 doi: 10.1016/j.tranpol.2012.06.015
    [38] X. Yu, V. A. C. van den Berg, E. T. Verhoef, Carpooling with heterogeneous users in the bottleneck model, Transp. Res. Part B Methodol., 127 (2019), 178–200. https://doi.org/10.1016/j.trb.2019.07.003 doi: 10.1016/j.trb.2019.07.003
    [39] V. A. C. van den Berg, Coarse tolling with heterogeneous preferences, Transp. Res. Part B Methodol., 64 (2014), 1–23. https://doi.org/10.1016/j.trb.2014.03.001 doi: 10.1016/j.trb.2014.03.001
    [40] Z. Tan, H. Yang, R. Y. Guo, Dynamic congestion pricing with day-to-day flow evolution and user heterogeneity, Transp. Res. Part C Emerging Technol., 61 (2015), 87–105. https://doi.org/10.1016/j.trc.2015.10.013 doi: 10.1016/j.trc.2015.10.013
    [41] R. M. Braid, Partial peak-load pricing of a transportation bottleneck with homogeneous and heterogeneous values of time, Econ. Transp., 16 (2018), 29–41. https://doi.org/10.1016/j.ecotra.2018.08.001 doi: 10.1016/j.ecotra.2018.08.001
    [42] F. Fakhrmoosavi, A. Zockaie, K. Abdelghany, Incorporating travel time reliability in equitable congestion pricing schemes for heterogeneous users and bimodal networks, Transp. Res. Rec., 2675 (2021), 754–768. https://doi.org/10.1177/03611981211019737 doi: 10.1177/03611981211019737
    [43] Y. Yoshida, Commuter arrivals and optimal service in mass transit: does queuing behavior at transit stops matter, Reg. Sci. Urban Econ., 38 (2008), 228–251. https://doi.org/10.1016/j.regsciurbeco.2008.01.004 doi: 10.1016/j.regsciurbeco.2008.01.004
    [44] G. Monchambert, A. De Palma, Public transport reliability and commuter strategy, J. Urban Econ., 81 (2014), 14–29. https://doi.org/10.1016/j.jue.2014.02.001 doi: 10.1016/j.jue.2014.02.001
    [45] W. W. Wang, D. Z. W. Wang, F. Zhang, H. Sun, W. Zhang, J. Wu, Overcoming the downs-thomson paradox by transit subsidy policies, Transp. Res. Part A Policy Pract., 95 (2017), 126–147. https://doi.org/10.1016/j.tra.2016.11.003 doi: 10.1016/j.tra.2016.11.003
    [46] H. Yang, Y. Tang, Managing rail transit peak-hour congestion with a fare-reward scheme, Transp. Res. Part B Methodol., 110 (2018), 122–136. https://doi.org/10.1016/j.trb.2018.02.005 doi: 10.1016/j.trb.2018.02.005
    [47] Y. Tang, H. Yang, B. Wang, J. Huang, Y. Bai, A Pareto-improving and revenue-neutral scheme to manage mass transit congestion with heterogeneous commuters, Transp. Res. Part C Emerging Technol., 113 (2020), 245–259. https://doi.org/10.1016/j.trc.2019.05.016 doi: 10.1016/j.trc.2019.05.016
    [48] H. Xu, J. S. Pang, F. Ordóñez, M. Dessouky, Complementarity models for traffic equilibrium with ridesharing, Transp. Res. Part B Methodol., 81 (2015), 161–182. https://doi.org/10.1016/j.trb.2015.08.013 doi: 10.1016/j.trb.2015.08.013
    [49] N. Alisoltani, L. Leclercq, M. Zargayouna, Can dynamic ride-sharing reduce traffic congestion, Transp. Res. Part B Methodol., 145 (2021), 212–246. https://doi.org/10.1016/j.trb.2021.01.004 doi: 10.1016/j.trb.2021.01.004
    [50] S. A. Bagloee, M. Sarvi, A modern congestion pricing policy for urban traffic: subsidy plus toll, J. Mod. Transp., 25 (2017), 133–149. https://doi.org/10.1007/s40534-017-0128-8 doi: 10.1007/s40534-017-0128-8
    [51] C. Lucinda, R. Moita, The political economy of an optimal congestion tax: An empirical investigation, Working Papers, Department of Economics from University of São Paulo (FEA-USP), 2019. Available from: https://EconPapers.repec.org/RePEc: spa: wpaper: 2019wpecon10.
    [52] S. Sun, W. Y. Szeto, Multi-class stochastic user equilibrium assignment model with ridesharing: Formulation and policy implications, Transp. Res. Part A Policy Pract., 145 (2021), 203–227. https://doi.org/10.1016/j.tra.2020.12.011 doi: 10.1016/j.tra.2020.12.011
    [53] J. de Cea, E. Fernandez, Transit assignment for congested public transport systems: an equilibrium model, Transp. Sci., 27 (1993), 133–147. https://doi.org/10.1287/trsc.27.2.133 doi: 10.1287/trsc.27.2.133
    [54] W. H. K. Lam, Z. Y. Gao, K. S. Chan, H. Yang, A stochastic user equilibrium assignment model for congested transit networks, Transp. Res. Part B Methodol., 33 (1999), 351–368. https://doi.org/10.1016/S0191-2615(98)00040-X doi: 10.1016/S0191-2615(98)00040-X
    [55] L. M. Gardner, M. Duell, S. T. Waller, A framework for evaluating the role of electric vehicles in transportation network infrastructure under travel demand variability, Transp. Res. Part A Policy Pract., 49 (2013), 76–90. https://doi.org/10.1016/j.tra.2013.01.031 doi: 10.1016/j.tra.2013.01.031
    [56] L. Zhao, X. Xu, H. O. Gao, J. Wang, Y. Xie, A bi-level model for GHG emission charge based on a continuous distribution of travelers' value of time (VOT), Transp. Res. Part D Transp. Environ., 47 (2016), 371–382. https://doi.org/10.1016/j.trd.2016.07.002 doi: 10.1016/j.trd.2016.07.002
    [57] S. Manzo, O. A. Nielsen, C. G Prato, Effects of uncertainty in speed-flow curve parameters on a large-scale model: case study of the Danish national model, Transp. Res. Rec., 2429 (2014), 30–37. https://doi.org/10.3141/2429-04 doi: 10.3141/2429-04
    [58] A. Almotahari, M. A. Yazici, A link criticality index embedded in the convex combinations solution of user equilibrium traffic assignment, Transp. Res. Part A Policy Pract., 126 (2019), 67–82. https://doi.org/10.1016/j.tra.2019.06.005 doi: 10.1016/j.tra.2019.06.005
    [59] D. C. Novak, J. F. Sullivan, K. Sentoff, J. Dowds, A framework to guide strategic disinvestment in roadway infrastructure considering social vulnerability, Transp. Res. Part A Policy Pract., 132 (2020), 436–451. https://doi.org/10.1016/j.tra.2019.11.021 doi: 10.1016/j.tra.2019.11.021
    [60] X. Guo, H. Yang, User heterogeneity and bi-criteria system optimum, Transp. Res. Part B Methodol., 43 (2009), 379–390. https://doi.org/10.1016/j.trb.2008.09.001 doi: 10.1016/j.trb.2008.09.001
    [61] M. Ben-Akiva, D. Bolduc, M. Bradley, Estimation of travel choice models with randomly distributed values of time, Transp. Res. Rec., 1413 (1993), 88–97.
    [62] W. Harrington, A. J. Krupnick, A. Alberini, Overcoming public aversion to congestion pricing, Transp. Res. Part A Policy Pract., 35 (2001), 87–105. https://doi.org/10.1016/S0965-8564(99)00048-8 doi: 10.1016/S0965-8564(99)00048-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1572) PDF downloads(82) Cited by(2)

Article outline

Figures and Tables

Figures(10)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog