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Abstract: Mechanosensitivity of cell spread area to substrate stiffness has been established both
through experiments and different types of mathematical models of varying complexity including both
the mechanics and biochemical reactions in the cell. What has not been addressed in previous math-
ematical models is the role of cell membrane dynamics on cell spreading, and an investigation of this
issue is the goal of this work. We start with a simple mechanical model of cell spreading on a de-
formable substrate and progressively layer mechanisms to account for the traction dependent growth
of focal adhesions, focal adhesion induced actin polymerization, membrane unfolding/exocytosis and
contractility. This layering approach is intended to progressively help in understanding the role each
mechanism plays in reproducing experimentally observed cell spread areas. To model membrane un-
folding we introduce a novel approach based on defining an active rate of membrane deformation that
is dependent on membrane tension. Our modeling approach allows us to show that tension-dependent
membrane unfolding plays a critical role in achieving the large cell spread areas experimentally ob-
served on stiff substrates. We also demonstrate that coupling between membrane unfolding and focal
adhesion induced polymerization works synergistically to further enhance cell spread area sensitivity
to substrate stiffness. This enhancement has to do with the fact that the peripheral velocity of spreading
cells is associated with contributions from the different mechanisms by either enhancing the polymer-
ization velocity at the leading edge or slowing down of the retrograde flow of actin within the cell.
The temporal evolution of this balance in the model corresponds to the three-phase behavior observed
experimentally during spreading. In the initial phase membrane unfolding is found to be particularly
important.
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1. Introduction

The ability for cells to sense and respond to the mechanical properties of their environment plays
a critical role in processes such as the differentiation of stem cells, cell motility and the development
of cancer [1–3]. This process, termed mechanosensing, allows cells to adapt to changes in conditions
of their environment. One important example of mechanosensing is cell spreading when cells with an
initially round morphology flatten and extend on a substrate. Experiments of cell types such as fibrob-
lasts [4,5], hMSCs [6,7], endothelial cells [8] and osteoblastic cells [9] all show that cells obtain larger
spread areas on stiffer substrates. As Figure 1 illustrates, spread areas increase significantly on stiffer
substrates and the amount of increase depends on cell type. The cell spread area for hMSCs increases
approximately 300% as the gel stiffness increases from 1 kPa to 70 GPa [6]. Similarly, for NIH-3T3
fibroblasts the cell spread area increases approximately 200% as the substrate stiffness increases from 1
kPa to that of glass (approximately 50 GPa) [5]. By starting with a mechanistic model of cell-substrate
interaction during spreading and successively adding various other model components, in this work,
we aim to unravel which biomechanical mechanisms are required for cells to obtain these large differ-
ences in cell spread area as they sense the mechanical properties of the substrate. We demonstrate that
the unfolding of membrane reserves is required for cells to achieve a 200–300% increase in cell spread
area on stiff substrates. To accommondate such a large increase in cell spread area large membrane
deformations are required. With the membrane properties reported in the literature, the absence of
membrane unfolding would lead to significant membrane tension early in the spreading process, which
would in turn inhibit further spreading.

Figure 1. Cell spread area dependence on substrate Young’s modulus determined experi-
mentally. (A) Cell areas for hMSCs [6] (reproduced with permission). (B) Cell areas for
NIH-3T3 fibroblasts [5] (reproduced with permission). In both cases, the noted percent in-
crease is calculated by taking the difference in the spread areas in blue boxes and dividing by
the smallest spread area.

Mechanosensing is initiated at integrin-based cell-substrate attachments. Via mediation by a variety
of accessory proteins such as talin, vinculin, Src and focal adhesion (FA) kinase, integrins transmit
force to the cytoskeleton and initiate various signaling cascades [10, 11]. Integrins form catch bonds
with fibronectin [12, 13], an extracellular matrix protein, and the strengthening of nascent adhesions
into mature FAs is modulated by applied forces arising from integrin-fibronectin bonds and intrcellular
tension from actomyosin contractions [11]. Individual FA size and the total amounts of activated
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integrins in a spreading cell also depends on substrate stiffness [4,14]. By regulating the size, strength,
engagement and disengagement of cell-substrate attachments, i.e., by activating the “actin clutch”,
a cell can locally regulate movement and force generation in response to mechanical cues from its
environment [15]. This actin clutch mechanism also plays a role in the sensitivity of cell spread areas
to substrate stiffness [16, 17].

During spreading, the cell area increases rapidly at first (Phase P1), then the rate of increase slows
down (Phase P2), then finally plateaus [18,19]. The lipid bilayer of the cell membrane is extremely stiff
and can rupture when its stretch reaches a threshold of 2–4% [20, 21]. However, it has been observed
that spreading requires that the membrane area increases by at least 20–30% [22], which is far above
this threshold. To allow for the large membrane deformations required for motility, spreading and mi-
tosis, this complex cellular structure consisting of folds, such as caveolae, filopodia and invaginations,
unfolds to allow for cellular expansion. The cell also contains tension-controlled membrane reservoirs
that can be trafficked from the cell interior to the membrane via exocytosis [22–25]. Unfolding occurs
during the rapid spreading Phase P1, while membrane tension that builds up in the initial phase of cell
spreading results in exocytosis of membrane reservoirs in Phase P2, initiates myosin contractility and
initiates the formation of new nascent adhesions [26,27]. Experimental results point to the complexity
of cell spreading and to the coupling of a variety of biochemical and biomechanical processes that
must exist in order for mechanosensitivity during spreading to occur. Notably, one such process is
membrane unfolding and exocytosis. While to date there is no experimental work that considers how
the inhibition of membrane unfolding affects mechanosensitivity, it has been shown that membrane
unfolding is critical for bleb formation and inhibiting the release of membrane invaginations reduces
the ability of cells to form blebs and translocate [25].

There are several mathematical models of cell spreading on 2D substrates, some of which focus on
mechanosensing of substrate material properties. Several of these models do not include the cell mem-
brane, and no models to date account for the role of active membrane deformations, such as unfolding,
in mechanosensitivity. Using a simple, one-dimensional model [28] shows that the balance between
the polymerization rate and the retrograde flow is modified with substrate stiffness. A similar one-
dimensional model [29] shows that substrate viscosity works to stiffen softer substrates and maximize
cell spread areas. Further, a more detailed two dimensional model [30] recapitulates the experimen-
tally observed cell spread area sensitivity to substrate stiffness by speculating that mechanosensing is
modulated by the balance of a pushing force arising from membrane deformation and a pulling force
driven by cell-substrate adhesion. Using a variety of approaches, such as a Cellular Potts Model [31],
energy balance principles [32], discrete structure interaction [33] and continuum modeling [34], other
two-dimensional models show that the coupling between FA strengthening and polarization of stress
fibers leads to increased spread area and increased anisotropy on stiffer substrates. Other models in-
clude simulations of three-dimensional spreading cells and investigate the dynamics of cell spreading
and the relocation of membrane-bound proteins during spreading [35–37]. A benefit of modeling in
three dimensions is that one can include more details on the spatial localization of subcellular com-
ponents during spreading [38]. Of this theoretical work, the models in [30, 33] account for membrane
deformation during spreading. Effects of membrane softening are accounted for in [39], where it is
shown that that the cell spread area increases when membrane stiffness decreases. Using an energy
minimization approach, the authors of [40] model the effects of membrane folds in bleb formation by
formulating an expression for membrane tension that is dependent on the membrane area fraction held
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in folds.
Our work adds to the body of research on mechanosensing during cell spreading by incorporating

a model of membrane unfolding / exocytosis that is dependent on membrane tension and FA activ-
ity. Moreover, our approach of layering model components provides insight into which biophysical
mechanisms contribute most to mechanosensitivity during spreading and how the coupling between
mechanisms affects mechanosensitivity. This approach is to start with a mechanistic model of cell
substrate interaction and sequentially layer model components that incorporate stress-dependent FA
evolution, FA-dependent actin polymerization, membrane unfolding/exocytosis and contractility. We
run simulations as each layer is added to understand how each modeling component contributes to the
amplification of the cell spread area in mechanosensing of substrate stiffness, and, as we add modeling
components, we verify that the addition of each layer is consistent with biological reality by com-
paring biophysical aspects of a spreading cell to experimental results. Our modeling approach shows
that tension-dependent membrane unfolding plays the most significant role in mechanosensitive cell
spreading, shows that the coupling between mechanisms is required to obtain large differences in cell
spread areas on soft and stiff substrates and illustrates how protrusive and retractive activity at the cell
edge changes with each mechanism to result in the experimentally observed temporal dynamics of
spreading.

2. Methods

2.1. Overview of modeling approach

To investigate the role of various biophysical mechanisms on a cell’s sensitivity to substrate stiff-
ness during spreading we model the cell as a two-dimensional axisymmetric body and start with a
model that accounts only for mechanical interactions between a spreading cell and a linearly elastic
substrate, whose stiffness is specified by its Young’s modulus∗. We then successively layer additional
mechanisms that are known to affect mechanosensing during cell spreading. We call the starting model
that accounts for only mechanical interactions the minimalistic mechanical model (MM model). In the
MM model (and all subsequent additions to it), we do not separately model various actin components,
such as the cortex, lamellum, lamellipodium and stress fibers. Rather, we have a unified representation
of the cell and treat the cell interior as a viscous fluid that is surrounded by a viscoelastic membrane.
Such a homogenization of intracellular components has been regularly used when modeling whole-cell
movement (see, for example, [30,41]). In addition, experimentally measured material properties of the
cell also assume that the cell behaves as a homogeneous continuum [42]. We account for the various
actin regions by specifying a polymerization velocity and, in the Contract model (described later), a
local active contraction. The interaction between the cell and substrate is modeled as a viscous drag.
In the MM model, the drag coefficient between the two entities is held constant. An overview of the
MM model and all other components that we layer is described in Figure 2A. In Figure 2A we also
indicate how the models are layered via solid black arrows.

∗Experimental literature often refers to the Young’s modulus as either stiffness or rigidity. In this work we use the term stiffness or
Young’s modulus.
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Figure 2. Overview of modeling approach. (A) A description of each model component
used. Solid straight black arrows indicate flow of model component layering. Starting with
the MM model, additional components are successively added. Thin dashed arrows indicate
which cellular region a model component affects. (B) Spring-dashpot system for standard
solid model, which is used to model the material response of the cell membrane. (C) Phases
of cell spreading as viewed from the side. Upon contact with a ligand-coated surface from
suspension, a cell flattens and forms nascent adhesions. To allow for more membrane ex-
pansion, as membrane tension increases, the membrane unfolds (Phase P1) and then releases
membrane reserves via exocytosis (Phase P2) [24]. Black solid arrows point to location of
membrane tension development as assumed by our model. Dashed arrows represent exocy-
tosis of membrane reserves.

Because of the critical role of cell-substrate adhesions in mechanosensing, the first model added
to the MM model is a model of FA evolution (FA model). In the FA model we add attachment-
traction-dependent FA evolution and an FA-dependent cell-substrate drag coefficient. On top of this we
layer an attachment-dependent actin polymerization model (Poly model). To this, we add our model
of membrane unfolding / exocytosis (Unfold model). Lastly, we account for the affects of myosin-
induced contraction in the Contract model. To determine the individual effects of membrane unfolding
and attachment-dependent actin polymerization on cell spread areas, to the FA model we separately
add a model of membrane exocytosis / unfolding (resulting in the Const Poly - Unfold model). In the
sections below, we describe the assumptions and governing equations of each model component.
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2.2. MM model for the cell and model of substrate deformation

The MM model accounts for only mechanical interactions between a spreading cell and the un-
derlying substrate. In the MM model, the cell interior, which we assume consists mainly of actin in
various states, is treated as a viscous fluid that is surrounded by a viscoelastic membrane. We assume
an axisymmetric quasi-steady state for the cell, which results in the following equilibrium equation for
the cell interior with the cell-substrate attachment force fattach:

∇ · σc = −fattach (2.1)

The Cauchy stress in the actin network is represented by σc and given by

σc = 2µDc + λTr(Dc)I (2.2)

where Dc = 1
2

(
∇vc + ∇T vc

)
is the rate of deformation tensor and Tr

(
Dc

)
is the trace of this tensor. The

parameter µ is the shear viscosity and λ represents additional contributions to bulk viscosity equaling
µ + λ in two-dimensional analysis. Because the entire actin network is represented by this viscous
fluid model and this network can locally vary in density due to variation in accessory proteins and
composition [43–45], we do not assume that the fluid is incompressible and therefore do not include a
pressure term in (2.2). Given our assumption that the spreading cell is axisymmetric, we formulate the
equations above in polar coordinates and neglect any variations in the angular direction. This allows
us to rewrite (2.1) and (2.2) as the following system of equations for the radial velocity of intracellular
actin vc(r, t), radial component of the intracellular Cauchy stress σr(r, t) and angular component of this
stress σθ(r, t)

∂σr

∂r
+

1
r

(
σr − σθ

)
+ fattach = 0 (2.3)

σr − K
(∂vc

∂r

)
− λ

(vc

r

)
= 0 (2.4)

σθ − K
(vc

r

)
− λ

(∂vc

∂r

)
= 0 (2.5)

where K = 2µ + λ. By setting λ = 0, from this point forward we assume that the radial stress depends
only on radial strain and angular stress on angular strain. Further justification of setting this parameter
to zero is based on a lack of experimental evidence for its value and, as shown in Figure S2 and its
caption, our numerical simulations indicate that setting it to a nonzero values does not significantly
affect the numerical results or our essential conclusions.

As has been done by several others [41, 46, 47], we assume a viscous drag for cell-substrate inter-
action. The physical interactions between a motile cell and a two-dimensional substrate are complex,
but a viscous drag approach is a valid approach for capturing the binding and unbinding for activated
integrins with substrate ligands that occurs during motility [48, 49]. In our model, we assume that the
cell-substrate attachment force has the form

fattach = −ηatt
(
vc − vs

)
. (2.6)

In (2.6), ηatt is the viscous drag coefficient and vs is a substrate velocity.
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The force fattach is acting on both the cell and the substrate in opposite directions. It is proportional
to vc and to vs, and it is time-dependent. While vc is directly involved in the model of the cell and
is evaluated in the solution process, vs is not. The absence of vs in the solution process is related to
the quasi-static, linearly elastic model of the substrate. In this model, fattach produces instantaneous
displacements that are proportional to fattach, rather than velocities. So, on the one hand the viscous
cell-substrate interaction model specified in (2.6) defines fattach to be proportional to vs, but on the
other hand our linear-elastic model of the substrate makes it proportional to us. Thus in (2.6) we use a
“surrogate” substrate velocity defined as

vs =
αa

∆t
us (2.7)

where ∆t is a time step introduced for dimensional consistency and αa is a proportionality parameter
ensuring that (vc − vs) > 0. This inequality must be satisfied for the substrate to provide a drag for the
spreading cell. In our calculations, we set ∆t to the time step of our simulation. However, any reference
time can be used for this parameter with an appropriate adjustment of αa. We see this as an original
way of handling a viscous drag interaction between an elastic solid and a viscous material.

We recognize that this approach makes vs dependent on the modeling assumptions. However, we
keep ∆t and αa fixed throughout all of our numerical simulations, while us changes with the variation
of other parameters of the model, allowing vs to serve as measure of the substrate velocity.

We fix the cell at r = 0 (see Figure 2). At the moving boundary of the cell at r = r(t) we assume
that actin polymerizes at a radial velocity vpoly and the polymerization of actin stretches the cell mem-
brane. The resulting force applied to the actin network is oriented toward the cell interior and leads
to retrograde flow of the actin network at a velocity vc. Therefore, the velocity of the periphery of the
spreading cell is given by vperiph = vpoly + vc. Note that vpoly is always positive and, due to the orienta-
tion of the membrane force, vc is always negative. However, when we refer to the actin retrograde flow
speed, we assume that this is a positive quantity.

We model the membrane as a standard viscoelastic solid, as illustrated in Figure 2B. We set the
material properties of the cell membrane to be those of the lipid bilayer. The lipid bilayer is very stiff
with a small viscosity [50], and the material response can be adequately modeled as purely elastic.
However, there are experimental results [51], as well as mathematical models [52], that treat the mem-
brane as viscoelastic. The additional benefit of modeling the membrane as a viscoelastic material is
that including the viscosity term in our model stabilizes abrupt jumps in membrane tension that would
otherwise occur during numerical simulations.

Cell spreading can lead to large membrane deformations and, in the analysis, we assume an
Almansi-Hamel finite strain measure, εmem:

εmem =
1
2

(
1 −

(R0

r

)2)
, (2.8)

where R0 is the initial cell radius at t = 0 and r = r(t) is the cell radius at time t. The membrane strain
rate that follows is

ε̇mem =
R2

0

r3 vperiph =
R2

0

r3

(
vpoly + vc

)
. (2.9)

In terms of the strain and strain rate, the standard viscoelastic solid constitutive equation for the
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membrane force, σmem, is given by

σ̇mem =
(
E1 + E2

)
ε̇mem +

E1E2

ηm
εmem −

E2

ηm
σmem. (2.10)

Here, E1 and E2 are the two spring constants describing the elastic properties of the membrane, and
ηm is the membrane viscosity. The force σmem effectively serves as a boundary condition on the free
boundary of the actin network.

The substrate is coupled to the cell via the cell-substrate attachment force. As we do for the cell,
we assume that the substrate is axisymmetric, and the equilibrium equation for its radial displacement
us(r, t) is given by

Cs
∂

∂r

(∂us

∂r
+ νp

us

r

)
+

Cs(1 − νp)
r

(∂us

∂r
−

us

r

)
− fattach = 0. (2.11)

Here, Cs = Es
1−ν2

p
, where Es is the Young’s modulus of the substrate and νp is its Poisson ratio. Both

endpoints of the substrate computational domain are fixed. Throughout the simulations, the radius of
the substrate remains significantly larger than that of the spreading cell to minimize the effects of the
substrate boundary on the mechanics of cell spreading.

All parameter values used in the MM model are listed in Table S1 of the supplementary material.

2.3. FA model

The interface between the cell and substrate is where the mechanical properties of the substrate are
translated into a complex system of biochemical responses that modulate many aspects of cell motility.
The FA model aims to encapsulate the details of this complex mechano-chemical interaction into a
higher level model. Experimental results indicate that integrin-ligand interactions function as catch
bonds, whose lifetimes increase with applied force [53]. We base the FA model on earlier experimental
and modeling work and also assume that the integrin-ligand bond is a catch bond. In both [53] and [31],
the integrin-ligand bond is modeled using a double exponential term that captures a decrease in the FA
degradation as force on the bond increases as well as an increase in FA degradation at sufficiently high
forces. For tractability of the whole cell-substrate model we are considering here, we use the approach
of [54] and model the catch bond with a single exponential. In addition, we make the following two
assumptions that have also been made in earlier work [31,54]: 1) there is a finite pool of available free
integrins that are able to bond with substrate ligands, and 2) that integrin clusters are able to contain
a finite number of integrin molecules. In our model, the variable φ(r, t) accounts for the cell-substrate
adhesion complex consisting of integrins and other accessory proteins, which, from here forward, we
refer to as the FA complex. The evolution equation for φ is given by

dφ
dt

= D∇2φ + k0
on(Nmax − φ

TOT )(φmax − φ) − k0
o f f e

−ka | fattach |φ. (2.12)

In (2.12), the derivative on the left-hand side is a material derivative, and D is a diffusion coefficient
whose numerical value is small, but it is retained here as it is known to enhance numerical stability. In
the FA activation, the rate term k0

on is a base activation rate, Nmax is a measure of the total number of
free FA complex molecules present in the cell and φmax is a measure of the maximum concentration
of φ that is allowed at a specific point in the FA cluster. φTOT (t) is the total number of FA complex
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molecules in the cell, and this quantity is calculated by integrating φ(r, t) over the current cell area. The
base degradation rate is given by k0

o f f . The exponential term represents a catch bond by lowering the
degradation rate as the force in the FA-ligand attachment increases, and ka is the feedback parameter
from the attachment force to the degradation rate. When we add myosin-induced contractility to the
model, we slightly modify (2.12) and also add an intracellular tension component to the FA complex
degradation (see Section 2.6).

Local variations of the FA complex will result in spatial variation in the formation of cell-substrate
attachments, and here we assume that the attachment strength increases with local FA complex
amounts. We model this as a φ-dependent attachment drag coefficient given by the saturating func-
tion

ηatt(φ) = η0
a + ηmax

(
φ

φ0

)2

1 +
(
φ

φ0

)2 . (2.13)

The parameter η0
a is the baseline attachment strength and ηmax is the maximum amount by which the

baseline attachment strength can increase. φ0 is a reference FA complex amount. A similar model for
attachment strength dependence on FA complex density was used in [55].

All parameter values used in the FA model are in Table S2 of the supplementary material. We
note that several of these parameters are defined here for the first time. In selecting those parameters,
our goal is to show that the FA model compares qualitatively to experimental results. We realize that
an alternate set of parameters might lead to a comparable set of qualitative results. This is explained
further in 3.2 of Results.

2.4. Actin polymerization model

Cellular protrusion via actin polymerization has been shown to be mediated by integrin-ligand at-
tachments [56,57]. Specifically, attachments at appropriate levels of ligand concentrations induce acti-
vation of Rac1, whose downstream affect is stable polymerization of actin at the membrane. In the Poly
model, the FA complex serves as a proxy for Rac1, and we assume that the radial actin polymerization
velocity, vpoly depends on the total amount of FA complex in the cell, φTOT (t), such that

vpoly =
v0

poly + vmax
polyαvφ

TOT

1 + αvφTOT (2.14)

where v0
poly and vmax

poly is the minimum polymerization velocity and the maximum amount by which the
polymerization velocity can increase, respectively. The tuning parameter αv controls the sensitivity of
vpoly to the FA complex. The form of (2.14) is based on the polymerization velocity function in [58].

We make the actin polymerization velocity depend on φTOT rather than the local value of φ at the
cell periphery because activation of Rac1 occurs at FA sites, and this differs from the location of Rac1
action, which is at the cell periphery [59]. Therefore, the activation of stable actin protrusions via
integrins is a nonlocal process with several intermediary effectors. To simplify these details in our
system level model, we chose to represent this nonlocality by having vpoly depend on the total FA
complex in the cell φTOT .

All parameter values used in the Poly model are in Table S3 of the supplementary material.
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2.5. Membrane unfolding / exocytosis model

The membrane tension that builds up in the initial phases of cell spreading induces membrane
unfolding and exocytosis (which, for simplicity, henceforth we will refer to collectively as ’unfolding’),
and we aim to capture these two processes in the Unfold model by modeling them as an active rate of
deformation of the cell membrane. In the approach described below, we define a novel algorithm for
determining the active rate of membrane deformation.

In general, active deformations represent any local changes in shape that are driven by active intra-
cellular processes, such as the polymerization of actin or actomyosin contractions. Passive deforma-
tions result from forces applied to the cell, including those from cell-substrate attachments, and from
incompatibilities in local active deformations. A representation of active and passive deformations is
illustrated in Figure S1A. In finite deformation processes taking place in the phenomena discussed
here, a multiplicative decomposition of the deformation gradient is typically employed to define pas-
sive and active components of deformation [60]. However, when the passive deformation is small, an
additive decomposition of the strain is appropriate even though the active deformation is still large [61].
Here, due to large membrane stiffness, the passive deformation of the membrane is small relative to the
active deformation representing unfolding. Therefore, we additively decompose the strain in the cell
membrane into a passive component, εp

mem, and an active component, εA
mem, such that

εmem = εp
mem + εA

mem. (2.15)

A justification of the additive decomposition used here and an explanation of how εA
mem is defined

are provided in Section 1 of the supplementary material. The rate of active deformation represents the
rate of membrane unfolding and is denoted by DA

mem. The total strain rate is therefore also decomposed
additively into active and passive parts:

ε̇mem = ε̇p
mem + DA

mem. (2.16)

The local active deformation is always assumed to be stress-free. Any stresses in the membrane
result from either applied forces or incompatible active deformations and are related to the passive
component of the strain. This leads to the following form of the constitutive equation (2.10) for the
membrane:

σ̇mem =
(
E1 + E2

)(
ε̇mem − DA

mem
)

+
E1E2

ηm

(
εmem − ε

A
mem

)
−

E2

ηm
σmem (2.17)

There are various ways of using (2.17) in the solution process, depending on what information is
given in the model. Each way recognizes the fact that, for εmem, εA

mem and σmem known at time t, this
equation provides a relationship between the corresponding rates, ε̇mem, DA

mem and σ̇mem.
We base our algorithm on experimental results that indicate that there is interaction between inte-

grins and the membrane during cell spreading [62]. The detailed nature of this interaction is unknown.
However, it is understood that membrane tension is related to adhesion formation and placement and
that tension also activates membrane unfolding [27]. Therefore, we first specify ε̇mem and σ̇mem and
compute DA

mem using (2.17), thereby determining an active rate of membrane deformation that is depen-
dent on the rate of change of membrane tension. This approach is meant to reflect the experimentally
established fact that the rate of unfolding is driven by membrane tension.

The algorithm that defines DA
mem is as follows:
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1) As illustrated in Figure 2C, at the beginning stages of spreading a cell simply flattens from a
spherical shape in suspension, and the increase in membrane tension is very small during this
phase. In general, using (2.17), we can calculate a membrane unfolding strain rate that results in
a prescribed rate of increase of membrane tension. For time t < 0.7 min DA

mem is calculated so that
the increase rate of the membrane tension is given by

σ̇mem = gmemt, (2.18)

where gmem is the early-stage membrane tension increase rate. We chose the transition time value
of t = 0.7 min by comparing cell spread areas to experimental results. Furthermore, experimental
work indicates that it takes approximately one minute for nascent adhesions to form and stabilize
[63]. Our choice of transition time is consistent with this time scale. The total FA complex that
is present in the cell at time t = 0.7 min is stored and used in a later part of the algorithm. This
stored value of φTOT at time t = 0.7 is referred to as φTOT

re f .
2) For t ≥ 0.7 min, we use (2.17) in a novel way recognizing that unfolding, as represented in our

model by DA
mem, is tension-driven, FA-dependent and reduces that rate of membrane tension. Con-

sequently, we first specify a rate of membrane tension that is reduced by an amount proportional
to the total FA complex:

σ̇DA

mem = e−kφ f (φTOT )σ̇mem(t) (2.19)

where

f (φTOT ) =
φTOT (t) − φTOT

re f

φTOT
max − φ

TOT
re f

(2.20)

In (2.20), φTOT
max is the maximum possible value of total FA complex in the cell. (Note: it is equal to

Nmax used in (2.12)). The function (2.20) measures the change in the total amount of FA complex
once unfolding is activated relative to the maximum change in total FA complex possible. By
specifying the intermediate rate of change of membrane tension in this manner, we are incorpo-
rating the interaction between membrane unfolding and adhesions. We note that (2.19), and in
fact, this entire algorithm, should be considered as a part of the constitutive description of the
problem in the same manner as the specification of DA

mem directly would be part of the constitutive
description.

3) We now use (2.17) to solve for the active rate of membrane deformation, DA
mem, that would result

in the membrane tension rate defined in (2.19). For the purposes of the next step of the algorithm,
we refer to the resulting value of DA

mem as D
A
mem.

4) Finally, to model the depletion of membrane reserves with time, we compute the active rate of
membrane deformation used in time step t + ∆t according to

DA
mem(t + ∆t) = D

A
meme−dm(t−0.7) (2.21)

where dm is the membrane reserves decay parameter. This active rate of deformation is then used
at the next time step to determine all mechanical and biochemical fields for which we are solving.

A more detailed description of this algorithm is given in Eqs (26)–(29) of the supplement.
All parameter values used in the Unfold model are in Table S4 of the supplementary material. This

model is presented in this work for the first time and, to our knowledge, there are no experimental re-
sults that provide the parameter values for the Unfold model. As a result, the majority of the parameter
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values used in the Unfold model are defined here for the first time. We have chosen a set of parameters
that allow us to show that the membrane unfolding process described is a feasible way to explain the
large cell spread areas observed in experiments.

2.6. Myosin contractility model

Myosin-induced cellular contractility is critical to cell motility [64, 65] and has also been shown to
play a role in spreading [18]. Several models that include myosin contractility in the context of a model
of the whole cell typically track the activation, degradation and transport of myosin and incorporate
contractility by specifying an active force [30, 41, 58, 66, 67]. In the Contract model we take a more
simplified approach by assuming that the rate of contraction is constant and use an additive decom-
position of the deformation gradient approach similar to that used in Section 2.5 to model membrane
unfolding. Specifically, we assume that the rate of deformation of the actin network is decomposed
into a passive part, ε̇p

rr, and contractile part, Dcontract, such that

ε̇rr =
∂vc

∂r
= ε̇p

rr + Dcontract (2.22)

As described for the active deformation of the membrane, we assume that the contractile part of the
rate of deformation is locally stress-free and all stresses depend only on the passive component. Under
this assumption, (2.4) can be rewritten as

σr − K
(∂vc

∂r
− Dcontract

)
= 0 (2.23)

(Recall that in the simulations described here we set the parameter λ from (2.4) to zero.) While it is
possible to also prescribe an active rate of contraction in the angular direction, in the work here, we
assume that contraction acts solely in the radial direction, which amounts to anisotropic contraction.
Since contraction does not occur in the lamellipodium, which is the region closest to the cell periphery
[68], we also assume that this active rate of contraction acts from the cell center to a distance 2 µm
from the cell periphery and is constant.

Myosin-based contraction leads to increased intracellular tension, which is associated with the as-
sembly and strengthening of focal FAs [31, 69]. To account for this in the Contract model, we add an
additional term to the degradation rate for the FA complex that is dependent on intracellular tension
making the evolution equation for φ

∂φ

∂t
= D∇2φ + k0

on(Nmax − φ
TOT )(φmax − φ) − k0

o f f e
−ka | fattach | · e−kσh(σr)φ (2.24)

where kσ is the intracellular stress feedback parameter, and h(σr) is a function whose value is deter-
mined by whether the intracellular stress is tensile (σr > 0) or compressive (σr < 0), such that

h(σr) =

{
σr σr > 0
0 σr < 0

(2.25)

All parameter values used in the Contract model are in Table S5 of the supplementary material.
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2.7. Model parameters and computational approach

The system-level model presented here requires the specification of several parameters found in
Tables S1–S5 of the supplement. These tables also include references to publications providing these
parameters whenever it is possible. We would like to note that the parameters for which there is
no data in the literature have been selected after a thorough investigation of possible values and the
effects of these values on the results. In this investigation, our goal was not to perform a sensitivity
analysis, but rather to show that a set of parameter values exist that make the model feasible. We
do this by comparing aspects of the simulation results to experimental data. Specific cases of these
comparisons are described in the Results section. In the supplement, we also further comment on
some of the parameter choices that were used in the model. In addition, we detail the computational
implementation in Section 3 of the supplementary material.

3. Results

For all models discussed here the sensitivity of the cell spread area is presented as a relative dif-
ference, expressed in percentages, between the spread area for the softest (2.5 kPa) and stiffest (100
kPa) substrate that we consider. This percent increase is calculated as the substrate Young’s modulus
increases from 2.5 to 100 kPa relative to the spread area at 2.5 kPa. Also, in all cases the equilibrium
cell spread area is calculated at time t = 30 min, at which point the cell spread area has plateaued or its
rate of increase has significantly slowed down.

3.1. MM model results – Purely mechanical interactions contribute only slightly to mechanosensitive
cell spreading due to membrane tension

The MM model accounts for purely mechanical interactions between the cell and substrate and
spreading is driven by a constant polymerization speed, vpoly. Figure 3A shows that equilibrium cell
spread areas are only slightly sensitive to the substrate Young’s modulus and do increase with substrate
stiffness, following the general trend of experimental results. The sensitivity of the cell spread area to
substrate stiffness is only 2.5%.

Figure 3. Cell area evolution for MM model and dependence on substrate Young’s modulus.
(A) Equilibrium cell area dependence on substrate Young’s modulus. (B) Time evolution of
cell area for different substrate stiffnesses.
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In the MM model, cell spreading is limited by the stiffness of the membrane. The force from actin
polymerization is quickly balanced by the force due to stretch in the membrane causing the cell area to
plateau (Figure 3B). The slight increase in cell spread area on stiffer substrates can be attributed to the
mechanical interactions of the actin with the substrate. To justify it, we recall that the radial velocity
of the cell periphery, vperiph, is the sum of the polymerization velocity and the actin retrograde flow
velocity: vperiph = vpoly + vc. As substrate stiffness increases, actin retrograde flow speed decreases due
to the frictional interaction with the substrate and the net spreading velocity is higher, also leading to a
slightly higher spread area on stiffer substrates.

3.2. FA model results – Total FA amounts depend on substrate stiffness

In the FA model the mechanical interactions from the MM model are augmented with an
attachment-traction-dependent FA evolution given by (2.12) and an FA complex-dependent interac-
tion with the substrate given by (2.13). The inclusion of these mechanisms in the FA model allows us
to capture the sensitivity of the total FA complex amount, φTOT , to substrate stiffness that is in quali-
tative agreement with experimental measures of total active integrin dependence on substrate stiffness
Figure 4A [4]. Total FA complex amounts are calculated at time t = 30 min, by which time an equi-
librium level in φTOT is reached. We note that in the FA model we are not aiming for a quantitative
comparison to experimental results, but rather a qualitative comparison. The experimental results in
the right panel of Figure 4A are obtained from a western blot assay, which is only able to quantify
an amount of protein present in cells relative to a reference quantity. For this reason, φ is measured
in arbitrary units (a.u.), which does not allow for a quantitative comparison. Thus, in Figure 4A we
are illustrating that the general trend in both the simulations and experiments is that total FA complex
amounts increase with substrate stiffness. This trend is also supported by the experimental observation
that the size of individual FAs also increase with substrate stiffness [70].

The inclusion of attachment-traction-dependent FA evolution enhances the sensitivity of the cell
spread area to substrate stiffness; the equilibrium cell spread area increases by 16.66% as the substrate
Young’s modulus increases from 2.5 kPa to 100 kPa (Figure 4B). The primary mechanism behind
this slight enhancement in cell spread area is a stronger attachment to the substrate, which slows down
retrograde flow allowing the velocity at the cell periphery to increase. Figure 4C shows a comparison of
the time evolution of retrograde flow speeds at the cell periphery for the MM model and FA model for
a soft (Es = 2.5 kPa) and stiff (Es = 100 kPa) substrate. In the MM model, the retrograde flow speeds
slightly decrease for a cell spreading on a stiff substrate (grey curves, solid and dashed). However, in
the FA model, there is a larger decrease in the retrograde flow speed on a stiff substrate compared to
a soft substrate (black curves, solid and dashed), leading to larger velocities at the cell periphery and
larger cell spread areas. In essence, the FA model captures the clutch mechanism that describes how
active engagement of a cell with the substrate through activated integrins results in the outward motion
of the cell periphery [71].

The mechanisms included in the FA model also enhance the localization of traction stresses to the
cell periphery (Figure S2A,B). The localization of traction stresses to the cell periphery serves as one
key mechanism to slow down retrograde flow in the entire cell interior. In the MM model, traction
stresses are small, in part because cellular spread areas are also small. In the FA model, maximum
traction stresses increase approximately 4-fold relative to the MM model (compare maximum stresses
in Figure S2A,B). However, because cell spread areas that arise from the FA model remain smaller than
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those observed experimentally, our computed traction stresses are also smaller than those measured
experimentally (Figure S2C) [72]. However, the spatial localization of the traction stresses compares
qualitatively to experimental results, and we also note that in both the MM model and FA model, the
traction stresses increase with substrate stiffness, which is also seen experimentally.

It is clear that additional biophysical and biochemical mechanisms need to be accounted for to
explain the substantially large increases in cell spread area on stiff substrates that is seen in experiments.
We also note that the subsequent mechanisms that we layer in the model focus on ways in which cells
respond to the FA model. However, other than the Contract model, these additional mechanisms do not
feedback to the FA model. These new mechanisms do not significantly alter the total FA amounts for
a given substrate stiffness, and therefore we will not focus on the FA sensitivity to substrate stiffness
henceforth.

Figure 4. FA model – dependence of total FA complex and cell area on substrate Young’s
modulus. (A) Qualitative comparison between numerical simulations and experimental re-
sults of the dependence of total FA complex (φTOT ) on substrate stiffness. Experimental
results in the right top panel show amounts of activated integrin relative to the active integrin
amount at a shear modulus, G′, of approximately 1000 Pa [4] (reproduced with permission).
The relationship between the shear modulus G′ and substrate Young’s modulus Es is given
by G′ = Es/(2(1 +νp)). (B) Equilibrium cell area dependence on substrate Young’s modulus.
(C) A comparison of time evolution of retrograde flow speeds at cell periphery for the MM
model and FA model on soft (2.5 kPa) and stiff (100 kPa) substrates.
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3.3. Poly model results – Adding FA-dependent actin polymerization is not sufficient to recapitulate
cell spread area dependence on substrate stiffness

The FA-complex polymerization speed (see (2.14)) in the Poly model aims to enhance the sensitivity
of the cell spread area to substrate stiffness by strengthening the coupling between the FA complex
and components that increase the rate of cell spreading, namely the polymerization speed. To test
that our parameter choices for the FA-dependent polymerization velocity are appropriate, we compare
retrograde flow speeds predicted by our model to experimentally measured retrograde speeds in motile
growth cones [73]. We compare retrograde flow speeds because the predicted retrograde flow speeds in
Figure 5A are measured at time t = 30 min, when the cell spread area has reached equilibrium. At this
point, the actin retrograde flow speeds are balanced by the polymerization speed. Hence a comparison
of predicted and experimental retrograde flow speeds is an indicator that polymerization velocities
are modeled appropriately. Actomyosin contractions are known to affect retrograde speeds [74], and
we acknowledge that we do not include myosin contractility in the Poly model. However, we do
measure how our model of myosin contractility affects retrograde flow below in the Contract model
results and find that, within the context of our modeling approach, contractility does increase retrograde
flow rates, but not significantly (see Figure S8 in supplement). Our computed retrograde flow speed
dependence on substrate stiffness compares relatively well to experimental results, indicating that the
polymerization velocity is modeled using a reasonable set of parameters given the model equation that
we employ.

Figure 5. Poly model – Dependence of cell area and polymerization speed on substrate
Young’s modulus. (A) Comparison between numerical prediction and experimental results
of the dependence of retrograde flow speed on the substrate Young’s modulus. Retrograde
flow speeds are computed at t = 30 min, i.e. when equilibrium cell spread area is reached and
actin retrograde flow speeds are equal to polymerization speeds. Experimental results are re-
produced from [73] by using the ImageJ software [75]. (B) Equilibrium cell area dependence
on substrate Young’s modulus for Poly model.

The effect of adding an FA-complex dependent polymerization velocity in the Poly model further
enhances the sensitivity of the. cell spread area to substrate stiffness. In the Poly model, the equilibrium
cell spread area increases by 38.40% as the substrate Young’s modulus increases from 2.5 kPa to 100
kPa (Figure 5B). As noted earlier, the velocity of the cell periphery, which determines the cell spread
area, is the sum of the polymerization velocity and the retrograde flow velocity. The mechanical
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process that allows for an increased difference in cell spread areas in the Poly model is mediated
by increasing the polymerization speed (oriented toward the cell periphery) relative to the retrograde
flow speed (oriented toward the cell interior) for an increased amount of time. While the inclusion of
this mechanism increases the cell spread area, it is still not comparable to experimental observations.
Hence, we explore an additional mechanism in the following section.

3.4. Unfold model results – Tension-dependent membrane unfolding is critical for obtaining
significant enhancement in cell spread area on stiff substrates

In the Unfold model we account for membrane unfolding and exocytosis of membrane reserves as
an active rate of membrane deformation, which is defined algorithmically (see Section 2.5). Including
the effects of membrane unfolding / exocytosis on top of the existing mechanisms described in the
previous sections results in a significant increase in cell spread areas that compares to experimentally
observed results. This suggests that we potentially have the minimal set of mechanisms in our model
to account for the sensitivity of the cell spread area to the substrate Young’s modulus. In the Unfold
model, the cell spread area increases by 267.62% as the substrate Young’s modulus increases from
2.5 kPa to 100 kPa (see Figure 6A, right panel). As will be discussed more in the next section, in the
Unfold model it is specifically the combination of an FA-dependent actin polymerization velocity and
membrane unfolding that allows for such large differences in cell spread area in response to substrate
stiffness.

We note here that the experimental results show that membrane tension decreases during spreading
[23, 27], whereas the membrane tension in our simulations increases with spread area (Figure S3,
bottom row). This is a deficiency of the model. However, for the large spread areas that we obtain
in our model, the membrane tension would be significantly higher if membrane unfolding was not
included. In the Discussion, we name some possible modifications that could be investigated as a way
to mitigate this problem. Each of them constitute an expansion of our approach warranted in a separate
investigation.

Experimentally measured membrane tether forces range from 7 pN to 70 pN, depending on cell
type, with most values ranging from 20–40 pN [76]. The tension in a cell membrane is approximated
by squaring the tether force [24], which leads to membrane tensions in experimental work ranging
from 49 pN to 4900 pN, with most values being between 400–1600 pN. We also note that an increase
in membrane tension on stiffer substrates has been observed experimentally [77]. Therefore, despite
the qualitative difference between the membrane tension resulting from our model and experimental
work, our computed membrane tension values at equilibrium (time t = 30 min) are in line with the
membrane tension measured experimentally.

Our model predicts an increased membrane growth on stiffer substrates (Figure S4A). Furthermore,
during spreading the membrane area increases by at least 20% due to the unfolding of folded membrane
regions [22] . These experimentally measured increases are in line with what we found computationally
(Figure S4A). The results in Figure S4A were obtained as follows: taking the membrane to be a strip of
height h = 1 µm along the cell periphery, the original membrane area in our calculations is 62.83 µm2.
The membrane area added is approximately 12–20 µm2, depending on the substrate Young’s modulus,
which is 19–32% of the original area. The membrane area added at time t was calculated by using
the integral

∫ t

0
2πr(τ)hDA

mem(τ) dτ, where r(t) is the cell radius at time t. While, locally, the sensitivity
of unfolding strain rates to substrate stiffness is small (Figure S4B), these small changes manifest as
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increasingly larger differences in growth of the membrane area, which contributes to the overall growth
in cell spread areas.

3.5. Alternate combination of mechanisms – Membrane unfolding and FA-dependent actin
polymerization work synergistically to enhance cell spread area sensitivity to substrate stiffness

Figure 6A illustrates the increase in cell spread area if membrane unfolding is added to the FA model
while the polymerization speed is kept constant, which results in the Constant Poly - Unfold model.
Because the ability to sense the mechanical properties of the substrate is critical to spreading, we use
the FA model, and not the MM model, as a starting point. In the Constant Poly - Unfold model, we
use a constant polymerization speed (vpoly = 3 µm/min), and the cell spread area increases by 81.40%.
This is compared to the Poly model (no unfolding, FA-dependent polymerization speed), in which the
cell spread area increases by 38.4%, and the Unfold model (includes both unfolding and FA-dependent
polymerization speed), in which the cell spread area increases by 267.62%. These results indicate
that, while membrane unfolding seems to be the most important component in achieving enhanced
cell spread areas on stiffer substrates, the combination of membrane unfolding and FA-dependent actin
polymerization results in a nonlinear amplification that leads to the large cell spread area sensitivity
that is observed experimentally.

To better understand how the Poly model, Const Poly - Unfold model and Unfold model affect cell
spread areas, in Figure 6B we compare actin polymerization speeds, actin retrograde flow speeds at the
cell periphery and the peripheral velocity for these three models spreading on a soft (2.5 kPa) and stiff
(100 kPa) substrate. For the purpose of subsequent discussion, we subdivide the simulation time of 30
min into three temporal phases: Phase 1© is approximately 0–3 min, Phase 2© of approximately 3–15
min, and Phase 3© of approximately 15–30 minutes. We note that [18] also subdivides the temporal
evolution of cell spreading into three phases of similar lengths and with similar behaviors.

In the Const Poly - Unfold model, the polymerization speed is fixed, while, due to a large initial burst
of membrane unfolding, retrograde flow speeds are small in early times. This causes the peripheral
velocity, vperiph, to be initially large (note Phase 1© in Figure 6B). The peripheral velocity then rapidly
decreases as the retrograde flow speed approaches the polymerization speed (during times in phases
marked by 2© and 3©). We note that in the Const Poly - Unfold model, the peak values of vperiph for
2.5 kPa and 100 kPa are comparable, but the rate of decay is slower on stiffer substrates in Phase 2©,
leading to larger cell spread areas.

In the Poly model, the polymerization speed is larger on a stiff substrate. Due to a lack of membrane
unfolding, the retrograde flow speeds rapidly reach values equal to the actin polymerization speeds, and
vperiph remains small leading to smaller cell spread areas overall.

In the Unfold model, the polymerization speed is also larger on a stiff substrate. However, retrograde
flow speeds to do not increase as quickly as they do for the Poly model, which leads to a larger vperiph

in Phase 1©. The membrane unfolding also decreases the decay rate of vperiph on stiff substrates, in
particular, in Phase 2©, which leads to large spread areas. Time evolution of the polymerization speeds,
retrograde flow speeds and peripheral velocities for all substrate Young’s moduli that we consider are
illustrated in Figure S3.
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Figure 6. Comparison of the effects of membrane unfolding and adhesion-dependent poly-
merization speed on cell spread area. (A) Cell spread area dependence on substrate Young’s
modulus for the Const Poly - Unfold model (top left), the Poly model (bottom left), and
the Unfold model (right). (B) Actin polymerization speed (top, left), retrograde flow speed at
cell periphery (top, right), and velocity of cell periphery (bottom) for the Const Poly - Unfold
model (dotted lines), the Poly model (dashed lines) and the Unfold model (solid lines). We
compare each of these on a soft (Es = 2.5 kPa, red) and stiff (Es = 100 kPa, blue) substrate.
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3.6. Contract model results - Myosin contractility does not contribute to mechanosensitivity in cell
spreading

The Contract model introduces myosin-induced contractility and catch-bond feedback from intra-
cellular tensile stress to FA activation. Our results show that the addition of contraction and tensile
stress feedback to FA evolution does not significantly the affect sensitivity of cell spread areas to sub-
strate stiffness. In Figure 7A, we show that, when contractility is included, the cell spread area increases
by 203.96% as the substrate stiffness increases from 2.5 kPa to 100 kPa. Because the Contract model
contains a full set of fundamental biophysical mechanisms that have experimentally been shown to
affect cell spreading, in Figure 7B we compare the time evolution of cell spread areas on different sub-
strates to the temporal evolution of the spread area measured experimentally [4]. Our model compares
well to experimental results.

When one includes contractility and tensile stress feedback to FA evolution and adds unfolding to
the FA model while keeping polymerization speeds constant (such as is done in Section 3.5), the same
general trend in cell area dependence on substrate stiffness is observed as when contractility is not
included (See Figure S5). Namely, the Poly model plus contraction leads to a cell spread area increase
of 37.88%, and the Const Poly - Unfold model plus contraction results in an area increase of 60.96%.
Compare this to the results in Figure 6A. Therefore, the addition of myosin-based contraction seems
to slightly decrease cell spread areas and sensitivity to the substrate stiffness. This is not surprising
given that mechanical contraction generates movement that acts in the direction opposite of actin poly-
merization and increases retrograde flow speeds at the cell periphery (see Figure S6). In addition, we
note that the value of the intracellular stress feedback parameter kσ has little impact on spread areas
obtained via the Contract model; when this parameter is increased from kσ = 10 (Pa)−1 (Figure 7) to
kσ = 100 (Pa)−1 (Figure S7A), the cell spread increase is 193.44%.

Since contraction does not significantly affect cell spread area, what is a potential role of contrac-
tility in cell spreading? To investigate this we compared the radial component of the Cauchy stress
tensor for the Unfold model and the Contract model (Figure 7C). The top row of Figure 7C shows that
the radial stress in the Unfold model is compressive (i.e., stress values are < 0) for both the softest
(2.5 kPa) and stiffest (100 kPa) substrates we consider. On the other hand, the second row of Figure
7C illustrates that when contraction is present in the model, the stresses in the cell interior are tensile
(stress values are > 0). Therefore, these results indicate that a primary role of myosin contractility is to
keep the interior of the cell in a state of tension. The total amount of FA complex in the cell is limited
to Nmax, and there is little difference in the sensitivity of the total amount of FA complex to substrates
stiffness whether or not contractility is included (Figure S7C). The interior tension causes both a slight
increase in retrograde flow speed and a commensurate decrease in peripheral velocity causing the cell
spread area to decrease in the presence of contractility and greater values of kσ.
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Figure 7. Contract model – Effects of substrate Young’s modulus on cell spread area and
intracellular stress for kσ = 10 (Pa)−1: (A) Dependence of equilibrium cell spread area on
substrate Young’s modulus. (B) A comparison between numerical prediction and experi-
mental results in terms of the time evolution of cell area for various substrate stiffnesses.
Substrate stiffnesses considered in the experimental results are from > 0.18 kPa to 55 kPa.
Experimental results are from [4] (reproduced with permission). (C) A comparison of radial
stresses (σrr) at time t = 30 min for Es = 2.5 kPa and Es = 100 kPa for the Unfold model
(no contraction) and the Contract model. Black circles mark regions of intracellular tension
(σrr > 0).
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4. Discussion

Starting off with a mechanistic model of a spreading cell interacting with a deformable substrate, we
have developed a system level model of cell spreading that includes various combinations of key mech-
anisms that are known to be present in spreading cells: 1) traction-dependent growth of FAs, 2) active
integrin-dependent actin polymerization, 3) tension-dependent membrane unfolding/exocytosis and 4)
myosin-based contractility. Combining these mechanisms in alternate ways enables us to determine
the effect that these combinations have on the sensitivity of cell spread areas to substrate stiffness.

The main contribution of this work is that the mechanism that has the dominant effect on increasing
cell spread areas on stiffer substrates is membrane unfolding. When layering membrane unfolding on
the FA model (to create the Constant Poly / Unfolding model), we see an 81.4% increase in cell spread
areas as the substrate Young’s modulus increases from 2.5 kPa to 100 kPa. However, we find that
the combination of FA-dependent polymerization and membrane unfolding is required to obtain the
200–300% increase in cell spread areas experimentally observed as substrate stiffness increases from
approximately 1 kPa to approximately 100 kPa. Specifically, layering FA-dependent polymerization
on the FA model (to create the Poly model) results in an 38.4% increase in cell spread area. However,
when both FA-dependent polymerization and membrane unfolding are combined together (Unfold
model), their effects are amplified nonlinearly due to a synergistic coupling between two mechanisms,
which causes a simultaneous increase in polymerization speed and decrease in retrograde flow speed,
to obtain a 267.62% increase in cell spread area. This finding, along with the algorithm to determine
membrane unfolding rate, is the novel contribution of the present work. The detailed mechanism
behind this synergistic coupling is discussed later from the perspective of key determinants influencing
cell spread area.

The modeling approach employed herein also provides insight into other mechanisms involved in
mechanosensitive cell spreading. Our results are consistent with experimental work, which indicates
that an increase in myosin II activity (leading to increased contractility) slows down the rate of cell
spreading and leads to smaller cell spread areas [74,78]. The maximum cell spread area on a substrate
with a Young’s modulus of 100 kPa is 1922 µm2 in the Unfold model, whereas it decreases to 1629 µm2

in the Contract model. Similarly, the percent increase in cell spread area as substrate stiffness increases
from 2.5 kPa to 100 kPa is 267.62% in the Unfold model and 203.96% in the Contract model. We
find that the main role of myosin-based contractility is to keep portions of the cell interior in a state
of tension (vs. compression). It has been shown that stress fibers usually exist in the cell in a tensile
state [79, 80], and tension has been found to play a critical role in the mechanotransduction processes
such tumor progression and polarization during motility [81–83]. Consistent with experimental work
[84], we find that retrograde flow speeds at the cell periphery are larger for the Contract model than
when contraction is not present (Figure S6). This increase in retrograde flow speed at the cell periphery
causes decreased peripheral velocities during spreading, which provides an explanation of the decrease
in cell spread areas observed in the Contract model.

The main determinant of the cell spread area is the velocity of the cell periphery and the rate at
which this velocity decays to zero. Thus, a remaining question is how does including FA-dependent
actin polymerization and membrane unfolding affect the balance of retrograde flow speed and poly-
merization speed at the cell periphery? In the Poly model, an increase in the total FA complex with
substrate stiffness increases the polymerization speed on stiffer substrates, and this alone is enough to

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2408–2438.



2430

obtain larger peripheral velocities on stiffer substrates. However, without membrane unfolding there
is no large burst in peripheral cell velocities at early times (Phase 1© in Figure 6B), and the peripheral
velocities remain small (at peak values no larger than 0.5 µm/min) and decay to zero. In both the
Constant Poly- Unfold model and the Unfold model, there is an initial burst in membrane unfolding
(see Figure S4), which significantly slows down retrograde flow speeds relative to the polymerization
speed in Phase 1© and leads to a large burst in the peripheral cell velocity in this phase.

Membrane unfolding also affects the rate at which the velocity at the cell periphery decreases as
the cell reaches a steady state spread area. Through the dependence of the active rate of membrane
deformation on the total FA complex, the model results in an increase in the membrane unfolding rate
for larger substrate stiffnesses. In terms of the relationship between the polymerization speed and ret-
rograde flow speed, larger rates of membrane unfolding slow down retrograde flow, thereby increasing
the velocity of the cell periphery in Phase 2©. This results in a substrate stiffness dependent variation in
the rate of decay of the velocity at the cell periphery (see Phase 2© in Figure 6B). Namely, on stiff sub-
strates the velocity of the cell periphery decreases more slowly than on soft substrates, and this further
enhances the differences of cell spread areas on substrates of different stiffnesses. Overall, membrane
unfolding affects the temporal evolution of the retrograde flow speed, and the final cell area is highly
dependent on the dynamics of this evolution. The addition of FA-dependent actin polymerization along
with membrane unfolding works to enhance the differences between the polymerization and retrograde
flow speeds, leading to a more significant increase in cell spread areas. This in essence results in
the previously described synergistic coupling between FA-dependent polymerization and membrane
unfolding resulting in a nonlinear amplification of the cell spread area.

The cell area evolution behavior in phases labeled 1©, 2©, 3© in Figure 6B are consistent with the
experimental results [18]. In [18], the authors describe that the dynamics of cell spreading from Phase
P1 to Phase P2 and to a steady-state spread area, and they attribute it to an evolving balance of protru-
sive and retractive events. Phase P1, during which cell spreading is rapid, corresponds, in our model,
to Phase 1©. While our model does not consider periodic protrusion and retraction events explicitly, we
do find that, in Phase 1©, the velocity of cell spreading is controlled primarily by a large polymerization
speed relative to retrograde flow speed. This large difference between these two speeds is attributed to
rapid membrane unfolding in Phase 1©. As the rate of membrane unfolding slows down, the retrograde
flow speeds increase and approach the value of the polymerization speed. This occurs in Phase 2©,
which corresponds to Phase P2 of cell spreading in [18], during which cell spread rates decrease. Ex-
perimentally, this corresponds to an increase in the frequency of retractive events. Finally, during the
last phase of cell spreading, the frequency of protrusive and retractive events are in balance, and the cell
area reaches a steady state. In our work, this occurs in Phase 3©, in which the polymerization speeds
and retrograde flow speeds are close to being equal. In Phase 3©, membrane unfolding has ceased due
to depleted membrane reserves. This comparison to the spreading dynamics described in [18] also
serves as additional verification that the overall features of the model are realistic.

An additional noteworthy aspect of the modeling effort described herein is that the resulting quali-
tative agreement with experiments was achieved by employing parameters resulting from independent
past investigations of which we were aware. Although the new constants we need here were adjusted
to reproduce some of the features of cell spreading seen in experiments, we believe that extensive use
of independent research by other investigators is a factor adding to the plausibility of the mechanisms
we consider, in particular the new Unfold model we advance in this work.
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In addition to furthering the understanding of how various mechanisms affect the temporal evolution
of processes required for mechanosensitivity during cell spreading, the mechanisms described in this
work also serve to reinforce and expand on the role of coupling between local signals with large-scale
mechanosensing of substrate stiffness, as highlighted by Trichet et al [85]. In their work, it is observed
that the growth of local FAs depends not only on the attachment strength at the location of an FA but
also on global deformations of the cytoskeleton in areas away from FA locations. Specifically they
highlight the role of traction stresses localized to FAs that induce larger scale reorganization of the
cytoskeleton and reorientation of stress fibers which then reinforce the coupling with the susbtrate.
Our work builds on this larger scale mechanosensing by highlighting two additional mechanisms: i)
local FA-induced enhancement in polymerization at the cell periphery, (ii) an FA-controlled membrane
unfolding. Both occur at scales larger and farther from where the FAs are localized. This indirectly
accounts for the underlying biochemical pathway that transduces signals across space to create larger
multiplicative forces leading to enhanced cell spreading. In addition, localized cell-substrate traction
stresses enhance cell spreading by controlling global values of retrograde flow speeds. This retrograde
flow in turn serves to modulate the local attachments which, in our model, occurs by the reduction in
the detachment rates of the FAs. These groups of mechanisms together serve to bring in a much more
nuanced picture of the coupling between the local and large-scale mechanisms highlighted in [85],
while simultaneously drawing attention to a previously less explored role of tension and FA induced
membrane unfolding to accelerate cell spreading on stiffer substrates.

Cell spreading is a highly complicated process, and some drawbacks of this model are that we
simplify the cell geometry, assume a homogeneous cell composition and simplify the descriptions of
many inherently complex biomechanical interactions so that the model and resulting simulations are
tractable. For the time intervals considered here, our assumption of homogenous material properties
and axial symmetry are validated by the fact that, for most stages of cell spreading, many cell types
remain unpolarized and retain a circular morphology. However, upon reaching their equilibrium cell
area, the formation of stress fibers leads to possible cellular polarization [86]. Our model assumptions
do not allow us to capture this late-stage polarization during spreading; a two-dimensional extension of
our model would be necessary. Another drawback of the model is that it predicts an increase in mem-
brane tension with the unfolding of membrane reserves, while experimental results show a decrease
in tension in later stages of spreading [23, 27]. One can think of several ways of mitigating this issue.
One modification would be to make membrane the material parameters deformation-dependent, which
is typical for large deformation problems [87]. In fact, this is the approach used in [39]. An alternative
modification is to change the way that the active rate of membrane deformation is defined. However,
each modification presents its own set of difficulties if one is to account for all known biological pro-
cesses involved in cell spreading in a consistent manner. We note, however, that without the addition of
unfolding into the model, a large membrane tension would occur much sooner in the spreading process
and would not allow for the prediction of cell spread areas that are comparable to experimental results.

Recent experimental advances are shedding light on new mechanisms that might be involved in
cell spreading, such as volume control. In future work, we plan on using mathematical modeling and
simulation to explore the effects of such newly emerging mechanisms. However, in aiming to capture
the key components that are currently known to be required in spreading, we find a key takeaway from
our work: the unfolding of the cell membrane potentially plays a critical role during spreading. To our
knowledge, there is no experimental work that investigates the effect of knocking out membrane un-
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folding or exocytosis ability on spreading. One of our aims in this work is to inspire such experimental
investigations so that the biomechanical mechanisms involved in mechanosensitvity can continue to be
unraveled.
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