
Non-small cell lung cancer (NSCLC) is heterogeneous. Molecular subtyping based on the gene expression profiles is an effective technique for diagnosing and determining the prognosis of NSCLC patients.
Here, we downloaded the NSCLC expression profiles from The Cancer Genome Atlas and the Gene Expression Omnibus databases. ConsensusClusterPlus was used to derive the molecular subtypes based on long-chain noncoding RNA (lncRNA) associated with the PD-1-related pathway. The LIMMA package and least absolute shrinkage and selection operator (LASSO)-Cox analysis were used to construct the prognostic risk model. The nomogram was constructed to predict the clinical outcomes, followed by decision curve analysis (DCA) to validate the reliability of this nomogram.
We discovered that PD-1 was strongly and positively linked to the T-cell receptor signaling pathway. Furthermore, we identified two NSCLC molecular subtypes yielding a significantly distinctive prognosis. Subsequently, we developed and validated the 13-lncRNA-based prognostic risk model in the four datasets with high AUC values. Patients with low-risk showed a better survival rate and were more sensitive to PD-1 treatment. Nomogram construction combined with DCA revealed that the risk score model could accurately predict the prognosis of NSCLC patients.
This study demonstrated that lncRNAs engaged in the T-cell receptor signaling pathway played a significant role in the onset and development of NSCLC, and that they could influence the sensitivity to PD-1 treatment. In addition, the 13 lncRNA model was effective in assisting clinical treatment decision-making and prognosis evaluation.
Citation: Hejian Chen, Shuiyu Xu, Yuhong Zhang, Peifeng Chen. Systematic analysis of lncRNA gene characteristics based on PD-1 immune related pathway for the prediction of non-small cell lung cancer prognosis[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 9818-9838. doi: 10.3934/mbe.2023430
[1] | Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206 |
[2] | Abdon Atangana, Jyoti Mishra . Analysis of nonlinear ordinary differential equations with the generalized Mittag-Leffler kernel. Mathematical Biosciences and Engineering, 2023, 20(11): 19763-19780. doi: 10.3934/mbe.2023875 |
[3] | Allaberen Ashyralyev, Evren Hincal, Bilgen Kaymakamzade . Crank-Nicholson difference scheme for the system of nonlinear parabolic equations observing epidemic models with general nonlinear incidence rate. Mathematical Biosciences and Engineering, 2021, 18(6): 8883-8904. doi: 10.3934/mbe.2021438 |
[4] | Sebastian Builes, Jhoana P. Romero-Leiton, Leon A. Valencia . Deterministic, stochastic and fractional mathematical approaches applied to AMR. Mathematical Biosciences and Engineering, 2025, 22(2): 389-414. doi: 10.3934/mbe.2025015 |
[5] | Hardik Joshi, Brajesh Kumar Jha, Mehmet Yavuz . Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 2023, 20(1): 213-240. doi: 10.3934/mbe.2023010 |
[6] | Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359 |
[7] | Jian Huang, Zhongdi Cen, Aimin Xu . An efficient numerical method for a time-fractional telegraph equation. Mathematical Biosciences and Engineering, 2022, 19(5): 4672-4689. doi: 10.3934/mbe.2022217 |
[8] | Yingying Xu, Chunhe Song, Chu Wang . Few-shot bearing fault detection based on multi-dimensional convolution and attention mechanism. Mathematical Biosciences and Engineering, 2024, 21(4): 4886-4907. doi: 10.3934/mbe.2024216 |
[9] | H. M. Srivastava, Khaled M. Saad, J. F. Gómez-Aguilar, Abdulrhman A. Almadiy . Some new mathematical models of the fractional-order system of human immune against IAV infection. Mathematical Biosciences and Engineering, 2020, 17(5): 4942-4969. doi: 10.3934/mbe.2020268 |
[10] | Guodong Li, Ying Zhang, Yajuan Guan, Wenjie Li . Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Mathematical Biosciences and Engineering, 2023, 20(4): 7020-7041. doi: 10.3934/mbe.2023303 |
Non-small cell lung cancer (NSCLC) is heterogeneous. Molecular subtyping based on the gene expression profiles is an effective technique for diagnosing and determining the prognosis of NSCLC patients.
Here, we downloaded the NSCLC expression profiles from The Cancer Genome Atlas and the Gene Expression Omnibus databases. ConsensusClusterPlus was used to derive the molecular subtypes based on long-chain noncoding RNA (lncRNA) associated with the PD-1-related pathway. The LIMMA package and least absolute shrinkage and selection operator (LASSO)-Cox analysis were used to construct the prognostic risk model. The nomogram was constructed to predict the clinical outcomes, followed by decision curve analysis (DCA) to validate the reliability of this nomogram.
We discovered that PD-1 was strongly and positively linked to the T-cell receptor signaling pathway. Furthermore, we identified two NSCLC molecular subtypes yielding a significantly distinctive prognosis. Subsequently, we developed and validated the 13-lncRNA-based prognostic risk model in the four datasets with high AUC values. Patients with low-risk showed a better survival rate and were more sensitive to PD-1 treatment. Nomogram construction combined with DCA revealed that the risk score model could accurately predict the prognosis of NSCLC patients.
This study demonstrated that lncRNAs engaged in the T-cell receptor signaling pathway played a significant role in the onset and development of NSCLC, and that they could influence the sensitivity to PD-1 treatment. In addition, the 13 lncRNA model was effective in assisting clinical treatment decision-making and prognosis evaluation.
Fractional calculus is a main branch of mathematics that can be considered as the generalisation of integration and differentiation to arbitrary orders. This hypothesis begins with the assumptions of L. Euler (1730) and G. W. Leibniz (1695). Fractional differential equations (FDEs) have lately gained attention and publicity due to their realistic and accurate computations [1,2,3,4,5,6,7]. There are various types of fractional derivatives, including Riemann–Liouville, Caputo, Grü nwald–Letnikov, Weyl, Marchaud, and Atangana. This topic's history can be found in [8,9,10,11]. Undoubtedly, fractional calculus applies to mathematical models of different phenomena, sometimes more effectively than ordinary calculus [12,13]. As a result, it can illustrate a wide range of dynamical and engineering models with greater precision. Applications have been developed and investigated in a variety of scientific and engineering fields over the last few decades, including bioengineering [14], mechanics [15], optics [16], physics [17], mathematical biology, electrical power systems [18,19,20] and signal processing [21,22,23].
One of the definitions of fractional derivatives is Caputo-Fabrizo, which adds a new dimension in the study of FDEs. The new derivative's feature is that it has a nonsingular kernel, which is made from a combination of an ordinary derivative with an exponential function, but it has the same supplementary motivating properties with various scales as in the Riemann-Liouville fractional derivatives and Caputo. The Caputo-Fabrizio fractional derivative has been used to solve real-world problems in numerous areas of mathematical modelling for example, numerical solutions for groundwater pollution, the movement of waves on the surface of shallow water modelling [24], RLC circuit modelling [25], and heat transfer modelling [26,27] were discussed.
Rach (1987), Bellomo and Sarafyan (1987) first compared the Adomian Decomposition method (ADM) [28,29,30,31,32] to the Picard method on a variety of examples. These methods have many benefits: they effectively work with various types of linear and nonlinear equations and also provide an analytic solution for all of these equations with no linearization or discretization. These methods are more realistic compared with other numerical methods as each technique is used to solve a specific type of equations, on the other hand ADM and Picard are useful for many types of equations. In the numerical examples provided, we compare ADM and Picard solutions of multidimentional fractional order equations with Caputo-Fabrizio.
The fractional derivative of Caputo-Fabrizio for the function x(t) is defined as [33]
CFDα0x(t)=B(α)1−α∫t0dds(x(s)) e−α1−α(t−s)ds, | (1.1) |
and its corresponding fractional integral is
CFIαx(t)=1−αB(α)x(t)+αB(α)∫t0x (s)ds, 0<α<1, | (1.2) |
where x(t) be continuous and differentiable on [0, T]. Also, in the above definition, the function B(α)>0 is a normalized function which satisfy the condition B(0)=B(1)=0. The relation between the Caputo–Fabrizio fractional derivate and its corresponding integral is given by
(CFIα0)(CFDα0f(t))=f(t)−f(a). | (1.3) |
In this section, we will introduce a multidimentional FDE subject to the initial condition. Let α∈(0,1], 0<α1<α2<...,αm<1, and m is integer real number,
CFDx=f(t,x,CFDα1x,CFDα2x,...,CFDαmx,) ,x(0)=c0, | (2.1) |
where x=x(t),t∈J=[0,T],T∈R+,x∈C(J).
To facilitate the equation and make it easy for the calculation, we let x(t)=c0+X(t) so Eq (2.1) can be witten as
CFDαX=f(t,c0+X,CFDα1X,CFDα2X,...,CFDαmX), X(0)=0. | (2.2) |
the algorithm depends on converting the initial condition from a constant c0 to 0.
Let CFDαX=y(t) then X=CFIαy, so we have
CFDαiX= CFIα−αi CFDαX= CFIα−αiy, i=1,2,...,m. | (2.3) |
Substituting in Eq (2.2) we obtain
y=f(t,c0+ CFIαy, CFIα−α1y,..., CFIα−αmy). | (2.4) |
Assume f satisfies Lipschtiz condition with Lipschtiz constant L given by,
|f(t,y0,y1,...,ym)|−|f(t,z0,z1,...,zm)|≤Lm∑i=0|yi−zi|, | (2.5) |
which implies
|f(t,c0+CFIαy,CFIα−α1y,..,CFIα−αmy)−f(t,c0+CFIαz,CFIα−α1z,..,CFIα−αmz)|≤Lm∑i=0| CFIα−αiy− CFIα−αiz|. | (2.6) |
The solution algorithm of Eq (2.4) using ADM is,
y0(t)=a(t)yn+1(t)=An(t), j⩾0. | (2.7) |
where a(t) pocesses all free terms in Eq (2.4) and An are the Adomian polynomials of the nonlinear term which takes the form [34]
An=f(Sn)−n−1∑i=0Ai, | (2.8) |
where f(Sn)=∑ni=0Ai. Later, this accelerated formula of Adomian polynomial will be used in convergence analysis and error estimation. The solution of Eq (2.4) can be written in the form,
y(t)=∞∑i=0yi(t). | (2.9) |
lastly, the solution of the Eq (2.4) takes the form
x(t)=c0+X(t)=c0+ CFIαy(t). | (2.10) |
At which we convert the parameter to the initial form y to x in Eq (2.10), so we have the solution of the original Eq (2.1).
Define a mapping F:E→E where E=(C[J],‖⋅‖) is a Banach space of all continuous functions on J with the norm ‖x‖= max.
Theorem 3.1. Equation (2.4) has a unique solution whenever 0 < \phi < 1 where \phi = L\left(\sum_{i = 0}^{m}\frac{\left[ \left(\alpha-\alpha _{i}\right) \left(T-1\right) \right] +1}{B\left(\alpha -\alpha_{i}\right) }\right) .
Proof. First, we define the mapping F:E\rightarrow E as
\begin{equation*} Fy = f(t,c_{0}+\text{ }^{CF}I^{\alpha }y,\text{ }^{CF}I^{\alpha -\alpha _{1}}y,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}y). \end{equation*} |
Let y and z\in E are two different solutions of Eq (2.4). Then
\begin{equation*} Fy-Fz = f(t,c_{0}+^{CF}I^{\alpha }y,^{CF}I^{\alpha -\alpha _{1}}y,..,^{CF}I^{\alpha -\alpha _{m}}y)-f(t,c_{0}+^{CF}I^{\alpha }z,^{CF}I^{\alpha -\alpha _{1}}z,...,^{CF}I^{\alpha -\alpha _{m}}z) \end{equation*} |
which implies that
\begin{eqnarray*} \left\vert Fy-Fz\right\vert & = &\left\vert f(t,c_{0}+\text{ }^{CF}I^{\alpha }y,\text{ }^{CF}I^{\alpha -\alpha _{1}}y,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}y)\right. \\ &&-\left. f(t,c_{0}+\text{ }^{CF}I^{\alpha }z,\text{ }^{CF}I^{\alpha -\alpha _{1}}z,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}z)\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \text{ }^{CF}I^{\alpha -\alpha _{i}}y-\text{ }^{CF}I^{\alpha -\alpha _{i}}z\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \frac{1-\left( \alpha -\alpha _{i}\right) }{ B\left( \alpha -\alpha _{i}\right) }\left( y-z\right) +\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\int_{0}^{t}\left( y-z\right) ds\right\vert \\ \left\Vert Fy-Fz\right\Vert &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\underset{ t\epsilon J}{\max }\left\vert y-z\right\vert +\frac{\alpha -\alpha _{i}}{ B\left( \alpha -\alpha _{i}\right) }\underset{t\epsilon J}{\max }\left\vert y-z\right\vert \int_{0}^{t}ds \\ &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\left\Vert y-z\right\Vert +\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\left\Vert y-z\right\Vert T \\ &\leq &L\left\Vert y-z\right\Vert \left( \sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }+\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }T\right) \\ &\leq &L\left\Vert y-z\right\Vert \left( \sum\limits_{i = 0}^{m}\frac{\left[ \left( \alpha -\alpha _{i}\right) \left( T-1\right) \right] +1}{B\left( \alpha -\alpha _{i}\right) }\right) \\ &\leq &\phi \left\Vert y-z\right\Vert . \end{eqnarray*} |
under the condition 0 < \phi < 1, the mapping F is contraction and hence there exists a unique solution y\in C\left[ J\right] for the problem Eq (2.4) and this completes the proof.
Theorem 3.2. The series solution of the problem Eq (2.4)converges if \left\vert y_{1}\left(t\right) \right\vert < c and c isfinite.
Proof. Define a sequence \left\{ S_{p}\right\} such that S_{p} = \sum_{i = 0}^{p}y_{i}\left(t\right) is the sequence of partial sums from the series solution \sum_{i = 0}^{\infty }y_{i}\left(t\right), we have
\begin{equation*} f(t,c_{0}+\text{ }^{CF}I^{\alpha }y,\text{ }^{CF}I^{\alpha -\alpha _{1}}y,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}y) = \sum\limits_{i = 0}^{\infty }A_{i}, \end{equation*} |
So
\begin{equation*} f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{p},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{p},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{p}) = \sum\limits_{i = 0}^{p}A_{i}, \end{equation*} |
From Eq (2.7) we have
\begin{equation*} \sum\limits_{i = 0}^{\infty }y_{i}\left( t\right) = a\left( t\right) +\sum\limits_{i = 0}^{\infty }A_{i-1} \end{equation*} |
let S_{p}, S_{q} be two arbitrary sums with p\geqslant q . Now, we are going to prove that \left\{ S_{p}\right\} is a Caushy sequence in this Banach space. We have
\begin{eqnarray*} S_{p} & = &\sum\limits_{i = 0}^{p}y_{i}\left( t\right) = a\left( t\right) +\sum\limits_{i = 0}^{p}A_{i-1,} \\ S_{q} & = &\sum\limits_{i = 0}^{q}y_{i}\left( t\right) = a\left( t\right) +\sum\limits_{i = 0}^{q}A_{i-1.} \end{eqnarray*} |
\begin{eqnarray*} S_{p}-S_{q} & = &\sum\limits_{i = 0}^{p}A_{i-1}-\sum\limits_{i = 0}^{q}A_{i-1} = \sum\limits_{i = q+1}^{p}A_{i-1} = \sum\limits_{i = q}^{p-1}A_{i-1} \\ & = &f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{p-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{p-1},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{p-1})- \\ &&f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{q-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{q-1},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{q-1}) \end{eqnarray*} |
\begin{eqnarray*} \left\vert S_{p}-S_{q}\right\vert & = &\left\vert f(t,c_{0}+\text{ } ^{CF}I^{\alpha }S_{p-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{p-1},..., \text{ }^{CF}I^{\alpha -\alpha _{m}}S_{p-1})-\right. \\ &&\left. f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{q-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{q-1},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{q-1})\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \text{ }^{CF}I^{\alpha -\alpha _{i}}S_{p-1}- \text{ }^{CF}I^{\alpha -\alpha _{i}}S_{q-1}\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \frac{1-\left( \alpha -\alpha _{i}\right) }{ B\left( \alpha -\alpha _{i}\right) }\left( S_{p-1}-S_{q-1}\right) +\frac{ \alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\int_{0}^{t}\left( S_{p-1}-S_{q-1}\right) ds\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\left\vert S_{p-1}-S_{q-1}\right\vert +\frac{ \alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\int_{0}^{t}\left \vert S_{p-1}-S_{q-1}\right\vert ds \end{eqnarray*} |
\begin{eqnarray*} \left\Vert S_{p}-S_{q}\right\Vert &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\underset{ t\epsilon J}{\max }\left\vert S_{p-1}-S_{q-1}\right\vert +\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\underset{t\epsilon J}{ \max }\left\vert S_{p-1}-S_{q-1}\right\vert \int_{0}^{t}ds \\ &\leq &L\left\Vert S_{p}-S_{q}\right\Vert \sum\limits_{i = 0}^{m}\left( \frac{ 1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }+ \frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }T\right) \\ &\leq &L\left\Vert S_{p}-S_{q}\right\Vert \left( \sum\limits_{i = 0}^{m}\frac{\left[ \left( \alpha -\alpha _{i}\right) \left( T-1\right) \right] +1}{B\left( \alpha -\alpha _{i}\right) }\right) \\ &\leq &\phi \left\Vert S_{p}-S_{q}\right\Vert \end{eqnarray*} |
let p = q+1 then,
\begin{equation*} \left\Vert S_{q+1}-S_{q}\right\Vert \leq \phi \left\Vert S_{q}-S_{q-1}\right\Vert \leq \phi ^{2}\left\Vert S_{q-1}-S_{q-2}\right\Vert \leq ...\leq \phi ^{q}\left\Vert S_{1}-S_{0}\right\Vert \end{equation*} |
From the triangle inequality we have
\begin{eqnarray*} \left\Vert S_{p}-S_{q}\right\Vert &\leq &\left\Vert S_{q+1}-S_{q}\right\Vert +\left\Vert S_{q+2}-S_{q+1}\right\Vert +...\left\Vert S_{p}-S_{p-1}\right\Vert \\ &\leq &\left[ \phi ^{q}+\phi ^{q+1}+...+\phi ^{p-1}\right] \left\Vert S_{1}-S_{0}\right\Vert \\ &\leq &\phi ^{q}\left[ 1+\phi +...+\phi ^{p-q+1}\right] \left\Vert S_{1}-S_{0}\right\Vert \\ &\leq &\phi ^{q}\left[ \frac{1-\phi ^{p-q}}{1-\phi }\right] \left\Vert y_{1}\left( t\right) \right\Vert \end{eqnarray*} |
Since 0 < \phi < 1, p\geqslant q then \left(1-\phi ^{p-q}\right) \leq 1 . Consequently
\begin{equation} \left\Vert S_{p}-S_{q}\right\Vert \leq \frac{\phi ^{q}}{1-\phi }\left\Vert y_{1}\left( t\right) \right\Vert \leq \frac{\phi ^{q}}{1-\phi }\underset{ \forall t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation} | (3.1) |
but \left\vert y_{1}\left(t\right) \right\vert < \infty and as q\rightarrow \infty then, \left\Vert S_{p}-S_{q}\right\Vert \rightarrow 0 and hence, \left\{ S_{p}\right\} is a Caushy sequence in this Banach space then the proof is complete.
Theorem 3.3. The maximum absolute truncated error Eq (2.4)is estimated to be \underset{t\epsilon J}{\max }\left\vert y\left(t\right)-\sum_{i = 0}^{q}y_{i}\left(t\right) \right\vert \leq \frac{\phi ^{q}}{1-\phi }\underset{t\epsilon J}{\max }\left\vert y_{1}\left(t\right) \right\vert
Proof. From the convergence theorm inequality (Eq 3.1) we have
\begin{equation*} \left\Vert S_{p}-S_{q}\right\Vert \leq \frac{\phi ^{q}}{1-\phi }\underset{ t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation*} |
but, S_{p} = \sum_{i = 0}^{p}y_{i}\left(t\right) as p\rightarrow \infty then, S_{p}\rightarrow y\left(t\right) so,
\begin{equation*} \left\Vert y\left( t\right) -S_{q}\right\Vert \leq \frac{\phi ^{q}}{1-\phi } \underset{t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation*} |
so, the maximum absolute truncated error in the interval J is,
\begin{equation} \underset{t\epsilon J}{\max }\left\vert y\left( t\right) -\sum\limits_{i = 0}^{q}y_{i}\left( t\right) \right\vert \leq \frac{\phi ^{q}}{1-\phi }\underset{t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation} | (3.2) |
and this completes the proof.
In this part, we introduce several numerical examples with unkown exact solution and we will use inequality (Eq 3.2) to estimate the maximum absolute truncated error.
Example 4.1. Application of linear FDE
\begin{equation} ^{CF}Dx\left( t\right) +2a^{CF}D^{1/2}x\left( t\right) +bx\left( t\right) = 0, { \ \ \ \ \ \ \ }x\left( 0\right) = 1. \end{equation} | (4.1) |
A Basset problem in fluid dynamics is a classical problem which is used to study the unsteady movement of an accelerating particle in a viscous fluid under the action of the gravity [36]
Set
\begin{equation*} X\left( t\right) = x\left( t\right) -1 \end{equation*} |
Equation (4.1) will be
\begin{equation} ^{CF}DX\left( t\right) +2a^{CF}D^{1/2}X\left( t\right) +bX\left( t\right) = 0, { \ \ \ \ \ \ \ }X\left( 0\right) = 0. \end{equation} | (4.2) |
Appling Eq (2.3) to Eq (4.2), and using initial condition, also we take a = 1, b = 1/2,
\begin{equation} y = -\frac{1}{2}-2I^{1/2}y-\frac{1}{2}I\text{ }y \end{equation} | (4.3) |
Appling ADM to Eq (4.3), we find the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &-\frac{1}{2}, \\ y_{i}\left( t\right) & = &-2\text{ }^{CF}I^{1/2}y_{i-1}-\frac{1}{2}\text{ } ^{CF}I\text{ }y_{i-1},\ \ \ \ \ i\geq 1. \end{eqnarray} | (4.4) |
Appling Picard solution to Eq (4.2), we find the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &-\frac{1}{2}, \\ y_{i}\left( t\right) & = &-\frac{1}{2}-2\text{ }^{CF}I^{1/2}y_{i-1}-\frac{1}{2} \text{ }^{CF}I\text{ }y_{i-1},\ \ \ \ \ i\geq 1. \end{eqnarray} | (4.5) |
From Eq (4.4), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q} y_{i}} \left(t\right) while from Eq (4.5), the solution using Picard technique is given by y\left(t\right) = \; \underset{i\rightarrow \infty }{ Lim} \; y_{i}\left(t\right) . Lately, the solution of the original problem Eq (4.2), is
\begin{equation*} x\left( t\right) = 1+\text{ }^{CF}I\text{ }y\left( t\right) . \end{equation*} |
One the same processor (q = 20), the time consumed using ADM is 0.037 seconds, while the time consumed using Picard is 7.955 seconds.
Figure 1 gives a comparison between ADM and Picard solution of Ex. 4.1.
Example 4.2. Consider the following nonlinear FDE [35]
\begin{eqnarray} ^{CF}D^{1/2}x & = &\frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4}\right) }-\frac{t^{4}}{4}+\frac{1}{8}\text{ }^{CF}D^{1/4}x+\frac{ 1}{4}x^{2},\text{ } \\ x\left( 0\right) & = &0. \end{eqnarray} | (4.6) |
Appling Eq (2.3) to Eq (4.6), and using initial condition,
\begin{equation} y = \frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4} \right) }-\frac{t^{4}}{4}+\frac{1}{8}\text{ }^{CF}I^{1/4}y+\frac{1}{4}\left( ^{CF}I^{1/2}y\right) ^{2}. \end{equation} | (4.7) |
Appling ADM to Eq (4.7), we find the solution algorithm will be become
\begin{eqnarray} y_{0}\left( t\right) & = &\frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4}\right) }-\frac{t^{4}}{4}, \\ y_{i}\left( t\right) & = &\frac{1}{8}\text{ }^{CF}I^{1/4}y_{i-1}+\frac{1}{4} \left( A_{i-1}\right) ,\ \ \ \ \ i\geq 1. \end{eqnarray} | (4.8) |
at which A _{\text{i}} are Adomian polynomial of the nonliner term \left(^{CF}I^{1/2}y\right) ^{2}.
Appling Picard solution to Eq (4.7), we find the the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &\frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4}\right) }-\frac{t^{4}}{4}, \\ y_{i}\left( t\right) & = &y_{0}\left( t\right) +\frac{1}{8}\text{ } ^{CF}I^{1/4}y_{i-1}+\frac{1}{4}\left( ^{CF}I^{1/2}y_{i-1}\right) ^{2},\ \ \ \ \ i\geq 1. \end{eqnarray} | (4.9) |
From Eq (4.8), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) while from Eq (4.9), the solution using Picard technique is given by y\left(t\right) = \underset{i\rightarrow \infty }{Lim} y_{i}\left(t\right) . Finally, the solution of the original problem Eq (4.7), is.
\begin{equation*} x\left( t\right) = \text{ }^{CF}I^{1/2}y. \end{equation*} |
One the same processor (q = 2), the time consumed using ADM is 65.13 seconds, while the time consumed using Picard is 544.787 seconds.
Table 1 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 2):
q | max. absolute error |
2 | 0.114548 |
5 | 0.099186 |
10 | 0.004363 |
Figure 2 gives a comparison between ADM and Picard solution of Ex. 4.2.
Example 4.3. Consider the following nonlinear FDE [35]
\begin{eqnarray} ^{CF}D^{\alpha }x & = &3t^{2}-\frac{128}{125\pi }t^{5}+\frac{1}{10}\left( ^{CF}D^{1/2}x\right) ^{2}, \\ x\left( 0\right) & = &0. \end{eqnarray} | (4.10) |
Appling Eq (2.3) to Eq (4.10), and using initial condition,
\begin{equation} y = 3t^{2}-\frac{128}{125\pi }t^{5}+\frac{1}{10}\left( ^{CF}I^{1/2}y\right) ^{2} \end{equation} | (4.11) |
Appling ADM to Eq (4.11), we find the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &3t^{2}-\frac{128}{125\pi }t^{5}, \\ y_{i}\left( t\right) & = &\frac{1}{10}\left( A_{i-1}\right) ,\ \ \ \ \ i\geq 1 \end{eqnarray} | (4.12) |
at which A _{\text{i}} are Adomian polynomial of the nonliner term \left(^{CF}I^{1/2}y\right) ^{2}.
Then appling Picard solution to Eq (4.11), we find the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &3t^{2}-\frac{128}{125\pi }t^{5}, \\ y_{i}\left( t\right) & = &y_{0}\left( t\right) +\frac{1}{10}\left( ^{CF}I^{1/2}y_{i-1}\right) ^{2},\ \ \ \ \ i\geq 1. \end{eqnarray} | (4.13) |
From Eq (4.12), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) while from Eq (4.13), the solution is y\left(t\right) = \underset{i\rightarrow \infty }{Lim}y_{i}\left(t\right) . Finally, the solution of the original problem Eq (4.11), is
\begin{equation*} x\left( t\right) = ^{CF}Iy\left( t\right) . \end{equation*} |
One the same processor (q = 4), the time consumed using ADM is 2.09 seconds, while the time consumed using Picard is 44.725 seconds.
Table 2 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 4):
q | max. absolute error |
2 | 0.00222433 |
5 | 0.0000326908 |
10 | 2.88273*10 ^{-8} |
Figure 3 gives a comparison between ADM and Picard solution of Ex. 4.3 with \alpha = 1 .
Example 4.4. Consider the following nonlinear FDE [35]
\begin{eqnarray} ^{CF}D^{\alpha }x & = &t^{2}+\frac{1}{2}\text{ }^{CF}D^{\alpha _{1}}x+\frac{1}{ 4}\text{ }^{CF}D^{\alpha _{2}}x+\frac{1}{6}\text{ }^{CF}D^{\alpha 3}x+\frac{1 }{8}x^{4}, \\ x\left( 0\right) & = &0. \end{eqnarray} | (4.14) |
Appling Eq (2.3) to Eq (4.10), and using initial condition,
\begin{equation} y = t^{2}+\frac{1}{2}\left( ^{CF}I^{\alpha -\alpha _{1}}y\right) +\frac{1}{4} \left( ^{CF}I^{\alpha -\alpha _{2}}y\right) +\frac{1}{6}\left( ^{CF}I^{\alpha -\alpha 3}y\right) +\frac{1}{8}\left( ^{CF}I^{\alpha }y\right) ^{4}, \end{equation} | (4.15) |
Appling ADM to Eq (4.15), we find the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &t^{2}, \\ y_{i}\left( t\right) & = &\frac{1}{2}\left( ^{CF}I^{\alpha -\alpha _{1}}y\right) +\frac{1}{4}\left( ^{CF}I^{\alpha -\alpha _{2}}y\right) +\frac{ 1}{6}\left( ^{CF}I^{\alpha -\alpha 3}y\right) +\frac{1}{8}A_{i-1},{ \ \ }i\geq 1 \end{eqnarray} | (4.16) |
where A _{\text{i}} are Adomian polynomial of the nonliner term \left(^{CF}I^{\alpha }y\right) ^{4}.
Then appling Picard solution to Eq (4.15), we find the solution algorithm become
y_{0}\left( t\right) = t^{2}, \\ y_{i}\left( t\right) = t^{2}+\frac{1}{2}\left( ^{CF}I^{\alpha -\alpha _{1}}y_{i-1}\right) +\frac{1}{4}\left( ^{CF}I^{\alpha -\alpha _{2}}y_{i-1}\right) \\+\frac{1}{6}\left( ^{CF}I^{\alpha -\alpha 3}y_{i-1}\right) +\frac{1}{8}\left( ^{CF}I^{\alpha }y_{i-1}\right) ^{4}\ \ \ \ \ i\geq 1. | (4.17) |
From Eq (4.16), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) while from Eq (4.17), the solution using Picard technique is y\left(t\right) = \underset{i\rightarrow \infty }{Lim} y_{i}\left(t\right) . Finally, the solution of the original problem Eq (4.14), is
\begin{equation*} x\left( t\right) = ^{CF}I^{\alpha }y\left( t\right) . \end{equation*} |
One the same processor (q = 3), the time consumed using ADM is 0.437 seconds, while the time consumed using Picard is (16.816) seconds. Figure 4 shows a comparison between ADM and Picard solution of Ex. 4.4 at \; \alpha = 0.7, \; \alpha _{1} = 0.1, \alpha _{2} = 0.3, \alpha _{3} = 0.5.
The Caputo-Fabrizo fractional deivative has a nonsingular kernel, and consequently, this definition is appropriate in solving nonlinear multidimensional FDE [37,38]. Since the selected numerical problems have an unkown exact solution, the formula (3.2) can be used to estimate the maximum absolute truncated error. By comparing the time taken on the same processor (i7-2670QM), it was found that the time consumed by ADM is much smaller compared with the Picard technique. Furthermore Picard gives a more accurate solution than ADM at the same interval with the same number of terms.
The authors declare there is no conflict of interest.
[1] |
R. L. Siegel, K. D. Miller, H. E. Fuchs, A. Jemal, Cancer Statistics, 2021, CA Cancer J. Clin., 71 (2021), 7–33. https://doi.org/10.3322/caac.21654 doi: 10.3322/caac.21654
![]() |
[2] |
F. Islami, A. G. Sauer, K. D. Miller, R. L. Siegel, S. A. Fedewa, E. J. Jacobs, et al., Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States, CA Cancer J. Clin., 68 (2018), 31–54. https://doi.org/10.3322/caac.21440 doi: 10.3322/caac.21440
![]() |
[3] |
M. Zheng, Classification and pathology of lung cancer, Surg. Oncol. Clin., 25 (2016), 447–468. https://doi.org/10.1016/j.soc.2016.02.003 doi: 10.1016/j.soc.2016.02.003
![]() |
[4] |
M. Wang, R. S. Herbst, C. Boshoff, Toward personalized treatment approaches for non-small-cell lung cancer, Nat. Med., 27 (2021), 1345–1356. https://doi.org/10.1038/s41591-021-01450-2 doi: 10.1038/s41591-021-01450-2
![]() |
[5] |
M. MacManus, F. Hegi-Johnson, Overcoming immunotherapy resistance in NSCLC, Lancet Oncol., 23 (2022), 191–193. https://doi.org/10.1016/S1470-2045(21)00711-7 doi: 10.1016/S1470-2045(21)00711-7
![]() |
[6] |
A. Insa, P. Martín-Martorell, R. D. Liello, M. Fasano, G. Martini, S. Napolitano, et al., Which treatment after first line therapy in NSCLC patients without genetic alterations in the era of immunotherapy? Crit. Rev. Oncol. Hematol., 169 (2022), 103538. https://doi.org/10.1016/j.critrevonc.2021.103538 doi: 10.1016/j.critrevonc.2021.103538
![]() |
[7] |
F. Xie, M. Xu, J. Lu, L. Mao, S. Wang, The role of exosomal PD-L1 in tumor progression and immunotherapy, Mol. Cancer, 18 (2019), 146. https://doi.org/10.1186/s12943-019-1074-3 doi: 10.1186/s12943-019-1074-3
![]() |
[8] |
M. Niu, M. Yi, N. Li, S. Luo, K. Wu, Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC, Exp. Hematol. Oncol., 10 (2021), 18. https://doi.org/10.1186/s40164-021-00211-8 doi: 10.1186/s40164-021-00211-8
![]() |
[9] |
P. Yu, X. He, F. Lu, L. Li, H. Song, X. Bian, Research progress regarding long-chain non-coding RNA in lung cancer: A narrative review, J. Thorac. Dis., 14 (2022), 3016. https://doi.org/10.21037/jtd-22-897 doi: 10.21037/jtd-22-897
![]() |
[10] |
W. Sun, Y. Shi, Z. Wang, J. Zhang, H. Cai, J. Zhang, et al., Interaction of long-chain non-coding RNAs and important signaling pathways on human cancers, Int. J. Oncol., 53 (2018), 2343–2355. https://doi.org/10.3892/ijo.2018.4575 doi: 10.3892/ijo.2018.4575
![]() |
[11] |
C. C. Sun, W. Zhu, S. J. Li, W. Hu, J. Zhang, Y. Zhuo, et al., FOXC1-mediated LINC00301 facilitates tumor progression and triggers an immune-suppressing microenvironment in non-small cell lung cancer by regulating the HIF1α pathway, Genome Med., 12 (2020), 77. https://doi.org/10.1186/s13073-020-00773-y doi: 10.1186/s13073-020-00773-y
![]() |
[12] |
M. M. Balas, A. M. Johnson, Exploring the mechanisms behind long noncoding RNAs and cancer, Noncoding RNA Res., 3 (2018), 108–117. https://doi.org/10.1016/j.ncrna.2018.03.001 doi: 10.1016/j.ncrna.2018.03.001
![]() |
[13] |
M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47. https://doi.org/10.1093/nar/gkv007 doi: 10.1093/nar/gkv007
![]() |
[14] |
S. Hänzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data, BMC Bioinf., 14 (2013), 7. https://doi.org/10.1186/1471-2105-14-7 doi: 10.1186/1471-2105-14-7
![]() |
[15] |
D. Merico, R. Isserlin, O. Stueker, A. Emili, G. D. Bader, Enrichment map: a network-based method for gene-set enrichment visualization and interpretation, PloS One, 5 (2010), e13984. https://doi.org/10.1371/journal.pone.0013984 doi: 10.1371/journal.pone.0013984
![]() |
[16] |
M. D. Wilkerson, D. N. Hayes, ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking, Bioinformatics, 26 (2010), 1572–1573. https://doi.org/10.1093/bioinformatics/btq170 doi: 10.1093/bioinformatics/btq170
![]() |
[17] |
Z. Zhang, Variable selection with stepwise and best subset approaches, Ann. Transl. Med., 4 (2016), 136. https://doi.org/10.21037/atm.2016.03.35 doi: 10.21037/atm.2016.03.35
![]() |
[18] |
V. P. Balachandran, M. Gonen, J. J. Smith, R. P. DeMatteo, Nomograms in oncology: more than meets the eye, Lancet Oncol., 16 (2015), e173–180. https://doi.org/10.1016/S1470-2045(14)71116-7 doi: 10.1016/S1470-2045(14)71116-7
![]() |
[19] |
F. Ay, M. Kellis, T. Kahveci, SubMAP: aligning metabolic pathways with subnetwork mappings, J. Comput. Biol., 18 (2011), 219–235. https://doi.org/10.1089/cmb.2010.0280 doi: 10.1089/cmb.2010.0280
![]() |
[20] |
V. Thorsson, D. L. Gibbs, S. D. Brown, D. Wolf, D. S. Bortone, T. H. O. Yang, et al., The Immune Landscape of Cancer, Immunity, 48 (2018), 812–830.e14. https://doi.org/10.1016/j.immuni.2018.03.023 doi: 10.1016/j.immuni.2018.03.023
![]() |
[21] |
L. Danilova, W. J. Ho, Q. Zhu, T. Vithayathil, A. D. Jesus-Acosta, N. S. Azad, et al., Programmed cell death Ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival, Cancer Immunol. Res., 7 (2019), 886–895. https://doi.org/10.1158/2326-6066.CIR-18-0822 doi: 10.1158/2326-6066.CIR-18-0822
![]() |
[22] |
T. N. Schumacher, T-cell-receptor gene therapy, Nat. Rev. Immunol., 2 (2002), 512–519. https://doi.org/10.1038/nri841 doi: 10.1038/nri841
![]() |
[23] |
W. Xu, X. Wang, Y. Tu, H. Masaki, S. Tanaka, K. Onda, et al., Tetrandrine and cepharanthine induce apoptosis through caspase cascade regulation, cell cycle arrest, MAPK activation and PI3K/Akt/mTOR signal modification in glucocorticoid resistant human leukemia Jurkat T cells, Chem. Biol. Interact., 310 (2019), 108726. https://doi.org/10.1016/j.cbi.2019.108726 doi: 10.1016/j.cbi.2019.108726
![]() |
[24] |
H. Chang, Z. Zou, J. Li, Q. Shen, L. Liu, X. An, et al., Photoactivation of mitochondrial reactive oxygen species-mediated Src and protein kinase C pathway enhances MHC class Ⅱ-restricted T cell immunity to tumours, Cancer Lett., 523 (2021), 57–71. https://doi.org/10.1016/j.canlet.2021.09.032 doi: 10.1016/j.canlet.2021.09.032
![]() |
[25] |
X. Wang, B. Zhang, Y. Yang, J. Zhu, S. Cheng, Y. Mao, et al., Characterization of distinct T cell receptor repertoires in tumor and distant non-tumor tissues from lung cancer patients, Genom. Proteom. Bioinf., 17 (2019), 287–296. https://doi.org/10.1016/j.gpb.2018.10.005 doi: 10.1016/j.gpb.2018.10.005
![]() |
[26] |
N. Seetharamu, D. R. Budman, K. M. Sullivan, Immune checkpoint inhibitors in lung cancer: past, present and future, Future Oncol., 12 (2016), 1151–1163. https://doi.org/10.2217/fon.16.20 doi: 10.2217/fon.16.20
![]() |
[27] |
X. Xu, W. Zhang, L. Xuan, Y. Yu, W. Zheng, F. Tao, et al., PD-1 signalling defines and protects leukaemic stem cells from T cell receptor-induced cell death in T cell acute lymphoblastic leukaemia, Nat. Cell Biol., 25 (2023), 170–182. https://doi.org/10.1038/s41556-022-01050-3 doi: 10.1038/s41556-022-01050-3
![]() |
[28] |
F. Bie, H. Tian, N. Sun, R. Zang, M. Zhang, P. Song, et al., Research progress of Anti-PD-1/PD-L1 immunotherapy related mechanisms and predictive biomarkers in NSCLC, Front. Oncol., 12 (2022), 769124. https://doi.org/10.3389/fonc.2022.769124 doi: 10.3389/fonc.2022.769124
![]() |
[29] |
J. Y. Kim, M. Park, Y. H. Kim, K. H. Ryu, K. H. Lee, K. A. Cho, et al. Tonsil‐derived mesenchymal stem cells (T‐MSCs) prevent Th17‐mediated autoimmune response via regulation of the programmed death‐1/programmed death ligand‐1 (PD‐1/PD‐L1) pathway, J. Tissue Eng. Regen. Med., 12 (2018), e1022–e1033. https://doi.org/10.1002/term.2423 doi: 10.1002/term.2423
![]() |
[30] |
C. Chen, H. Zheng, LncRNA LINC00944 promotes tumorigenesis but suppresses akt phosphorylation in renal cell carcinoma, Front. Mol. Biosci., 8 (2021), 697962. https://doi.org/10.3389/fmolb.2021.697962 doi: 10.3389/fmolb.2021.697962
![]() |
[31] |
P. R. de Santiago, A. Blanco, F. Morales, K. Marcelain, O. Harismendy, M. S. Herrera, et al., Immune-related IncRNA LINC00944 responds to variations in ADAR1 levels and it is associated with breast cancer prognosis, Life Sci., 268 (2021), 118956. https://doi.org/10.1016/j.lfs.2020.118956 doi: 10.1016/j.lfs.2020.118956
![]() |
[32] |
M. Zhang, W. Zhu, M. Haeryfar, S. Jiang, X. Jiang, W. Chen, et al., Long non-coding RNA TRG-AS1 promoted proliferation and invasion of lung cancer cells through the miR-224-5p/SMAD4 Axis, Oncol. Targets Ther., 14 (2021), 4415–4426. https://doi.org/10.2147/OTT.S297336 doi: 10.2147/OTT.S297336
![]() |
[33] |
S. He, X. Wang, J. Zhang, F. Zhou, L. Li, X. Han, TRG-AS1 is a potent driver of oncogenicity of tongue squamous cell carcinoma through microRNA-543/Yes-associated protein 1 axis regulation, Cell Cycle, 19 (2020), 1969–1982. https://doi.org/10.1080/15384101.2020.1786622 doi: 10.1080/15384101.2020.1786622
![]() |
[34] |
Y. Liu, R. Huang, D. Xie, X. Lin, L. Zheng, ZNF674-AS1 antagonizes miR-423-3p to induce G0/G1 cell cycle arrest in non-small cell lung cancer cells, Cell Mol. Biol. Lett., 26 (2021), 6. https://doi.org/10.1186/s11658-021-00247-y doi: 10.1186/s11658-021-00247-y
![]() |
[35] |
J. Wang, S. Liu, T. Pan, M. Wang, L. Li, X. Weng, et al., Long non-coding RNA ZNF674-AS1 regulates miR-23a/E-cadherin axis to suppress the migration and invasion of non-small cell lung cancer cells, Transl. Cancer Res., 10 (2021), 4116–4124. https://doi.org/10.21037/tcr-21-1499 doi: 10.21037/tcr-21-1499
![]() |
[36] |
H. Zhao, T. Ming, S. Tang, S. Ren, H. Yang, M. Liu, et al., Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target, Mol. Cancer, 21 (2022), 144. https://doi.org/10.1186/s12943-022-01616-7 doi: 10.1186/s12943-022-01616-7
![]() |
[37] |
W. Zhou, G. Wang, B. Li, J. Qu, Y. Zhang, LncRNA APTR promotes uterine leiomyoma cell proliferation by targeting ERα to activate the Wnt/β-catenin pathway, Front. Oncol., 11 (2021), 536346. https://doi.org/10.3389/fonc.2021.536346 doi: 10.3389/fonc.2021.536346
![]() |
[38] |
B. Q. Qiu, X. H. Lin, S. Q. Lai, F. Lu, K. Lin, X. Long, et al., ITGB1-DT/ARNTL2 axis may be a novel biomarker in lung adenocarcinoma: A bioinformatics analysis and experimental validation, Cancer Cell Int., 21 (2021), 665. https://doi.org/10.1186/s12935-021-02380-2 doi: 10.1186/s12935-021-02380-2
![]() |
[39] |
C. He, H. Yin, J. Zheng, J. Tang, Y. Fu, X. Zhao, Identification of immune-associated lncRNAs as a prognostic marker for lung adenocarcinoma, Transl. Cancer Res., 10 (2021), 998–1012. https://doi.org/10.21037/tcr-20-2827 doi: 10.21037/tcr-20-2827
![]() |
[40] |
R. Chang, X. Xiao, Y. Fu, C. Zhang, X. Zhu, Y. Gao, ITGB1-DT facilitates lung adenocarcinoma progression via forming a positive feedback loop with ITGB1/Wnt/β-Catenin/MYC, Front. Cell Dev. Biol., 9 (2021), 631259. https://doi.org/10.3389/fcell.2021.631259 doi: 10.3389/fcell.2021.631259
![]() |
[41] |
Y. Huang, Y. Lin, X. Song, D. Wu, LINC00857 contributes to proliferation and lymphomagenesis by regulating miR-370-3p/CBX3 axis in diffuse large B-cell lymphoma, Carcinogenesis, 42 (2021), 733–741. https://doi.org/10.1093/carcin/bgab013 doi: 10.1093/carcin/bgab013
![]() |
[42] |
D, Zhou, S. He, D. Zhang, Z. Lv, J. Yu, Q. Li, et al., LINC00857 promotes colorectal cancer progression by sponging miR-150-5p and upregulating HMGB3 (high mobility group box 3) expression, Bioengineered, 12 (2021), 12107–12122. https://doi.org/10.1080/21655979.2021.2003941 doi: 10.1080/21655979.2021.2003941
![]() |
[43] |
L. Wang, L. Cao, C. Wen, J. Li, G. Yu, C. Liu, LncRNA LINC00857 regulates lung adenocarcinoma progression, apoptosis and glycolysis by targeting miR-1179/SPAG5 axis, Hum. Cell, 33 (2020), 195–204. https://doi.org/10.1007/s13577-019-00296-8 doi: 10.1007/s13577-019-00296-8
![]() |
[44] |
J. Liu, L. Yao, M. Zhang, J. Jiang, M. Yang, Y. Wang, Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death, Aging, 11 (2019), 7830–7846. https://doi.org/10.18632/aging.102291 doi: 10.18632/aging.102291
![]() |
[45] |
P. Katopodis, Q. Dong, H. Halai, C. I. Fratila, A. Polychronis, V. Anikin, et al., In silico and in vitro analysis of lncRNA XIST reveals a panel of possible lung cancer regulators and a five-gene diagnostic signature, Cancers, 12 (2020), 3499. https://doi.org/10.3390/cancers12123499 doi: 10.3390/cancers12123499
![]() |
[46] |
X. Xu, X. Zhou, Z. Chen, C. Gao, L. Zhao, Y. Cui, Silencing of lncRNA XIST inhibits non-small cell lung cancer growth and promotes chemosensitivity to cisplatin, Aging, 12 (2020), 4711–4726. https://doi.org/10.18632/aging.102673 doi: 10.18632/aging.102673
![]() |
[47] |
Y. Shen, Y. Lin, K. Liu, J. Chen, J. Zhong, Y. Gao, et al., XIST: A meaningful long noncoding RNA in NSCLC process, Curr. Pharm. Des., 27 (2021), 1407–1417. https://doi.org/10.2174/1381612826999201202102413 doi: 10.2174/1381612826999201202102413
![]() |
[48] |
J. Song, S. Zhang, Y. Sun, J. Gu, Z. Ye, X. Sun, et al., A radioresponse-related lncRNA biomarker signature for risk classification and prognosis prediction in non-small-cell lung cancer, J. Oncol., (2021), 4338838. https://doi.org/10.1155/2021/4338838 doi: 10.1155/2021/4338838
![]() |
[49] | A. Khosla, Y. Cao, C. C. Y. Lin, H. K. Chiu, J. Hu, H. Lee, An integrated machine learning approach to stroke prediction, Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, 2010. Available from: https://dl.acm.org/doi/abs/10.1145/1835804.1835830 |
[50] |
G. Fang, W. Liu, L. Wang, A machine learning approach to select features important to stroke prognosis, Comput. Biol. Chem., 88 (2020), 107316. https://doi.org/10.1016/j.compbiolchem.2020.107316 doi: 10.1016/j.compbiolchem.2020.107316
![]() |
[51] |
V. T. Truong, B. P. Nguyen, T. H. Nguyen-Vo, W. Mazur, E. S. Chung, C. Palmer, et al., Application of machine learning in screening for congenital heart diseases using fetal echocardiography, Int. J. Cardiovasc Imaging, 38 (2022), 1007–1015. https://doi.org/10.1007/s10554-022-02566-3 doi: 10.1007/s10554-022-02566-3
![]() |
[52] | Q. H. Nguyen, T. T. Do, Y. Wang, S. S. Heng, K. Chen, W. H. M. Ang, et al., Breast cancer prediction using feature selection and ensemble voting, in 2019 International Conference on System Science and Engineering (ICSSE), 2019,250–254. Available from: https://ieeexplore.ieee.org/abstract/document/8823106 |
[53] |
R. K. Meleppat, K. E. Ronning, S. J. Karlen, K. K. Kothandath, M. E. Burns, E. N. Pugh, et al., In situ morphologic and spectral characterization of retinal pigment epithelium organelles in mice using multicolor confocal fluorescence imaging, Invest. Ophthalmol. Vis. Sci., 61 (2020), 1. https://doi.org/10.1167/iovs.61.13.1 doi: 10.1167/iovs.61.13.1
![]() |
[54] |
R. K. Meleppat, P. Zhang, M. J. Ju, S. K. Manna, Y. Jian, E. N. Pugh, et al., Directional optical coherence tomography reveals melanin concentration-dependent scattering properties of retinal pigment epithelium, J. Biomed. Opt., 24 (2019), 1–10. https://doi.org/10.1117/1.JBO.24.6.066011 doi: 10.1117/1.JBO.24.6.066011
![]() |
[55] |
S. H. Chung, T. N. Sin, B. Dang, T. Ngo, T. Lo, D. Lent-Schochet, et al., CRISPR-based VEGF suppression using paired guide RNAs for treatment of choroidal neovascularization, Mol. Ther. Nucleic Acids, 28 (2022), 613–622. https://doi.org/10.1016/j.omtn.2022.04.015 doi: 10.1016/j.omtn.2022.04.015
![]() |
[56] |
S. H. Chung, I. N. Mollhoff, U. Nguyen, A. Nguyen, N. Stucka, E. Tieu, et al., Factors impacting efficacy of AAV-mediated CRISPR-based genome editing for treatment of choroidal neovascularization, Mol. Ther. Methods Clin. Dev., 17 (2020), 409–417. https://doi.org/10.1016/j.omtm.2020.01.006 doi: 10.1016/j.omtm.2020.01.006
![]() |
![]() |
![]() |
1. | Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros, Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives, 2024, 9, 2473-6988, 18324, 10.3934/math.2024894 | |
2. | H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy, Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features, 2024, 9, 2473-6988, 34224, 10.3934/math.20241630 | |
3. | Said R. Grace, Gokula N. Chhatria, S. Kaleeswari, Yousef Alnafisah, Osama Moaaz, Forced-Perturbed Fractional Differential Equations of Higher Order: Asymptotic Properties of Non-Oscillatory Solutions, 2024, 9, 2504-3110, 6, 10.3390/fractalfract9010006 | |
4. | A.E. Matouk, Monica Botros, Hidden chaotic attractors and self-excited chaotic attractors in a novel circuit system via Grünwald–Letnikov, Caputo-Fabrizio and Atangana-Baleanu fractional operators, 2025, 116, 11100168, 525, 10.1016/j.aej.2024.12.064 | |
5. | Zahra Barati, Maryam Keshavarzi, Samaneh Mosaferi, Anatomical and micromorphological study of Phalaris (Poaceae) species in Iran, 2025, 68, 1588-4082, 9, 10.14232/abs.2024.1.9-15 |
q | max. absolute error |
2 | 0.114548 |
5 | 0.099186 |
10 | 0.004363 |
q | max. absolute error |
2 | 0.00222433 |
5 | 0.0000326908 |
10 | 2.88273*10 ^{-8} |