Research article Special Issues

Identification and verification of FN1, P4HA1 and CREBBP as potential biomarkers in human atrial fibrillation


  • Received: 06 November 2022 Revised: 18 January 2023 Accepted: 26 January 2023 Published: 08 February 2023
  • Background 

    Atrial fibrillation (AF) is a common arrhythmia that can lead to cardiac complications. The mechanisms involved in AF remain elusive. We aimed to explore the potential biomarkers and mechanisms underpinning AF.

    Methods 

    An independent dataset, GSE2240, was obtained from the Gene Expression Omnibus database. The R package, "limma", was used to screen for differentially expressed genes (DEGs) in individuals with AF and normal sinus rhythm (SR). Weighted gene co-expression network analysis (WGCNA) was applied to cluster DEGs into different modules based on functional disparities. Enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. A protein–protein interaction network was constructed, and hub genes were identified using cytoHubba. Quantitative reverse-transcription PCR was used to validate mRNA expression in individuals with AF and SR.

    Results 

    We identified 2, 589 DEGs clustered into 10 modules using WGCNA. Gene Ontology analysis showed specific clustered genes significantly enriched in pathways associated with the extracellular matrix and collagen organization. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes were mainly enriched for proteoglycans in cancer, extracellular matrix–receptor interaction, focal adhesion, and the PI3K-Akt signaling pathway. Three hub genes, FN1, P4HA1 and CREBBP, were identified, which were highly correlated with AF endogenesis. mRNA expression of hub genes in patients with AF were higher than in individuals with normal SR, consistent with the results of bioinformatics analysis.

    Conclusions 

    FN1, P4HA1, and CREBBP may play critical roles in AF. Using bioinformatics, we found that expression of these genes was significantly elevated in patients with AF than in individuals with normal SR. Furthermore, these genes were elevated at core positions in the mRNA interaction network. These genes should be further explored as novel biomarkers and target candidates for AF therapy.

    Citation: Miao Zhu, Tao Yan, Shijie Zhu, Fan Weng, Kai Zhu, Chunsheng Wang, Changfa Guo. Identification and verification of FN1, P4HA1 and CREBBP as potential biomarkers in human atrial fibrillation[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6947-6965. doi: 10.3934/mbe.2023300

    Related Papers:

  • Background 

    Atrial fibrillation (AF) is a common arrhythmia that can lead to cardiac complications. The mechanisms involved in AF remain elusive. We aimed to explore the potential biomarkers and mechanisms underpinning AF.

    Methods 

    An independent dataset, GSE2240, was obtained from the Gene Expression Omnibus database. The R package, "limma", was used to screen for differentially expressed genes (DEGs) in individuals with AF and normal sinus rhythm (SR). Weighted gene co-expression network analysis (WGCNA) was applied to cluster DEGs into different modules based on functional disparities. Enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. A protein–protein interaction network was constructed, and hub genes were identified using cytoHubba. Quantitative reverse-transcription PCR was used to validate mRNA expression in individuals with AF and SR.

    Results 

    We identified 2, 589 DEGs clustered into 10 modules using WGCNA. Gene Ontology analysis showed specific clustered genes significantly enriched in pathways associated with the extracellular matrix and collagen organization. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes were mainly enriched for proteoglycans in cancer, extracellular matrix–receptor interaction, focal adhesion, and the PI3K-Akt signaling pathway. Three hub genes, FN1, P4HA1 and CREBBP, were identified, which were highly correlated with AF endogenesis. mRNA expression of hub genes in patients with AF were higher than in individuals with normal SR, consistent with the results of bioinformatics analysis.

    Conclusions 

    FN1, P4HA1, and CREBBP may play critical roles in AF. Using bioinformatics, we found that expression of these genes was significantly elevated in patients with AF than in individuals with normal SR. Furthermore, these genes were elevated at core positions in the mRNA interaction network. These genes should be further explored as novel biomarkers and target candidates for AF therapy.



    加载中


    [1] C. T. January, L. S. Wann, J. S. Alpert, H. Calkins, J. E. Cigarroa, J. C. ClevelandJr, et al., 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society, J. Am. Coll. Cardiol., 130 (2014), e199–e267. https://doi.org/10.1161/CIR.0000000000000041 doi: 10.1161/CIR.0000000000000041
    [2] S. S. Chugh, R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E. J. Benjamin, et al., Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study, Circulation, 129 (2014), 837-847. https://doi.org/10.1161/CIRCULATIONAHA.113.005119 doi: 10.1161/CIRCULATIONAHA.113.005119
    [3] R. S. Wijesurendra, B. Casadei, Mechanisms of atrial fibrillation, Heart, 105 (2019), 1860-1867. https://doi.org/10.1136/heartjnl-2018-314267 doi: 10.1136/heartjnl-2018-314267
    [4] S. Jame, G. Barnes, Stroke and thromboembolism prevention in atrial fibrillation, Heart, 106 (2020), 10-17. https://doi.org/10.1136/heartjnl-2019-314898 doi: 10.1136/heartjnl-2019-314898
    [5] C. C. Wang, C. L. Lin, G. J. Wang, C. T. Chang, F. C. Sung, C. H. Kao, Atrial fibrillation associated with increased risk of venous thromboembolism-A population-based cohort study, Thromb. Haemost., 113 (2015), 185-192. https://doi.org/10.1160/TH14-05-0405 doi: 10.1160/TH14-05-0405
    [6] E. J. Benjamin, P. A. Wolf, R. B. D'Agostino, H. Silbershatz, W. B. Kannel, D. Levy, Impact of atrial fibrillation on the risk of death: the Framingham Heart Study, Circulation, 98 (1998), 946-952. https://doi.org/10.1161/01.CIR.98.10.946 doi: 10.1161/01.CIR.98.10.946
    [7] T. J. Wang, M. G. Larson, D. Levy, E. J. Benjamin, E. P. Leip, T. Omland, et al., Plasma natriuretic peptide levels and the risk of cardiovascular events and death, N. Engl. J. Med., 350 (2004), 655-663. https://doi.org/10.1056/NEJMoa031994 doi: 10.1056/NEJMoa031994
    [8] R. B. Schnabel, M. G. Larson, J. F. Yamamoto, L. M. Sullivan, M. J. Pencina, J. B. Meigs, et al., Relations of biomarkers of distinct pathophysiological pathways and atrial fibrillation incidence in the community, Circulation, 121 (2010), 200-207. https://doi.org/10.1161/CIRCULATIONAHA.109.882241 doi: 10.1161/CIRCULATIONAHA.109.882241
    [9] K. K. Patton, P. T. Ellinor, S. R. Heckbert, R. H. Christenson, C. DeFilippi, J. S. Gottdiener, et al., N-terminal pro-B-type natriuretic peptide is a major predictor of the development of atrial fibrillation: the Cardiovascular Health Study, Circulation, 120 (2009), 1768-1774. https://doi.org/10.1161/CIRCULATIONAHA.109.873265 doi: 10.1161/CIRCULATIONAHA.109.873265
    [10] R. J. Aviles, D. O. Martin, C. Apperson-Hansen, P. L. Houghtaling, P. Rautaharju, R. A. Kronmal, et al., Inflammation as a risk factor for atrial fibrillation, Circulation, 108 (2003), 3006-3010. https://doi.org/10.1161/01.CIR.0000103131.70301.4F doi: 10.1161/01.CIR.0000103131.70301.4F
    [11] K. W. Lee, T. H. EverettIV, D. Rahmutula, J. M. Guerra, E. Wilson, C. Ding, et al., Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure, Circulation, 114 (2006), 1703-1712. https://doi.org/10.1161/CIRCULATIONAHA.106.624320 doi: 10.1161/CIRCULATIONAHA.106.624320
    [12] M. Rienstra, X. Yin, M. G. Larson, J. D. Fontes, J. W. Magnani, D. D. McManus, et al., Relation between soluble ST2, growth differentiation factor-15, and high-sensitivity troponin I and incident atrial fibrillation, Am. Heart J., 167 (2014) 109-115. https://doi.org/10.1016/j.ahj.2013.10.003 doi: 10.1016/j.ahj.2013.10.003
    [13] Y. Nakano, S. Niida, K. Dote, S. Takenaka, H. Hirao, F. Miura, et al., Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation, J. Am. Coll. Cardiol., 43 (2004), 818-825. https://doi.org/10.1016/j.jacc.2003.08.060 doi: 10.1016/j.jacc.2003.08.060
    [14] F. Gramley, J. Lorenzen, E. Koellensperger, K. Kettering, C. Weiss, T. Munzel, Atrial fibrosis and atrial fibrillation: the role of the TGF-beta1 signaling pathway, Int. J. Cardiol., 143 (2010), 405-413. https://doi.org/10.1016/j.ijcard.2009.03.110 doi: 10.1016/j.ijcard.2009.03.110
    [15] M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47. https://doi.org/10.1093/nar/gkv007 doi: 10.1093/nar/gkv007
    [16] B. Zhang, S. Horvath, A general framework for weighted gene co-expression network analysis, Stat. Appl. Genet. Mol. Biol., 4 (2005). https://doi.org/10.2202/1544-6115.1128 doi: 10.2202/1544-6115.1128
    [17] D. W. Huang, B. T. Sherman, R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res., 37 (2009), 1-13. https://doi.org/10.1093/nar/gkn923 doi: 10.1093/nar/gkn923
    [18] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A., 102 (2005), 15545-15550. https://doi.org/10.1073/pnas.0506580102 doi: 10.1073/pnas.0506580102
    [19] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res., 47 (2019), D607-D613. https://doi.org/10.1093/nar/gky1131 doi: 10.1093/nar/gky1131
    [20] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13 (2003), 2498-2504. https://doi.org/10.1101/gr.1239303 doi: 10.1101/gr.1239303
    [21] C. H. Chin, S. H. Chen, H. H. Wu, C. W. Ho, M. T. Ko, C. Y. Lin, cytoHubba: identifying hub objects and sub-networks from complex interactome, BMC Syst. Biol., 8 (2014). https://doi.org/10.1186/1752-0509-8-S4-S11 doi: 10.1186/1752-0509-8-S4-S11
    [22] G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS, 16 (2012), 284-287. https://doi.org/10.1089/omi.2011.0118 doi: 10.1089/omi.2011.0118
    [23] S. S. Virani, A. Alonso, E. J. Benjamin, M. S. Bittencourt, C. W. Callaway, A. P. Carson, et al., Heart disease and stroke statistics-2020 update: a report from the American heart association, Circulation, 141 (2020), e139-e596. https://doi.org/10.1161/CIR.0000000000000757 doi: 10.1161/CIR.0000000000000757
    [24] M. Böhm, M. D. Ezekowitz, S. J. Connolly, J. W. Eikelboom, S. H. Hohnloser, P. A. Reilly, et al., Changes in renal function in patients with atrial fibrillation: an analysis from the RE-LY trial, J. Am. Coll. Cardiol., 65 (2015), 2481-2493. https://doi.org/10.1016/j.jacc.2015.03.577 doi: 10.1016/j.jacc.2015.03.577
    [25] E. Z. Soliman, M. M. Safford, P. Muntner, Y. Khodneva, F. Z. Dawood, N. A. Zakai, et al., Atrial fibrillation and the risk of myocardial infarction, JAMA Intern. Med., 174 (2014), 107-114. https://doi.org/10.1001/jamainternmed.2013.11912 doi: 10.1001/jamainternmed.2013.11912
    [26] D. P. Morin, M. L. Bernard, C. Madias, P. A. Rogers, S. Thihalolipavan, N. A. M. Estes III, The state of the art: atrial fibrillation epidemiology, prevention, and treatment, Mayo Clin. Proc., 91 (2016), 1778-1810. https://doi.org/10.1016/j.mayocp.2016.08.022 doi: 10.1016/j.mayocp.2016.08.022
    [27] L. Staerk, J. A. Sherer, D. Ko, E. J. Benjamin, R. H. Helm, Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes, Circ. Res., 120 (2017), 1501-1517. https://doi.org/10.1161/CIRCRESAHA.117.309732 doi: 10.1161/CIRCRESAHA.117.309732
    [28] S. Nattel, Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation, JACC Clin. Electrophysiol., 3 (2017), 425-435. https://doi.org/10.1016/j.jacep.2017.03.002 doi: 10.1016/j.jacep.2017.03.002
    [29] Y. Iwasaki, K. Nishida, T. Kato, S. Nattel, Atrial fibrillation pathophysiology: implications for management, Circulation, 124 (2011), 2264-2274. https://doi.org/10.1161/CIRCULATIONAHA.111.019893 doi: 10.1161/CIRCULATIONAHA.111.019893
    [30] C. Zhang, Y. Zhang, H. Zhu, J. Hu, Z. Xie, MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro, Cell. Signalling, 46 (2018), 145-153. https://doi.org/10.1016/j.cellsig.2018.03.005 doi: 10.1016/j.cellsig.2018.03.005
    [31] Q. Wang, Y. Yu, P. Zhang, Y. Chen, C. Li, J. Chen, et al., The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation, Basic Res. Cardiol., 112 (2017), 47. https://doi.org/10.1007/s00395-017-0634-1 doi: 10.1007/s00395-017-0634-1
    [32] B. Li, W. Shen, H. Peng, Y. Li, F. Chen, L. Zheng, et al., Fibronectin 1 promotes melanoma proliferation and metastasis by inhibiting apoptosis and regulating EMT, Onco Targets Ther., 12 (2019), 3207-3221. https://doi.org/10.2147/OTT.S195703 doi: 10.2147/OTT.S195703
    [33] H. Zhang, X. Chen, P. Xue, X. Ma, J. Li, J. Zhang, FN1 promotes chondrocyte differentiation and collagen production via TGF-beta/PI3K/Akt pathway in mice with femoral fracture, Gene, 769 (2021), 145253. https://doi.org/10.1016/j.gene.2020.145253 doi: 10.1016/j.gene.2020.145253
    [34] Y. X. Liao, Z. P. Zhang, J. Zhao, J. P. Liu, Effects of fibronectin 1 on cell proliferation, senescence and apoptosis of human glioma cells through the PI3K/AKT signaling pathway, Cell. Physiol. Biochem., 48 (2018), 1382-1396. https://doi.org/10.1159/000492096 doi: 10.1159/000492096
    [35] H. P. Ma, H. L. Chang, O. A. Bamodu, V. K. Yadav, T. Y. Huang, A. T. H. Wu, et al., Collagen 1A1 (COL1A1) is a reliable biomarker and putative therapeutic target for hepatocellular carcinogenesis and metastasis, Cancers (Basel), 11 (2019), 786. https://doi.org/10.3390/cancers11060786. doi: 10.3390/cancers11060786
    [36] K. Gelse, E. Pöschl, T. Aigner, Collagens-structure, function, and biosynthesis, Adv. Drug Delivery Rev., 55 (2003), 1531-1546. https://doi.org/10.1016/j.addr.2003.08.002 doi: 10.1016/j.addr.2003.08.002
    [37] J. Y. Exposito, U. Valcourt, C. Cluzel, C. Lethias, The fibrillar collagen family, Int. J. Mol. Sci., 11 (2010), 407-426. https://doi.org/10.3390/ijms11020407 doi: 10.3390/ijms11020407
    [38] K. T. Weber, Cardiac interstitium in health and disease: the fibrillar collagen network, J. Am. Coll. Cardiol., 13 (1989), 1637-1652. https://doi.org/10.1016/0735-1097(89)90360-4 doi: 10.1016/0735-1097(89)90360-4
    [39] J. Xu, G. Cui, F. Esmailian, M. Plunkett, D. Marelli, A. Ardehali, et al., Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation, Circulation, 109 (2004), 363-368. https://doi.org/10.1161/01.CIR.0000109495.02213.52 doi: 10.1161/01.CIR.0000109495.02213.52
    [40] A. Boldt, U. Wetzel, J. Lauschke, J. Weigl, J. Gummert, G. Hindricks, et al., Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease, Heart, 90 (2004), 400-405. https://doi.org/10.1136/hrt.2003.015347 doi: 10.1136/hrt.2003.015347
    [41] F. G. Akar, R. D. Nass, S. Hahn, E. Cingolani, M. Shah, G. G. Hesketh, et al., Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure, Am. J. Physiol. Heart Circ. Physiol., 293 (2007), H1223-H1230. https://doi.org/10.1152/ajpheart.00079.2007 doi: 10.1152/ajpheart.00079.2007
    [42] C. Rucker-Martin, P. Milliez, S. Tan, X. Decrouy, M. Recouvreur, R. Vranckx, et al., Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts, Cardiovasc. Res., 72 (2006), 69-79. https://doi.org/10.1016/j.cardiores.2006.06.016 doi: 10.1016/j.cardiores.2006.06.016
    [43] I. I. de Caceres, E. Dulaimi, A. M. Hoffman, T. Al-Saleem, R. G. Uzzo, P. Cairns, Identification of novel target genes by an epigenetic reactivation screen of renal cancer, Cancer Res., 66 (2006), 5021-5028. https://doi.org/10.1158/0008-5472.CAN-05-3365 doi: 10.1158/0008-5472.CAN-05-3365
    [44] V. F. Bonazzi, D. J. Nancarrow, M. S. Stark, R. J. Moser, G. M. Boyle, L. G. Aoude, et al., Cross-platform array screening identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as genes frequently silenced by methylation in melanoma, PLoS One, 6 (2011), e26121. https://doi.org/10.1371/journal.pone.0026121 doi: 10.1371/journal.pone.0026121
    [45] X. Xue, X. Ling, W. Xi, P. Wang, J. Sun, Q. Yang, et al., Exogenous hydrogen sulfide reduces atrial remodeling and atrial fibrillation induced by diabetes mellitus via activation of the PI3K/Akt/eNOS pathway, Mol. Med. Rep., 22 (2020), 1759-1766. https://doi.org/10.3892/mmr.2020.11291 doi: 10.3892/mmr.2020.11291
    [46] J. Wang, Z. Li, J. Du, J. Li, Y. Zhang, J. Liu, et al., The expression profile analysis of atrial mRNA in rats with atrial fibrillation: the role of IGF1 in atrial fibrosis, BMC Cardiovasc. Disord., 19 (2019), 40. https://doi.org/10.1186/s12872-019-1013-7 doi: 10.1186/s12872-019-1013-7
    [47] X. Shan, Z. Liu, M. Wulasihan, S. Ma, Edoxaban improves atrial fibrillation and thromboembolism through regulation of the Wnt-beta-induced PI3K/ATK-activated protein C system, Exp. Ther. Med., 17 (2019), 3509-3517. https://doi.org/10.3892/etm.2019.7379 doi: 10.3892/etm.2019.7379
    [48] X. Liu, X. Huang, L. Chen, Y. Zhang, M. Li, L. Wang, et al. Mechanical stretch promotes matrix metalloproteinase-2 and prolyl-4-hydroxylase alpha1 production in human aortic smooth muscle cells via Akt-p38 MAPK-JNK signaling, Int. J. Biochem. Cell Biol., 62 (2015), 15-23. https://doi.org/10.1016/j.biocel.2015.02.009 doi: 10.1016/j.biocel.2015.02.009
    [49] K. I. Kivirikko, T. Pihlajaniemi, Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases, Adv. Enzymol. Relat. Areas Mol. Biol., 72 (1998), 325-398. https://doi.org/10.1002/9780470123188.ch9 doi: 10.1002/9780470123188.ch9
    [50] Q. Zhao, J. Liu, P4HA1, a prognostic biomarker that correlates with immune infiltrates in lung adenocarcinoma and pan-cancer, Front. Cell Dev. Biol., 9 (2021), 754580. https://doi.org/10.3389/fcell.2021.754580 doi: 10.3389/fcell.2021.754580
    [51] T. Zhao, H. Chen, C. Cheng, J. Zhang, Z. Yan, J. Kuang, et al., Liraglutide protects high-glucose-stimulated fibroblasts by activating the CD36-JNK-AP1 pathway to downregulate P4HA1, Biomed. Pharmacother., 118 (2019), 109224. https://doi.org/10.1016/j.biopha.2019.109224 doi: 10.1016/j.biopha.2019.109224
    [52] L. Chen, Y. H. Shen, X. Wang, J. Wang, Y. Gan, N. Chen, et al., Human prolyl-4-hydroxylase alpha(I) transcription is mediated by upstream stimulatory factors, J. Biol. Chem., 281 (2006), 10849-10855. https://doi.org/10.1074/jbc.M511237200 doi: 10.1074/jbc.M511237200
    [53] S. H. Chang, Y. H. Yeh, J. L. Lee, Y. J. Hsu, C. T. Kuo, W. J. Chen, Transforming growth factor-beta-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation, Basic Res. Cardiol., 112 (2017), 58. https://doi.org/10.1007/s00395-017-0647-9 doi: 10.1007/s00395-017-0647-9
    [54] J. Yang, L. Chen, J. Yang, J. Ding, S. Li, H. Wu, et al., MicroRNA-22 targeting CBP protects against myocardial ischemia-reperfusion injury through anti-apoptosis in rats, Mol. Biol. Rep., 41 (2014), 555-561. https://doi.org/10.1007/s11033-013-2891-x doi: 10.1007/s11033-013-2891-x
    [55] P. Kirchhof, E. Marijon, L. Fabritz, N. Li, W. Wang, T. Wang, et al. Overexpression of cAMP-response element modulator causes abnormal growth and development of the atrial myocardium resulting in a substrate for sustained atrial fibrillation in mice, Int. J. Cardiol., 166 (2013), 366-374. https://doi.org/10.1016/j.ijcard.2011.10.057 doi: 10.1016/j.ijcard.2011.10.057
    [56] N. Li, D. Y. Chiang, S. Wang, Q. Wang, L. Sun, N. Voigt, et al., Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model, Circulation, 129 (2014), 1276-1285. https://doi.org/10.1161/CIRCULATIONAHA.113.006611 doi: 10.1161/CIRCULATIONAHA.113.006611
    [57] S. H. Chang, Y. H. Chan, W. J. Chen, G. J. Chang, J. L. Lee, Y. H. Yeh, et al., Tachypacing-induced CREB/CD44 signaling contributes to the suppression of L-type calcium channel expression and the development of atrial remodeling, Heart Rhythm, 18 (2021), 1760-1771. https://doi.org/10.1016/j.hrthm.2021.05.021 doi: 10.1016/j.hrthm.2021.05.021
    [58] R. F. Bosch, X. Zeng, J. B. Grammer, K. Popovic, C. Mewis, V. Kühlkamp, Ionic mechanisms of electrical remodeling in human atrial fibrillation, Cardiovasc. Res., 44 (1999), 121-131. https://doi.org/10.1016/S0008-6363(99)00178-9 doi: 10.1016/S0008-6363(99)00178-9
    [59] L. Yue, P. Melnyk, R. Gaspo, Z. Wang, S. Nattel, Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation, Circ. Res., 84 (1999), 776-784. https://doi.org/10.1161/01.RES.84.7.776 doi: 10.1161/01.RES.84.7.776
    [60] X. Y. Qi, Y. H. Yeh, L. Xiao, B. Burstein, A. Maguy, D. Chartier, et al., Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current, Circ. Res., 103 (2008), 845-854. https://doi.org/10.1161/CIRCRESAHA.108.175463 doi: 10.1161/CIRCRESAHA.108.175463
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2464) PDF downloads(152) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog