Mechanosensitivity of cell spread area to substrate stiffness has been established both through experiments and different types of mathematical models of varying complexity including both the mechanics and biochemical reactions in the cell. What has not been addressed in previous mathematical models is the role of cell membrane dynamics on cell spreading, and an investigation of this issue is the goal of this work. We start with a simple mechanical model of cell spreading on a deformable substrate and progressively layer mechanisms to account for the traction dependent growth of focal adhesions, focal adhesion induced actin polymerization, membrane unfolding/exocytosis and contractility. This layering approach is intended to progressively help in understanding the role each mechanism plays in reproducing experimentally observed cell spread areas. To model membrane unfolding we introduce a novel approach based on defining an active rate of membrane deformation that is dependent on membrane tension. Our modeling approach allows us to show that tension-dependent membrane unfolding plays a critical role in achieving the large cell spread areas experimentally observed on stiff substrates. We also demonstrate that coupling between membrane unfolding and focal adhesion induced polymerization works synergistically to further enhance cell spread area sensitivity to substrate stiffness. This enhancement has to do with the fact that the peripheral velocity of spreading cells is associated with contributions from the different mechanisms by either enhancing the polymerization velocity at the leading edge or slowing down of the retrograde flow of actin within the cell. The temporal evolution of this balance in the model corresponds to the three-phase behavior observed experimentally during spreading. In the initial phase membrane unfolding is found to be particularly important.
Citation: Magdalena A. Stolarska, Aravind R. Rammohan. On the significance of membrane unfolding in mechanosensitive cell spreading: Its individual and synergistic effects[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2408-2438. doi: 10.3934/mbe.2023113
Mechanosensitivity of cell spread area to substrate stiffness has been established both through experiments and different types of mathematical models of varying complexity including both the mechanics and biochemical reactions in the cell. What has not been addressed in previous mathematical models is the role of cell membrane dynamics on cell spreading, and an investigation of this issue is the goal of this work. We start with a simple mechanical model of cell spreading on a deformable substrate and progressively layer mechanisms to account for the traction dependent growth of focal adhesions, focal adhesion induced actin polymerization, membrane unfolding/exocytosis and contractility. This layering approach is intended to progressively help in understanding the role each mechanism plays in reproducing experimentally observed cell spread areas. To model membrane unfolding we introduce a novel approach based on defining an active rate of membrane deformation that is dependent on membrane tension. Our modeling approach allows us to show that tension-dependent membrane unfolding plays a critical role in achieving the large cell spread areas experimentally observed on stiff substrates. We also demonstrate that coupling between membrane unfolding and focal adhesion induced polymerization works synergistically to further enhance cell spread area sensitivity to substrate stiffness. This enhancement has to do with the fact that the peripheral velocity of spreading cells is associated with contributions from the different mechanisms by either enhancing the polymerization velocity at the leading edge or slowing down of the retrograde flow of actin within the cell. The temporal evolution of this balance in the model corresponds to the three-phase behavior observed experimentally during spreading. In the initial phase membrane unfolding is found to be particularly important.
[1] | A. J. Engler, S. Sen, H. L. Sweeney, D. E. Discher, Matrix elasticity directs stem cell lineage specification, Cell, 126 (2006), 677–689. https://doi.org/10.1016/j.cell.2006.06.044 doi: 10.1016/j.cell.2006.06.044 |
[2] | S. Li, N. F. Huang, S. Hsu, Mechanotransduction in endothelial cell migration, J. Cell. Biochem., 96 (2005), 1110–1126. https://doi.org/10.1002/jcb.20614 doi: 10.1002/jcb.20614 |
[3] | F. Broders-Bondon, T. H. Nguyen Ho-Bouldoires, M. E. Fernandez-Sanchez, E. Farge, Mechanotransduction in tumor progression: the dark side of the force, J. Cell Biol., 217 (2018), 1571–1587. https://doi.org/10.1083/jcb.201701039 doi: 10.1083/jcb.201701039 |
[4] | T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, et al., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motil. Cytoskeleton, 60 (2005), 24–34. https://doi.org/10.1002/cm.20041 doi: 10.1002/cm.20041 |
[5] | J. Solon, I. Levental, K. Sengupta, P. C. Georges, P. A. Janmey, Fibroblast adaptation and stiffness matching to soft elastic substrates, Biophys. J., 93 (2007), 4453–4461. https://doi.org/10.1529/biophysj.106.101386 doi: 10.1529/biophysj.106.101386 |
[6] | S. Y. Tee, J. Fu, C. S. Chen, P. A. Janmey, Cell shape and substrate rigidity both regulate cell stiffness, Biophys. J., 100 (2011), L25–L27. https://doi.org/10.1016/j.bpj.2010.12.3744 doi: 10.1016/j.bpj.2010.12.3744 |
[7] | G. Vertelov, E. Gutierrez, S. Lee, E. Ronan, A. Groisman, E. Tkachenko, Rigidity of silicone substrates controls cell spreading and stem cell differentiation, Sci. Rep., 6 (2016), 1–6. https://doi.org/10.1038/srep33411 doi: 10.1038/srep33411 |
[8] | J. P. Califano, C. A. Reinhart-King, A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly, Cell. Mol. Bioeng., 1 (2008), 122–132. https://doi.org/10.1007/s12195-008-0022-x doi: 10.1007/s12195-008-0022-x |
[9] | C. A. Mullen, T. J. Vaughan, K. L. Billiar, L. M. McNamara, The effect of substrate stiffness, thickness, and cross-linking density on osteogenic cell behavior, Biophys. J., 108 (2015), 1604–1612. https://doi.org/10.1016/j.bpj.2015.02.022 doi: 10.1016/j.bpj.2015.02.022 |
[10] | H. Wolfenson, B. Yang, M. P. Sheetz, Steps in mechanotransduction pathways that control cell morphology, Annu. Rev. Physiol., 81 (2019), 585–605. https://doi.org/10.1146/annurev-physiol-021317-121245 doi: 10.1146/annurev-physiol-021317-121245 |
[11] | S. Romero, C. Le Clainche, A. M. Gautreau, Actin polymerization downstream of integrins: signaling pathways and mechanotransduction, Biochem. J., 477 (2020), 1–21. https://doi.org/10.1042/BCJ20170719 doi: 10.1042/BCJ20170719 |
[12] | F. Kong, A. J. García, A. P. Mould, M. J. Humphries, C. Zhu, Demonstration of catch bonds between an integrin and its ligand, J. Cell Biol., 185 (2009), 1275–1284. https://doi.org/10.1083/jcb.200810002 doi: 10.1083/jcb.200810002 |
[13] | N. Strohmeyer, M. Bharadwaj, M. Costell, R. Fässler, D. J. Müller, Fibronectin-bound $\alpha$5$\beta$1 integrins sense load and signal to reinforce adhesion in less than a second, Nat. Mater., 16 (2017), 1262–1270. https://doi.org/10.1038/nmat5023 doi: 10.1038/nmat5023 |
[14] | S. Walcott, D. H. Kim, D. Wirtz, S. X. Sun, Nucleation and decay initiation are the stiffness-sensitive phases of focal adhesion maturation, Biophys. J., 101 (2011), 2919–2928. https://doi.org/10.1016/j.bpj.2011.11.010 doi: 10.1016/j.bpj.2011.11.010 |
[15] | A. Elosegui-Artola, X. Trepat, P. Roca-Cusachs, Control of mechanotransduction by molecular clutch dynamics, Trends Cell Biol., 28 (2018), 356–367. https://doi.org/10.1016/j.tcb.2018.01.008 doi: 10.1016/j.tcb.2018.01.008 |
[16] | J. D. Owen, P. J. Ruest, D. W. Fry, S. K. Hanks, Induced focal adhesion kinase (fak) expression in fak-null cells enhances cell spreading and migration requiring both auto-and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of pyk2, Mol. Cell. Biol., 19 (1999), 4806–4818. https://doi.org/10.1128/mcb.19.7.4806 doi: 10.1128/mcb.19.7.4806 |
[17] | E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger, J. P. Spatz, Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands, Biophys. J., 92 (2007), 2964–2974. https://doi.org/10.1529/biophysj.106.089730 doi: 10.1529/biophysj.106.089730 |
[18] | G. Giannone, B. J. Dubin-Thaler, H. G. Döbereiner, N. Kieffer, A. R. Bresnick, M. P. Sheetz, Periodic lamellipodial contractions correlate with rearward actin waves, Cell, 116 (2004), 431–443. https://doi.org/10.1016/S0092-8674(04)00058-3 doi: 10.1016/S0092-8674(04)00058-3 |
[19] | H. Wolfenson, T. Iskratsch, M. P. Sheetz, Early events in cell spreading as a model for quantitative analysis of biomechanical events, Biophys. J., 107 (2014), 2508–2514. https://doi.org/10.1016/j.bpj.2014.10.041 doi: 10.1016/j.bpj.2014.10.041 |
[20] | M. P. Sheetz, J. E. Sable, H. G. Döbereiner, Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics, Annu. Rev. Biophys. Biomol. Struct., 35 (2006), 417–434. https://doi.org/10.1146/annurev.biophys.35.040405.102017 doi: 10.1146/annurev.biophys.35.040405.102017 |
[21] | D. Boal, Mechanics of the Cell, Cambridge University Press, 2012. https://doi.org/10.1017/CBO9781139022217 |
[22] | L. Figard, A. M. Sokac, A membrane reservoir at the cell surface: unfolding the plasma membrane to fuel cell shape change, Bioarchitecture, 4 (2014), 39–46. https://doi.org/10.4161/bioa.29069 doi: 10.4161/bioa.29069 |
[23] | N. C. Gauthier, O. M. Rossier, A. Mathur, J. C. Hone, M. P. Sheetz, Plasma membrane area increases with spread area by exocytosis of a gpi-anchored protein compartment, Mol. Biol. Cell, 20 (2009), 3261–3272. https://doi.org/10.1091/mbc.e09-01-0071 doi: 10.1091/mbc.e09-01-0071 |
[24] | N. C. Gauthier, T. A. Masters, M. P. Sheetz, Mechanical feedback between membrane tension and dynamics, Trends in Cell Biology, 22 (2012), 527–535. https://doi.org/10.1016/j.tcb.2012.07.005 doi: 10.1016/j.tcb.2012.07.005 |
[25] | M. Goudarzi, K. Tarbashevich, K. Mildner, I. Begemann, J. Garcia, A. Paksa, et al., Bleb expansion in migrating cells depends on supply of membrane from cell surface invaginations, Dev. Cell, 43 (2017), 577–587. https://doi.org/10.1016/j.devcel.2017.10.030 doi: 10.1016/j.devcel.2017.10.030 |
[26] | N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, M. P. Sheetz, Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading, Proc. Natl. Acad. Sci. U.S.A., 108 (2011), 14467–14472. https://doi.org/10.1073/pnas.1105845108 doi: 10.1073/pnas.1105845108 |
[27] | B. Pontes, P. Monzo, L. Gole, A. L. Le Roux, A. J. Kosmalska, Z. Y. Tam, et al., Membrane tension controls adhesion positioning at the leading edge of cells, J. Cell Biol., 216 (2017), 2959–2977. https://doi.org/10.1083/jcb.201611117 doi: 10.1083/jcb.201611117 |
[28] | N. Nisenholz, K. Rajendran, Q. Dang, H. Chen, R. Kemkemer, R. Krishnan, et al., Active mechanics and dynamics of cell spreading on elastic substrates, Soft Matter, 10 (2014), 7234–7246. https://doi.org/10.1039/C4SM00780H doi: 10.1039/C4SM00780H |
[29] | Z. Gong, S. E. Szczesny, S. R. Caliari, E. E. Charrier, O. Chaudhuri, X. Cao, et al., Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates, Proc. Natl. Acad. Sci. U.S.A., 115 (2018), E2686–E2695. https://doi.org/10.1073/pnas.1716620115 doi: 10.1073/pnas.1716620115 |
[30] | F. J. Vernerey, M. Farsad, A mathematical model of the coupled mechanisms of cell adhesion, contraction and spreading, J. Math. Biol., 68 (2014), 989–1022. https://doi.org/10.1007/s00285-013-0656-8 doi: 10.1007/s00285-013-0656-8 |
[31] | E. G. Rens, R. M. Merks, Cell shape and durotaxis explained from cell-extracellular matrix forces and focal adhesion dynamics, iScience, 23 (2020), 101488. https://doi.org/10.1016/j.isci.2020.101488 doi: 10.1016/j.isci.2020.101488 |
[32] | E. McEvoy, S. S. Shishvan, V. S. Deshpande, J. P. McGarry, Thermodynamic modeling of the statistics of cell spreading on ligand-coated elastic substrates, Biophys. J., 115 (2018), 2451–2460. https://doi.org/10.1016/j.bpj.2018.11.007 doi: 10.1016/j.bpj.2018.11.007 |
[33] | Y. Qin, Y. Li, L. Y. Zhang, G. K. Xu, Stochastic fluctuation-induced cell polarization on elastic substrates: A cytoskeleton-based mechanical model, J. Mech. Phys. Solids, 137 (2020), 103872. https://doi.org/10.1016/j.jmps.2020.103872 doi: 10.1016/j.jmps.2020.103872 |
[34] | A. Zemel, F. Rehfeldt, A. Brown, D. Discher, S. Safran, Cell shape, spreading symmetry, and the polarization of stress-fibers in cells, J. Phys.: Condens. Matter, 22 (2010), 194110. https://doi.org/10.1088/0953-8984/22/19/194110 doi: 10.1088/0953-8984/22/19/194110 |
[35] | H. Fan, S. Li, Modeling universal dynamics of cell spreading on elastic substrates, Biomech. Model. Mechanobiol., 14 (2015), 1265–1280. https://doi.org/10.1007/s10237-015-0673-1 doi: 10.1007/s10237-015-0673-1 |
[36] | M. Serpelloni, M. Arricca, C. Bonanno, A. Salvadori, Modeling cells spreading, motility, and receptors dynamics: a general framework, Acta Mech. Sin., 37 (2021), 1013–1030. https://doi.org/10.1007/s10409-021-01088-w doi: 10.1007/s10409-021-01088-w |
[37] | M. Abu Hamed, A. A. Nepomnyashchy, Phase field model for cell spreading dynamics, J. Math. Biol., 84 (2022), 1–15. https://doi.org/10.1007/s00285-022-01732-4 doi: 10.1007/s00285-022-01732-4 |
[38] | Y. Fang, K. W. Lai, Modeling the mechanics of cells in the cell-spreading process driven by traction forces, Phys. Rev. E, 93 (2016), 042404. https://doi.org/10.1103/PhysRevE.93.042404 doi: 10.1103/PhysRevE.93.042404 |
[39] | Z. L. Zhao, Z. Y. Liu, J. Du, G. K. Xu, X. Q. Feng, A dynamic biochemomechanical model of geometry-confined cell spreading, Biophys. J., 112 (2017), 2377–2386. https://doi.org/10.1016/j.bpj.2017.04.044 doi: 10.1016/j.bpj.2017.04.044 |
[40] | I. Lavi, M. Goudarzi, E. Raz, N. S. Gov, R. Voituriez, P. Sens, Cellular blebs and membrane invaginations are coupled through membrane tension buffering, Biophys. J., 117 (2019), 1485–1495. https://doi.org/10.1016/j.bpj.2019.08.002 doi: 10.1016/j.bpj.2019.08.002 |
[41] | E. M. Craig, J. Stricker, M. Gardel, A. Mogilner, Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge, Phys. Biol., 12 (2015), 1–15. https://doi.org/10.1088/1478-3975/12/3/035002 doi: 10.1088/1478-3975/12/3/035002 |
[42] | A. R. Bausch, F. Ziemann, A. A. Boulbitch, K. Jacobson, E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry, Biophys. J., 75 (1998), 2038–2049. https://doi.org/10.1016/S0006-3495(98)77646-5 doi: 10.1016/S0006-3495(98)77646-5 |
[43] | T. P. Stossel, Contribution of actin to the structure of the cytoplasmic matrix, J. Cell Biol., 99 (1984), 15s–21s. https://doi.org/10.1083/jcb.99.1.15s doi: 10.1083/jcb.99.1.15s |
[44] | D. H. Wachsstock, W. Schwartz, T. D. Pollard, Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels, Biophys. J., 65 (1993), 205–214. https://doi.org/10.1016/S0006-3495(93)81059-2 doi: 10.1016/S0006-3495(93)81059-2 |
[45] | B. J. Belin, L. M. Goins, R. D. Mullins, Comparative analysis of tools for live cell imaging of actin network architecture, Bioarchitecture, 4 (2014), 189–202. https://doi.org/10.1080/19490992.2014.1047714 doi: 10.1080/19490992.2014.1047714 |
[46] | P. Recho, L. Truskinovsky, Asymmetry between pushing and pulling for crawling cells, Phys. Rev. E, 87 (2013), 022720. https://doi.org/10.1103/PhysRevE.87.022720 doi: 10.1103/PhysRevE.87.022720 |
[47] | M. E. Gracheva, H. G. Othmer, A continuum model of motility in ameboid cells, Bull. Math. Biol., 66 (2004), 167–193. https://doi.org/10.1016/j.bulm.2003.08.007 doi: 10.1016/j.bulm.2003.08.007 |
[48] | R. I. Litvinov, A. Mekler, H. Shuman, J. S. Bennett, V. Barsegov, J. W. Weisel, Resolving two-dimensional kinetics of the integrin $\alpha$iib$\beta$3-fibrinogen interactions using binding-unbinding correlation spectroscopy, J. Biol. Chem., 287 (2012), 35275–35285. https://doi.org/10.1074/jbc.M112.404848 doi: 10.1074/jbc.M112.404848 |
[49] | L. Jiang, Z. Sun, X. Chen, J. Li, Y. Xu, Y. Zu, et al., Cells sensing mechanical cues: stiffness influences the lifetime of cell–extracellular matrix interactions by affecting the loading rate, ACS Nano, 10 (2016), 207–217. https://doi.org/10.1021/acsnano.5b03157 doi: 10.1021/acsnano.5b03157 |
[50] | R. M. Hochmuth, N. Mohandas, P. Blackshear Jr, Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique, Biophys. J., 13 (1973), 747–762. https://doi.org/10.1016/S0006-3495(73)86021-7 doi: 10.1016/S0006-3495(73)86021-7 |
[51] | E. Evans, R. Hochmuth, Membrane viscoelasticity, Biophys. J., 16 (1976), 1–11. https://doi.org/10.1016/S0006-3495(76)85658-5 |
[52] | J. Barber, L. Zhu, Two-dimensional finite element model of breast cancer cell motion through a microfluidic channel, Bull. Math. Biol., 81 (2019), 1238–1259. https://doi.org/10.1007/s11538-018-00557-x doi: 10.1007/s11538-018-00557-x |
[53] | E. A. Novikova, C. Storm, Contractile fibers and catch-bond clusters: a biological force sensor? Biophys. J., 105 (2013), 1336–1345. https://doi.org/10.1016/j.bpj.2013.07.039 |
[54] | C. A. Copos, S. Walcott, J. C. Del Álamo, E. Bastounis, A. Mogilner, R. D. Guy. Mechanosensitive adhesion explains stepping motility in amoeboid cells, Biophys. J. 112 (2017), 2672–2682. https://doi.org/10.1016/j.bpj.2017.04.033 |
[55] | E. L. Barnhart, K. C. Lee, K. Keren, A. Mogilner, J. A. Theriot, An adhesion-dependent switch between mechanisms that determine motile cell shape, PLoS Biol., 9 (2011), e1001059. https://doi.org/10.1371/journal.pbio.1001059 doi: 10.1371/journal.pbio.1001059 |
[56] | E. A. Cox, S. K. Sastry, A. Huttenlocher, Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the rho family of gtpases, Mol. Biol. Cell, 12 (2001), 265–277. https://doi.org/10.1091/mbc.12.2.265 doi: 10.1091/mbc.12.2.265 |
[57] | D. P. Choma, K. Pumiglia, C. M. DiPersio, Integrin $\alpha$3$\beta$1 directs the stabilization of a polarized lamellipodium in epithelial cells through activation of rac1, J. Cell Sci., 117 (2004), 3947–3959. https://doi.org/10.1242/jcs.01251 doi: 10.1242/jcs.01251 |
[58] | E. S. Welf, H. E. Johnson, J. M. Haugh, Bidirectional coupling between integrin-mediated signaling and actomyosin mechanics explains matrix-dependent intermittency of leading-edge motility, Mol. Biol. Cell, 24 (2013), 3945–3955. https://doi.org/10.1091/mbc.E13-06-0311 doi: 10.1091/mbc.E13-06-0311 |
[59] | A. Mehidi, O. Rossier, M. Schaks, A. Chazeau, F. Binamé, A. Remorino, et al., Transient activations of rac1 at the lamellipodium tip trigger membrane protrusion, Curr. Biol., 29 (2019), 2852–2866. https://doi.org/10.1016/j.cub.2019.07.035 doi: 10.1016/j.cub.2019.07.035 |
[60] | E. K. Rodriguez, A. Hoger, A. D. McCulloch, Stress-dependent finite growth in soft elastic tissues, J. Biomech., 27 (1994), 455–467. https://doi.org/10.1016/0021-9290(94)90021-3 doi: 10.1016/0021-9290(94)90021-3 |
[61] | J. R. Rice, Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms, in Constitutive Equations in Plasticity (ed. A. S. Argon), MIT Press Cambridge, (1975), 23–79. |
[62] | J. M. Kalappurakkal, A. A. Anilkumar, C. Patra, T. S. van Zanten, M. P. Sheetz, S. Mayor, Integrin mechano-chemical signaling generates plasma membrane nanodomains that promote cell spreading, Cell, 177 (2019), 1738–1756. https://doi.org/10.1016/j.cell.2019.04.037 doi: 10.1016/j.cell.2019.04.037 |
[63] | C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, A. R. Horwitz, Actin and $\alpha$-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner, Nat. Cell Biol., 10 (2008), 1039–1050. https://doi.org/10.1038/ncb1763 doi: 10.1038/ncb1763 |
[64] | P. Y. Jay, P. A. Pham, S. A. Wong, E. L. Elson, A mechanical function of myosin ii in cell motility, J. Cell Sci., 108 (1995), 387–393. https://doi.org/10.1242/jcs.108.1.387 doi: 10.1242/jcs.108.1.387 |
[65] | R. Meili, B. Alonso-Latorre, J. C. Del Alamo, R. A. Firtel, J. C. Lasheras, Myosin ii is essential for the spatiotemporal organization of traction forces during cell motility, Mol. Biol. Cell, 21 (2010), 405–417. https://doi.org/10.1091/mbc.e09-08-0703 doi: 10.1091/mbc.e09-08-0703 |
[66] | B. Rubinstein, M. F. Fournier, K. Jacobson, A. B. Verkhovsky, A. Mogilner, Actin-myosin viscoelastic flow in the keratocyte lamellipod, Biophys. J., 97 (2009), 1853–1863. https://doi.org/10.1016/j.bpj.2009.07.020 doi: 10.1016/j.bpj.2009.07.020 |
[67] | D. Shao, H. Levine, W. J. Rappel, Coupling actin flow, adhesion, and morphology in a computational cell motility model, Proc. Natl. Acad. Sci. U.S.A., 109 (2012), 6851–6856. https://doi.org/10.1073/pnas.1203252109 doi: 10.1073/pnas.1203252109 |
[68] | A. Ponti, M. Machacek, S. L. Gupton, C. M. Waterman-Storer, G. Danuser, Two distinct actin networks drive the protrusion of migrating cells, Science, 305 (2004), 1782–1786. https://doi.org/10.1126/science.1100533 doi: 10.1126/science.1100533 |
[69] | D. W. Dumbauld, H. Shin, N. D. Gallant, K. E. Michael, H. Radhakrishna, A. J. García, Contractility modulates cell adhesion strengthening through focal adhesion kinase and assembly of vinculin-containing focal adhesions, J. Cell. Physiol., 223 (2010), 746–756. https://doi.org/10.1002/jcp.22084 doi: 10.1002/jcp.22084 |
[70] | S. Fusco, V. Panzetta, V. Embrione, P. A. Netti, Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions, Acta Biomater., 23 (2015), 63–71. https://doi.org/10.1016/j.actbio.2015.05.008 doi: 10.1016/j.actbio.2015.05.008 |
[71] | L. B. Case, C. M. Waterman, Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch, Nat. Cell Biol., 17 (2015), 955–963. https://doi.org/10.1038/ncb3191 doi: 10.1038/ncb3191 |
[72] | P. W. Oakes, S. Banerjee, M. C. Marchetti, M. L. Gardel, Geometry regulates traction stresses in adherent cells, Biophys. J., 107 (2014), 825–833. https://doi.org/10.1016/j.bpj.2014.06.045 doi: 10.1016/j.bpj.2014.06.045 |
[73] | C. E. Chan, D. J. Odde, Traction dynamics of filopodia on compliant substrates, Science, 322 (2008), 1687–1691. https://doi.org/10.1126/science.1163595 doi: 10.1126/science.1163595 |
[74] | Y. Cai, N. Biais, G. Giannone, M. Tanase, G. Jiang, J. M. Hofman, et al., Nonmuscle myosin iia-dependent force inhibits cell spreading and drives f-actin flow, Biophys. J., 91 (2006), 3907–3920. https://doi.org/10.1529/biophysj.106.084806 doi: 10.1529/biophysj.106.084806 |
[75] | W. S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, (1997-2018). Available from: https://imagej.nih.gov/ij/. |
[76] | E. Sitarska, A. Diz-Muñoz, Pay attention to membrane tension: mechanobiology of the cell surface, Curr. Opin. Cell Biol., 66 (2020), 11–18. https://doi.org/10.1016/j.ceb.2020.04.001 doi: 10.1016/j.ceb.2020.04.001 |
[77] | J. Li, S. S. Wijeratne, T. E. Nelson, T. C. Lin, X. He, X. Feng, et al., Dependence of membrane tether strength on substrate rigidity probed by single-cell force spectroscopy, J. Phys. Chem. Lett., 11 (2020), 4173–4178. https://doi.org/10.1021/acs.jpclett.0c00730 doi: 10.1021/acs.jpclett.0c00730 |
[78] | T. Wakatsuki, R. B. Wysolmerski, E. L. Elson, Mechanics of cell spreading: role of myosin ii, J. Cell Sci., 116 (2003), 1617–1625. https://doi.org/10.1242/jcs.00340 doi: 10.1242/jcs.00340 |
[79] | D. E. Ingber, Tensegrity i. cell structure and hierarchical systems biology, J. Cell Sci., 116 (2003), 1157–1173. https://doi.org/10.1242/jcs.00359 doi: 10.1242/jcs.00359 |
[80] | Y. Luo, X. Xu, T. Lele, S. Kumar, D. E. Ingber, A multi-modular tensegrity model of an actin stress fiber, J. Biomech., 41 (2008), 2379–2387. https://doi.org/10.1016/j.jbiomech.2008.05.026 doi: 10.1016/j.jbiomech.2008.05.026 |
[81] | J. Kolega, Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture, J. Cell Biol., 102 (1986), 1400–1411. https://doi.org/10.1083/jcb.102.4.1400 doi: 10.1083/jcb.102.4.1400 |
[82] | D. E. Ingber, Tensegrity: the architectural basis of cellular mechanotransduction, Annu. Rev. Physiol., 59 (1997), 575–599. https://doi.org/10.1146/annurev.physiol.59.1.575 doi: 10.1146/annurev.physiol.59.1.575 |
[83] | J. M. Northcott, I. S. Dean, J. K. Mouw, V. M. Weaver, Feeling stress: the mechanics of cancer progression and aggression, Front. Cell Dev. Biol., 6 (2018), 17. https://doi.org/10.3389/fcell.2018.00017 doi: 10.3389/fcell.2018.00017 |
[84] | J. Stricker, Y. Beckham, M. W. Davidson, M. L. Gardel, Myosin II-mediated focal adhesion maturation is tension insensitive, PLoS One, 8 (2013), e70652. https://doi.org/10.1371/journal.pone.0070652 doi: 10.1371/journal.pone.0070652 |
[85] | L. Trichet, J. Le Digabel, R. J. Hawkins, S. R. K. Vedula, M. Gupta, C. Ribrault, et al., Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness, Proc. Natl. Acad. Sci. U.S.A., 109 (2012), 6933–6938. https://doi.org/10.1073/pnas.1117810109 doi: 10.1073/pnas.1117810109 |
[86] | A. M. Greiner, H. Chen, J. P. Spatz, R. Kemkemer, Cyclic tensile strain controls cell shape and directs actin stress fiber formation and focal adhesion alignment in spreading cells, PLoS One, 8 (2013), e77328. https://doi.org/10.1371/journal.pone.0077328 doi: 10.1371/journal.pone.0077328 |
[87] | G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley and Sons, Chichester, 2000. |
mbe-20-02-113-supplementary.zip | |
mbe-20-02-113-supplementary.pdf |