[1]
|
C. T. January, L. S. Wann, J. S. Alpert, H. Calkins, J. E. Cigarroa, J. C. ClevelandJr, et al., 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society, J. Am. Coll. Cardiol., 130 (2014), e199–e267. https://doi.org/10.1161/CIR.0000000000000041 doi: 10.1161/CIR.0000000000000041
|
[2]
|
S. S. Chugh, R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E. J. Benjamin, et al., Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study, Circulation, 129 (2014), 837-847. https://doi.org/10.1161/CIRCULATIONAHA.113.005119 doi: 10.1161/CIRCULATIONAHA.113.005119
|
[3]
|
R. S. Wijesurendra, B. Casadei, Mechanisms of atrial fibrillation, Heart, 105 (2019), 1860-1867. https://doi.org/10.1136/heartjnl-2018-314267 doi: 10.1136/heartjnl-2018-314267
|
[4]
|
S. Jame, G. Barnes, Stroke and thromboembolism prevention in atrial fibrillation, Heart, 106 (2020), 10-17. https://doi.org/10.1136/heartjnl-2019-314898 doi: 10.1136/heartjnl-2019-314898
|
[5]
|
C. C. Wang, C. L. Lin, G. J. Wang, C. T. Chang, F. C. Sung, C. H. Kao, Atrial fibrillation associated with increased risk of venous thromboembolism-A population-based cohort study, Thromb. Haemost., 113 (2015), 185-192. https://doi.org/10.1160/TH14-05-0405 doi: 10.1160/TH14-05-0405
|
[6]
|
E. J. Benjamin, P. A. Wolf, R. B. D'Agostino, H. Silbershatz, W. B. Kannel, D. Levy, Impact of atrial fibrillation on the risk of death: the Framingham Heart Study, Circulation, 98 (1998), 946-952. https://doi.org/10.1161/01.CIR.98.10.946 doi: 10.1161/01.CIR.98.10.946
|
[7]
|
T. J. Wang, M. G. Larson, D. Levy, E. J. Benjamin, E. P. Leip, T. Omland, et al., Plasma natriuretic peptide levels and the risk of cardiovascular events and death, N. Engl. J. Med., 350 (2004), 655-663. https://doi.org/10.1056/NEJMoa031994 doi: 10.1056/NEJMoa031994
|
[8]
|
R. B. Schnabel, M. G. Larson, J. F. Yamamoto, L. M. Sullivan, M. J. Pencina, J. B. Meigs, et al., Relations of biomarkers of distinct pathophysiological pathways and atrial fibrillation incidence in the community, Circulation, 121 (2010), 200-207. https://doi.org/10.1161/CIRCULATIONAHA.109.882241 doi: 10.1161/CIRCULATIONAHA.109.882241
|
[9]
|
K. K. Patton, P. T. Ellinor, S. R. Heckbert, R. H. Christenson, C. DeFilippi, J. S. Gottdiener, et al., N-terminal pro-B-type natriuretic peptide is a major predictor of the development of atrial fibrillation: the Cardiovascular Health Study, Circulation, 120 (2009), 1768-1774. https://doi.org/10.1161/CIRCULATIONAHA.109.873265 doi: 10.1161/CIRCULATIONAHA.109.873265
|
[10]
|
R. J. Aviles, D. O. Martin, C. Apperson-Hansen, P. L. Houghtaling, P. Rautaharju, R. A. Kronmal, et al., Inflammation as a risk factor for atrial fibrillation, Circulation, 108 (2003), 3006-3010. https://doi.org/10.1161/01.CIR.0000103131.70301.4F doi: 10.1161/01.CIR.0000103131.70301.4F
|
[11]
|
K. W. Lee, T. H. EverettIV, D. Rahmutula, J. M. Guerra, E. Wilson, C. Ding, et al., Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure, Circulation, 114 (2006), 1703-1712. https://doi.org/10.1161/CIRCULATIONAHA.106.624320 doi: 10.1161/CIRCULATIONAHA.106.624320
|
[12]
|
M. Rienstra, X. Yin, M. G. Larson, J. D. Fontes, J. W. Magnani, D. D. McManus, et al., Relation between soluble ST2, growth differentiation factor-15, and high-sensitivity troponin I and incident atrial fibrillation, Am. Heart J., 167 (2014) 109-115. https://doi.org/10.1016/j.ahj.2013.10.003 doi: 10.1016/j.ahj.2013.10.003
|
[13]
|
Y. Nakano, S. Niida, K. Dote, S. Takenaka, H. Hirao, F. Miura, et al., Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation, J. Am. Coll. Cardiol., 43 (2004), 818-825. https://doi.org/10.1016/j.jacc.2003.08.060 doi: 10.1016/j.jacc.2003.08.060
|
[14]
|
F. Gramley, J. Lorenzen, E. Koellensperger, K. Kettering, C. Weiss, T. Munzel, Atrial fibrosis and atrial fibrillation: the role of the TGF-beta1 signaling pathway, Int. J. Cardiol., 143 (2010), 405-413. https://doi.org/10.1016/j.ijcard.2009.03.110 doi: 10.1016/j.ijcard.2009.03.110
|
[15]
|
M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47. https://doi.org/10.1093/nar/gkv007 doi: 10.1093/nar/gkv007
|
[16]
|
B. Zhang, S. Horvath, A general framework for weighted gene co-expression network analysis, Stat. Appl. Genet. Mol. Biol., 4 (2005). https://doi.org/10.2202/1544-6115.1128 doi: 10.2202/1544-6115.1128
|
[17]
|
D. W. Huang, B. T. Sherman, R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res., 37 (2009), 1-13. https://doi.org/10.1093/nar/gkn923 doi: 10.1093/nar/gkn923
|
[18]
|
A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A., 102 (2005), 15545-15550. https://doi.org/10.1073/pnas.0506580102 doi: 10.1073/pnas.0506580102
|
[19]
|
D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res., 47 (2019), D607-D613. https://doi.org/10.1093/nar/gky1131 doi: 10.1093/nar/gky1131
|
[20]
|
P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13 (2003), 2498-2504. https://doi.org/10.1101/gr.1239303 doi: 10.1101/gr.1239303
|
[21]
|
C. H. Chin, S. H. Chen, H. H. Wu, C. W. Ho, M. T. Ko, C. Y. Lin, cytoHubba: identifying hub objects and sub-networks from complex interactome, BMC Syst. Biol., 8 (2014). https://doi.org/10.1186/1752-0509-8-S4-S11 doi: 10.1186/1752-0509-8-S4-S11
|
[22]
|
G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS, 16 (2012), 284-287. https://doi.org/10.1089/omi.2011.0118 doi: 10.1089/omi.2011.0118
|
[23]
|
S. S. Virani, A. Alonso, E. J. Benjamin, M. S. Bittencourt, C. W. Callaway, A. P. Carson, et al., Heart disease and stroke statistics-2020 update: a report from the American heart association, Circulation, 141 (2020), e139-e596. https://doi.org/10.1161/CIR.0000000000000757 doi: 10.1161/CIR.0000000000000757
|
[24]
|
M. Böhm, M. D. Ezekowitz, S. J. Connolly, J. W. Eikelboom, S. H. Hohnloser, P. A. Reilly, et al., Changes in renal function in patients with atrial fibrillation: an analysis from the RE-LY trial, J. Am. Coll. Cardiol., 65 (2015), 2481-2493. https://doi.org/10.1016/j.jacc.2015.03.577 doi: 10.1016/j.jacc.2015.03.577
|
[25]
|
E. Z. Soliman, M. M. Safford, P. Muntner, Y. Khodneva, F. Z. Dawood, N. A. Zakai, et al., Atrial fibrillation and the risk of myocardial infarction, JAMA Intern. Med., 174 (2014), 107-114. https://doi.org/10.1001/jamainternmed.2013.11912 doi: 10.1001/jamainternmed.2013.11912
|
[26]
|
D. P. Morin, M. L. Bernard, C. Madias, P. A. Rogers, S. Thihalolipavan, N. A. M. Estes III, The state of the art: atrial fibrillation epidemiology, prevention, and treatment, Mayo Clin. Proc., 91 (2016), 1778-1810. https://doi.org/10.1016/j.mayocp.2016.08.022 doi: 10.1016/j.mayocp.2016.08.022
|
[27]
|
L. Staerk, J. A. Sherer, D. Ko, E. J. Benjamin, R. H. Helm, Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes, Circ. Res., 120 (2017), 1501-1517. https://doi.org/10.1161/CIRCRESAHA.117.309732 doi: 10.1161/CIRCRESAHA.117.309732
|
[28]
|
S. Nattel, Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation, JACC Clin. Electrophysiol., 3 (2017), 425-435. https://doi.org/10.1016/j.jacep.2017.03.002 doi: 10.1016/j.jacep.2017.03.002
|
[29]
|
Y. Iwasaki, K. Nishida, T. Kato, S. Nattel, Atrial fibrillation pathophysiology: implications for management, Circulation, 124 (2011), 2264-2274. https://doi.org/10.1161/CIRCULATIONAHA.111.019893 doi: 10.1161/CIRCULATIONAHA.111.019893
|
[30]
|
C. Zhang, Y. Zhang, H. Zhu, J. Hu, Z. Xie, MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro, Cell. Signalling, 46 (2018), 145-153. https://doi.org/10.1016/j.cellsig.2018.03.005 doi: 10.1016/j.cellsig.2018.03.005
|
[31]
|
Q. Wang, Y. Yu, P. Zhang, Y. Chen, C. Li, J. Chen, et al., The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation, Basic Res. Cardiol., 112 (2017), 47. https://doi.org/10.1007/s00395-017-0634-1 doi: 10.1007/s00395-017-0634-1
|
[32]
|
B. Li, W. Shen, H. Peng, Y. Li, F. Chen, L. Zheng, et al., Fibronectin 1 promotes melanoma proliferation and metastasis by inhibiting apoptosis and regulating EMT, Onco Targets Ther., 12 (2019), 3207-3221. https://doi.org/10.2147/OTT.S195703 doi: 10.2147/OTT.S195703
|
[33]
|
H. Zhang, X. Chen, P. Xue, X. Ma, J. Li, J. Zhang, FN1 promotes chondrocyte differentiation and collagen production via TGF-beta/PI3K/Akt pathway in mice with femoral fracture, Gene, 769 (2021), 145253. https://doi.org/10.1016/j.gene.2020.145253 doi: 10.1016/j.gene.2020.145253
|
[34]
|
Y. X. Liao, Z. P. Zhang, J. Zhao, J. P. Liu, Effects of fibronectin 1 on cell proliferation, senescence and apoptosis of human glioma cells through the PI3K/AKT signaling pathway, Cell. Physiol. Biochem., 48 (2018), 1382-1396. https://doi.org/10.1159/000492096 doi: 10.1159/000492096
|
[35]
|
H. P. Ma, H. L. Chang, O. A. Bamodu, V. K. Yadav, T. Y. Huang, A. T. H. Wu, et al., Collagen 1A1 (COL1A1) is a reliable biomarker and putative therapeutic target for hepatocellular carcinogenesis and metastasis, Cancers (Basel), 11 (2019), 786. https://doi.org/10.3390/cancers11060786. doi: 10.3390/cancers11060786
|
[36]
|
K. Gelse, E. Pöschl, T. Aigner, Collagens-structure, function, and biosynthesis, Adv. Drug Delivery Rev., 55 (2003), 1531-1546. https://doi.org/10.1016/j.addr.2003.08.002 doi: 10.1016/j.addr.2003.08.002
|
[37]
|
J. Y. Exposito, U. Valcourt, C. Cluzel, C. Lethias, The fibrillar collagen family, Int. J. Mol. Sci., 11 (2010), 407-426. https://doi.org/10.3390/ijms11020407 doi: 10.3390/ijms11020407
|
[38]
|
K. T. Weber, Cardiac interstitium in health and disease: the fibrillar collagen network, J. Am. Coll. Cardiol., 13 (1989), 1637-1652. https://doi.org/10.1016/0735-1097(89)90360-4 doi: 10.1016/0735-1097(89)90360-4
|
[39]
|
J. Xu, G. Cui, F. Esmailian, M. Plunkett, D. Marelli, A. Ardehali, et al., Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation, Circulation, 109 (2004), 363-368. https://doi.org/10.1161/01.CIR.0000109495.02213.52 doi: 10.1161/01.CIR.0000109495.02213.52
|
[40]
|
A. Boldt, U. Wetzel, J. Lauschke, J. Weigl, J. Gummert, G. Hindricks, et al., Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease, Heart, 90 (2004), 400-405. https://doi.org/10.1136/hrt.2003.015347 doi: 10.1136/hrt.2003.015347
|
[41]
|
F. G. Akar, R. D. Nass, S. Hahn, E. Cingolani, M. Shah, G. G. Hesketh, et al., Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure, Am. J. Physiol. Heart Circ. Physiol., 293 (2007), H1223-H1230. https://doi.org/10.1152/ajpheart.00079.2007 doi: 10.1152/ajpheart.00079.2007
|
[42]
|
C. Rucker-Martin, P. Milliez, S. Tan, X. Decrouy, M. Recouvreur, R. Vranckx, et al., Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts, Cardiovasc. Res., 72 (2006), 69-79. https://doi.org/10.1016/j.cardiores.2006.06.016 doi: 10.1016/j.cardiores.2006.06.016
|
[43]
|
I. I. de Caceres, E. Dulaimi, A. M. Hoffman, T. Al-Saleem, R. G. Uzzo, P. Cairns, Identification of novel target genes by an epigenetic reactivation screen of renal cancer, Cancer Res., 66 (2006), 5021-5028. https://doi.org/10.1158/0008-5472.CAN-05-3365 doi: 10.1158/0008-5472.CAN-05-3365
|
[44]
|
V. F. Bonazzi, D. J. Nancarrow, M. S. Stark, R. J. Moser, G. M. Boyle, L. G. Aoude, et al., Cross-platform array screening identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as genes frequently silenced by methylation in melanoma, PLoS One, 6 (2011), e26121. https://doi.org/10.1371/journal.pone.0026121 doi: 10.1371/journal.pone.0026121
|
[45]
|
X. Xue, X. Ling, W. Xi, P. Wang, J. Sun, Q. Yang, et al., Exogenous hydrogen sulfide reduces atrial remodeling and atrial fibrillation induced by diabetes mellitus via activation of the PI3K/Akt/eNOS pathway, Mol. Med. Rep., 22 (2020), 1759-1766. https://doi.org/10.3892/mmr.2020.11291 doi: 10.3892/mmr.2020.11291
|
[46]
|
J. Wang, Z. Li, J. Du, J. Li, Y. Zhang, J. Liu, et al., The expression profile analysis of atrial mRNA in rats with atrial fibrillation: the role of IGF1 in atrial fibrosis, BMC Cardiovasc. Disord., 19 (2019), 40. https://doi.org/10.1186/s12872-019-1013-7 doi: 10.1186/s12872-019-1013-7
|
[47]
|
X. Shan, Z. Liu, M. Wulasihan, S. Ma, Edoxaban improves atrial fibrillation and thromboembolism through regulation of the Wnt-beta-induced PI3K/ATK-activated protein C system, Exp. Ther. Med., 17 (2019), 3509-3517. https://doi.org/10.3892/etm.2019.7379 doi: 10.3892/etm.2019.7379
|
[48]
|
X. Liu, X. Huang, L. Chen, Y. Zhang, M. Li, L. Wang, et al. Mechanical stretch promotes matrix metalloproteinase-2 and prolyl-4-hydroxylase alpha1 production in human aortic smooth muscle cells via Akt-p38 MAPK-JNK signaling, Int. J. Biochem. Cell Biol., 62 (2015), 15-23. https://doi.org/10.1016/j.biocel.2015.02.009 doi: 10.1016/j.biocel.2015.02.009
|
[49]
|
K. I. Kivirikko, T. Pihlajaniemi, Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases, Adv. Enzymol. Relat. Areas Mol. Biol., 72 (1998), 325-398. https://doi.org/10.1002/9780470123188.ch9 doi: 10.1002/9780470123188.ch9
|
[50]
|
Q. Zhao, J. Liu, P4HA1, a prognostic biomarker that correlates with immune infiltrates in lung adenocarcinoma and pan-cancer, Front. Cell Dev. Biol., 9 (2021), 754580. https://doi.org/10.3389/fcell.2021.754580 doi: 10.3389/fcell.2021.754580
|
[51]
|
T. Zhao, H. Chen, C. Cheng, J. Zhang, Z. Yan, J. Kuang, et al., Liraglutide protects high-glucose-stimulated fibroblasts by activating the CD36-JNK-AP1 pathway to downregulate P4HA1, Biomed. Pharmacother., 118 (2019), 109224. https://doi.org/10.1016/j.biopha.2019.109224 doi: 10.1016/j.biopha.2019.109224
|
[52]
|
L. Chen, Y. H. Shen, X. Wang, J. Wang, Y. Gan, N. Chen, et al., Human prolyl-4-hydroxylase alpha(I) transcription is mediated by upstream stimulatory factors, J. Biol. Chem., 281 (2006), 10849-10855. https://doi.org/10.1074/jbc.M511237200 doi: 10.1074/jbc.M511237200
|
[53]
|
S. H. Chang, Y. H. Yeh, J. L. Lee, Y. J. Hsu, C. T. Kuo, W. J. Chen, Transforming growth factor-beta-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation, Basic Res. Cardiol., 112 (2017), 58. https://doi.org/10.1007/s00395-017-0647-9 doi: 10.1007/s00395-017-0647-9
|
[54]
|
J. Yang, L. Chen, J. Yang, J. Ding, S. Li, H. Wu, et al., MicroRNA-22 targeting CBP protects against myocardial ischemia-reperfusion injury through anti-apoptosis in rats, Mol. Biol. Rep., 41 (2014), 555-561. https://doi.org/10.1007/s11033-013-2891-x doi: 10.1007/s11033-013-2891-x
|
[55]
|
P. Kirchhof, E. Marijon, L. Fabritz, N. Li, W. Wang, T. Wang, et al. Overexpression of cAMP-response element modulator causes abnormal growth and development of the atrial myocardium resulting in a substrate for sustained atrial fibrillation in mice, Int. J. Cardiol., 166 (2013), 366-374. https://doi.org/10.1016/j.ijcard.2011.10.057 doi: 10.1016/j.ijcard.2011.10.057
|
[56]
|
N. Li, D. Y. Chiang, S. Wang, Q. Wang, L. Sun, N. Voigt, et al., Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model, Circulation, 129 (2014), 1276-1285. https://doi.org/10.1161/CIRCULATIONAHA.113.006611 doi: 10.1161/CIRCULATIONAHA.113.006611
|
[57]
|
S. H. Chang, Y. H. Chan, W. J. Chen, G. J. Chang, J. L. Lee, Y. H. Yeh, et al., Tachypacing-induced CREB/CD44 signaling contributes to the suppression of L-type calcium channel expression and the development of atrial remodeling, Heart Rhythm, 18 (2021), 1760-1771. https://doi.org/10.1016/j.hrthm.2021.05.021 doi: 10.1016/j.hrthm.2021.05.021
|
[58]
|
R. F. Bosch, X. Zeng, J. B. Grammer, K. Popovic, C. Mewis, V. Kühlkamp, Ionic mechanisms of electrical remodeling in human atrial fibrillation, Cardiovasc. Res., 44 (1999), 121-131. https://doi.org/10.1016/S0008-6363(99)00178-9 doi: 10.1016/S0008-6363(99)00178-9
|
[59]
|
L. Yue, P. Melnyk, R. Gaspo, Z. Wang, S. Nattel, Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation, Circ. Res., 84 (1999), 776-784. https://doi.org/10.1161/01.RES.84.7.776 doi: 10.1161/01.RES.84.7.776
|
[60]
|
X. Y. Qi, Y. H. Yeh, L. Xiao, B. Burstein, A. Maguy, D. Chartier, et al., Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current, Circ. Res., 103 (2008), 845-854. https://doi.org/10.1161/CIRCRESAHA.108.175463 doi: 10.1161/CIRCRESAHA.108.175463
|