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Supplementary

1. Justification for additive decomposition of rate of deformation and strain

The fundamental variable in large strain analysis is the deformation gradient F, which transforms
a material element dX in the undeformed or original configuration to the corresponding deformed
element dx in the deformed or current configuration (see Figure S1A):

dx = F dX. (1)

To incorporate finite active deformations, such as unfolding or exocytosis of the membrane, the
multiplicative decomposition of F into a passive and active part, FP and FA, respectively, is typically
used [1]. As illustrated in Figure S1A, FA maps dX from the original configuration to dx′ in an
intermediate configuration that is assumed to be locally stress-free, whereas FP then maps dx′ into
dx in the current configuration. The passive deformation results in residual stresses that arise from
keeping the deformable body continuous.

In the axisymmetric model of cell spreading described here, deformations of the cell membrane
can be described in terms of the radius of the cell (see Figure S1B). Let R0, rA, and r be the radius of
the cell in the original, intermediate, and current configurations, respectively. In this context, we can
define the passive and active components of the deformation gradient in the cell membrane as follows

F = FPFA =
( r

rA (eθ ⊗ eθ)︸       ︷︷       ︸
FP

)
·
( rA

r
(eθ ⊗ eθ)︸       ︷︷       ︸

FA

)
(2)

=
r
rA

rA

R0
(eθ ⊗ eθ) (3)
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=
r

R0
(eθ ⊗ eθ), (4)

where eθ is the unit vector tangent to the circular membrane. From this point forward, we drop the
dyadic product (eθ ⊗ eθ) and define the scalar passive, active, and total components of the deformation
gradient in the direction tangent to the membrane as

FP =
r
rA FA =

rA

R0
F =

r
R0

(5)

Figure S1. Decomposition into active and passive components: (A) Conceptual illustration
of multiplicative decomposition of the deformation gradient, F. F = FPFA, where the
active component (FA) maps dX from the original into an intermediate, locally stress-free
configuration, and the passive component (FP) maps the resulting vector to the the current
configuration, resulting in dx. (B) An illustration of original, intermediate, and passive
configurations in the axisymmetric problem considered. R, rA, and r, are the cell radii in
the original, intermediate, and current configuration, respectively. eθ is a unit vector tangent
to the cell periphery in all three configurations.

The Almansi-Hamel strain tensor used in this work is defined as

ε =
1
2

(
1 − F−T F−1

)
. (6)

In terms of the scalar deformation gradient components defined in (5), the total, passive, and active
strains in the membrane are, respectively, given by

εmem =
1
2

(
1 −

(R0

r

)2)
(7)

εp
mem =

1
2

(
1 −

(rA

r

)2)
(8)

εA
mem =

1
2

(
1 −

(R0

rA

)2)
. (9)

Decomposing the inverse of the total deformation in (7) into the inverse of the active and passive
parts results in

εmem =
1
2

(
1 −

(R0

r

)2)
=

1
2

(
1 −

((R0

rA

)(rA

r

))2
)

(10)
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=
1
2

(
1 −

(rA

r

)2
+

(rA

r

)2
−

((R0

rA

)(rA

r

))2
)

(11)

=
1
2

(
1 −

(rA

r

)2
)

+
(rA

r

)2
·

1
2

(
1 −

(R0

rA

)2
)

(12)

= εp
mem +

(rA

r

)2
εA

mem (13)

With the simplifying assumption that passive deformations are small, r ≈ rA, which gives rA

r ≈ 1.
This approximation reduces (13) to an additive decomposition of strains given by

εmem = εp
mem + εA

mem. (14)

Because all active deformations are locally stress-free, stresses in the membrane result entirely
from passive deformations. The passive strain and passive strain rate, given the justification above, are

εp
mem = εmem − ε

A
mem ε̇p

mem = ε̇mem − DA
mem. (15)

It needs to be noted, however, that the right hand sides of the above equations are fully nonlinear.
DA

mem is the strain rate representing membrane unfolding or exocytosis and needs to be prescribed to
determine response of the system. The algorithmic definition of DA

mem is provided in the main text of
this work.

DA
mem and the polymerization speed, vpoly, are computed for a given time step, and the velocity of

the intracellular actin, vc, is then determined using the computational approach described below. Via
numerical integration this allows us to compute εmem and εA

mem consistent with their nonlinear definitions
specified herein.

The total strain, εmem can be determined by integrating its rate consistent with (7)

ε̇mem =
R2

0

r3

(
vpoly + vc

)
(16)

(which reproduces Eq (2.9) in the main text.) To find εA
mem we start with the time derivative of FA as

written in (5):

ḞA =
ṙA

R0
=

ṙA

rA

rA

R0
= DA

mem
rA

R0
(17)

which simplifies to
ṙA = DA

memrA (18)

and where DA
mem = ṙA

rA by definition. Considering that at a given time t the values of rA and DA
mem are

known (computed), numerical integration of ṙA gives rA(t + ∆t), and εA
mem(t + ∆t) is found using (9).

2. Parameters used

The following tables list all parameter values used in the various modeling components.
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Table S1. Parameters used for MM Model.

Parameters Description Value Reference
K actin bulk viscosity 16.7 Pa-min [2]
Em = E1 + E2 overall membrane elasticity 10,000 pN [3, 4]
E1 membrane elasticity constant 5000 pN assumed
E2 membrane elasticity constant 5000 pN assumed
ηm membrane viscosity 100 pN-min [5]
vpoly constant actin polymerization speed 3 µm/min [6, 7]
ηatt constant attachment drag coefficient 2 Pa-min/µm [8, 9]
αa substrate velocity scale factor 0.85 assumed
Es substrate Young’s modulus 2.5–100 kPa various
νp substrate Poisson ratio 0.4 [10]

Table S2. Parameters used for FA Model.

Parameters Description Value Reference
k0

on sase FA complex activation rate 0.0007 (min-µm2)−1 assumed
Nmax total amount of free FA complex 100 µm2 assumed
φmax local maximum FA complex concentration 2.5 a.u. assumed
k0

o f f sase FA complex degradation rate 1.0 (min)−1 assumed
ka attachment traction feedback parameter 0.4 (Pa)−1 assumed
D bound integrin diffusion coefficient 0.008 µm2/min [11]
η0

a minimum attachment drag coefficient 0.1 Pa-min/µm assumed
ηmax maximum attachment drag 20 Pa-min/µm [12]
φ0 attachment force feedback parameter 0.35 a.u. assumed

Table S3. Parameters used for Poly Model.

Parameters Description Value Reference
v0

poly minimum polymerization speed 0.02 µm/min [13]
vmax

poly maximum polymerization speed 10.2 µm/min [6, 7]
αv FA complex sensitivity parameter 0.01 assumed

Table S4. Parameters used for Unfold Model.

Parameters Description Value Reference
gmem early stage growth rate 0.01 pN/min assumed
kφ FA complex - membrane feedback parameter 4.0 assumed
φTOT

max maximum total FA complex 100 µm2 assumed
dm Membrane reserves decay rate 0.32 (min)−1 assumed
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Table S5. Parameters used in Contract Model.

Parameters Description Value Reference
Dcontract actomyosin contraction rate -0.1 (min)−1 [14]
kσ cellular tension feedback paramter 10 (Pa)−1 assumed

The lipid bilayer of the cell membrane is very stiff with small viscosity. We choose a cell
membrane viscosity that is 2–3 orders of magnitude larger than that listed in the literature for the lipid
bilayer [5] because such a choice reduces oscillations that may otherwise occur in the numerical
method. We also note that even with a larger membrane viscosity, the elastic stiffness of the
membrane dominates the overall material response. In addition, the actin cortex attached to the cell
membrane is more viscous and significantly less stiff than the lipid bilayer and also contributes to the
material response at the cell periphery [15].

In the FA model, the value of FA complex φ(r, t) is given in dimensionless arbitrary units (a.u.).
We note that in this particular model component we are not aiming for a quantitative comparison to
experimental results, so the parameters for the FA model were chosen so that total FA complex
sensitivity to the substrate stiffness qualitatively matches experimental data. Because φTOT is the
integral of φ(r, t) over the cell area, its units are µm2.

In the Poly model, the parameters for the minimum and maximum polymerization speeds were
chosen from a combination of experimental and modeling results. We choose the fixed polymerization
velocity in the MM model, vpoly, by finding the average value of (2.14) of the main text. Specifically,
we find that given the noted parameter values for v0

poly and vmax
poly,

1
Nmax

∫ Nmax

0
vpoly(φTOT ) dφTOT = 3.17 (19)

and therefore chose a value of vpoly = 3.0 µm/min for the fixed polymerization speed.
For an arbitrary line segment of length L, the active rate of deformation measures ∆L

L∆t , where ∆L is
the change in length per time interval ∆t. Reymann et al. [14] measure the speeds of myosin contraction
in various actin structures. From these speeds and the size of actin rings used in their experiments we
are able to calculate the contraction rate, Dcontract.

3. Computational approach

We solve the model equations in Matlab R2021a using the finite element method. Below is an
outline of the numerical algorithm that was used to solve the governing equations. We outline the
algorithm for the Contract model since this is the model that includes all mechanisms we consider.

1) Prior to iterations in time:

(a) Substrate mesh is created. For the simulations shown in this work the substrate domain is
circular with radiussub ≤ 50 µm. 400 radial finite elements are used in the discretization.

(b) Cell mesh is created. For the simulations shown in this work the initial cell radius is R0 ≤

10 µm. 100 finite elements are used for the cell throughout the simulation, which employs a
moving mesh. The boundary node initially at R0 = 10 µm moves with the velocity of the cell
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periphery, vperiph. The remaining nodes are redistributed at each time step so that they remain
equally spaced.

(c) Comment: We have also run simulations of the Contract model using cell meshes with 50 and
200 cell elements and have found that the difference in cell spread area sensitivity to substrate
stiffness obtained with 100 elements and that obtained with 200 elements is negligible.

(d) The initial values of all fields for which we are solving are zero.

2) Within each iteration in time: Simulations correspond to a time interval of 30 min. For all
simulation results shown here we use a time step ∆t = 0.005 min.

(a) Rate of active deformation representing actomyosin contractions, Dcontract, as used in (2.23)
of the main text, is defined on the current mesh. Dcontract is set to the value specified in Table
S5. This constant rate of contraction acts from the cell center to a distance 2 µm from the
cell periphery. For all other models in which actomyosin contraction is not present, Dcontract

is set to zero.
(b) Given vc(r, t), σr(r, t), σθ(r, t), us(r, t), φ(r, t), φTOT (t), and vs(r, t) (i.e. the substrate velocity),

we use the finite element method to solve for vc(r, t + ∆t), σr(r, t + ∆t), σθ(r, t + ∆t) and
∆us(x, t + ∆t) (i.e. the change is substrate displacement over time ∆t).

i. The polymerization velocity, vpoly is calculated using (2.14) in the main text.
ii. The finite element method requires that the governing equations are put into a weak form

and discretized in time. We use an implicit time stepping method to calculate updated
values of vc, σr, σθ and ∆us. The time-discretized weak forms of governing equations are
given below. For clarity we have omitted explicit indication of which variables depend
on r.

Weak form of (2.3) from main text:

∫ 1

−1

(∂v
∂r
σr(t + ∆t) + v

1
r
σθ(t + ∆t)

)
rJ dξ +∫ 1

−1
vηatt(φ(t))

(
vc(t + ∆t) − vs(t)

)
rJ dξ =

(
vσmem(t)

)∣∣∣∣
rN

(20)

In this and all weak forms below, the domain of integration is a reference element, which
is parameterized by −1 ≤ ξ ≤ 1, where the spatial coordinate local to the reference
element is ξ. The variable J represents the Jacobian of transformation between global
radial coordinates in the physical space, denoted by r, to the space of local coordinates,
ξ. For all integrals we use Gaussian quadrature with two quadrature points to integrate
over a reference element. In (20), the variable v, is the test function. The attachment
viscosity, ηatt is calculated in terms of the local value of φ(r, t) according to (2.13) in the
main text. Lastly, rN denotes the position of the boundary node at the cell periphery on
which the membrane stress, σmem(t) is acting. Calculation of σmem is described further
below.
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Weak form of (2.4) and (2.5) from main text:∫ 1

−1
σr

(
σr(t + ∆t) − K

(∂vc

∂r
(t + ∆t) − Dcontract))rJ dξ = 0 (21)∫ 1

−1
σθ

(
σθ(t + ∆t) − K

vc(t + ∆t)
r

)
rJ dξ = 0 (22)

In both (21) and (22), we have explicitly set λ = 0, since this is the value used in
simulations. The variables σr and σθ are test functions.

Weak form of (2.11) from main text:∫ 1

−1

[
Cs
∂us

∂r
∂∆us

∂r
(t + ∆t) +

Csνp

(∂us

∂r
∆us(t + ∆t)

r
+

us

r
∂∆us

∂r
(t + ∆t)

)
+ Cs

us

r
∆us(t + ∆t)

r
+

ηatt(φ(t))
(
vs(t) − vc(t + ∆t)

)]
rJ dξ =

−

∫ 1

−1

[
Cs
∂us

∂r
∂us

∂r
(t) + Csνp

(∂us

∂r
us(t))

r
+

us

r
∂us

∂r
(t)

)
+ Cs

us

r
us(t)

r

]
rJ dξ (23)

In (23), us is a test function.
iii. The weak forms in (20)–(23) are spatially discretized. We use C0 piecewise-linear

Lagrange finite elements to discretize the cell velocity, vc, the change in substrate
displacement ∆us, and the test function v and u. We use piecewise constant finite
elements to discretize the radial and angular cell stresses, σr and σθ, respectively, and
test functions σr and σθ. In order to prevent spurious oscillations is stresses, it is typical
to use finite element spaces of lower order to discretize stresses in mixed finite element
methods [16]. The fully discretized governing equations are assembled into a global
matrix with the following structure

Mvvc Mvσr Mvσθ 0
Mσrvc Mσrσr 0 0
Mσθvc 0 Mσθσθ 0
Muvc 0 0 Mu∆us




vc(t + ∆t)
σr(t + ∆t)
σθ(t + ∆t)
∆us(t + ∆t)

 =


Rvc

Rσr

Rσt

R∆us

 (24)

In this linear system, the variables denoted by M are assembled matrices corresponding
to components of the weak forms above. Similarly, variables R correspond to the
components of the weak form evaluated at time t or those to those that are constant.
Using (24), we solve for vc(x, t + ∆t), σr(x, t + ∆t), σθ(t + ∆t) and ∆us(x, t + ∆t) at all
nodal positions.

(c) Given the current value of vc(x, t + ∆t) at the boundary node corresponding to the cell
periphery, the velocity of the cell periphery, vperiph, is updated, and the position of the
boundary node at the cell periphery, rN , is updated according to

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2408–2438.
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rN(t + ∆t) = rN(t) + vperiph∆t. The positions of the remaining nodes are updated so that they
are equally spaced. We record the mesh velocity, which is given by

Vmesh(ri) =
vperiph

Nel
i (25)

where ri is the position of the ith node and Nel is the number of elements.
(d) Given the current value of vc(x, t + ∆t) at the boundary node corresponding to the cell

periphery, the updated mesh, and active rate of membrane deformation at time t, we update
the active rate of membrane deformation DA

mem(t + ∆t) and membrane tension σmem(t + ∆t).
i. To update the membrane tension and begin the algorithm (for t ≥ 0.7 min.) for calculating

the rate of active membrane deformation as described in Section 2.5 of the main text, we
compute the updated rate of change of the membrane strain, ε̇mem(t+∆t) according to (16).
Similarly, the total membrane strain, εmem(t + ∆t), and the total active strain, εA

mem(t + ∆t)
are updated according to (7) and (9). Given these values, one can calculate the change in
membrane stress, ∆σmem(t + ∆t) from the discretized version of (2.17) of the main text.
This discretized version is given by

∆σmem(t + ∆t)
∆t

= (E1 + E2)
(
ε̇mem(t + ∆t) − DA

mem(t)
)
+

E1E2

ηm

(
εmem(t + ∆t) − εA

mem(t + ∆t)
)
−

E2

ηm

(
σmem(t) + ∆σmem(t + ∆t)

)
(26)

We calculate the updated membrane tension from

σmem(t + ∆t) = σmem(t) + ∆σmem(t + ∆t) (27)

ii. The next step of the algorithm in Section 2.5 of the main text requires reducing the rate
of membrane tension in a manner proportional to φTOT (t), as given by equation (2.19) of
the main text. The discrete form of this equation is given by

∆σDA

mem = e−kφ f (φTOT (t))∆σmem(t + ∆t) (28)

where ∆σmem(t + ∆t) is determined from (26).
iii. The reduced change in membrane tension is substituted into (26) to compute the rate

of active membrane deformation that would result in this value of change in membrane
tension. Specifically, the following equation is solved for D

A
mem.

∆σDA

mem

∆t
= (E1 + E2)

(
ε̇mem(t + ∆t) − D

A
mem

)
+

E1E2

ηm

(
εmem(t + ∆t) − εA

mem(t + ∆t)
)
−

E2

ηm
σmem(t + ∆t) (29)

iv. Once D
A
mem is calculated, this value is reduced in time, as given by (2.21) in the main text,

to obtain an updated active rate of membrane deformation to be used at the next time
step.
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(e) Given φTOT (t), σr(t + ∆t), vc(t + ∆t), and a substrate velocity updated according to (2.7) of
the main text, vs(t + ∆t), we use the finite element method to update the spatial distribution
of the FA complex, φ(r, t + ∆t).

i. The attachment force fattach is updated according to (2.6) of the main text.
ii. Comment: We use an Arbitrary Eulerian-Lagrangian (ALE) approach because the finite

element mesh for the cell is updated at each time step. Given a general mesh velocity,
Vmesh, a general ALE formulation for the reaction-diffusion-advection of scalar quantity
c is given by the following (see [17]):

∂c
∂t

+ ∇ ·
(
cv

)
− Vmesh∇c = D∇2c + R(c) (30)

where v is the advection velocity, D is the diffusion coefficient, and R(c) describes any
reaction terms. A general overview of ALE approaches can be found in [18].

iii. The numerical solution to our model equations requires that the evolution equation for φ
accounts for the mesh velocity. In our case, the mesh velocity is denoted by Vmesh and
computed via (25). Note that since φ represents the entire activated FA complex and
is localized within the cell via attachment to the substrate, we do not assume that φ is
advected with the velocity of the actin network. The temporally discretized weak form
of (2.24) of the main text, along with the addition of the contribution from the moving
mesh, is given by

∫ 1

−1
φ

(
φ(t + ∆t) − φ(t)

∆t
− Vmesh

∂φ

∂r
(t + ∆t)+

k0
o f f e

−ka | fattach(t+∆t)|e−kσh(σr(t+∆t))φ(t + ∆t)
)
rJ dξ +

∫ 1

−1
D
∂φ

∂r
∂φ

∂r
(t + ∆t)rJ dξ =∫ 1

−1
φk0

on
(
Nmax − φ

TOT (t)
)(
φmax − φ(t)

)
rJ dξ (31)

Again, explicit writing of r dependence has been omitted for clarity. Here, φ are test
functions. We use C0 piecewise linear finite elements for the spatial discretization of φ
and φ.

iv. Lastly, φTOT (t + ∆t) is computed by integrating φ(r, t + ∆t) over the current cell area:

φTOT (t + ∆t) = 2π
∫ rN

0
φ(r, t + ∆t)r dr (32)
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Figure S2. Effect of changing parameter λ. In our simulations we assume that λ = 0. (See
Eqs (2.3) and (2.4) of the main text). Changing the parameter λ does not significantly affect
quantitative results and has no affect on the qualitative conclusions of this work. To quantify
the affect of changing λ from λ = 0 to λ = 5, we calculate the percent increase in cell spread
in all models we consider in this work. For the MM model, the percent increase in cell spread
area for λ = 0 is 2.50% and for λ = 5 it is 2.56%. For the FA model, the percent increase in
spread area for λ = 0 is 16.66% and for λ = 5 it is 17.00%. For the Poly model, the percent
increase in spread area for λ = 0 is 38.40%. and for λ = 5 it is 39.49%. For the Unfold
model, the percent increase in spread area for λ = 0 is 267.62% and for λ = 5 it is 290.89%.
For the Contract model, the percent increase in spread area for λ = 0 is 203.96% and for
λ = 5 it is 247.19%.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2408–2438.
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Figure S3. Substrate velocities. Substrate velocities computed for a substrate Young’s
modulus Es = 100 kPa for each of the five models we consider. Due to actin retrograde flow,
substrate displacements, and therefore substrate velocities, are oriented toward cell interior.
Maximum substrate speeds occur near the cell periphery.
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Figure S4. A comparison of attachment tractions. In all figures white arrows indicate
direction of traction that the cell exerts onto the substrate. (A) Attachment tractions for MM
model. (B) Attachment tractions for FA model. (C) Experimentally measured attachment
tractions from [19] (reproduced with permission). Cells were plated on prepatterned
polyacrylamide gels and imaged after 6–24 hours of spreading. Fibronectin patterns
controlled for cell spread area, which in these images is 800 µm2. Color bar for experimental
attachment tractions is found in left-most panel.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2408–2438.
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Figure S5. Comparison of polymerization speeds, retrograde flow speeds at the cell
periphery, velocities of the cell periphery, and membrane tension for different models. Row
1 shows actin polymerization speeds. Row 2 shows the retrograde flow speeds. Row 3 shows
the velocity of the cell periphery, which is the (positive) polymerization velocity added to the
(negative) retrograde flow velocity. Row 4 is the membrane tension. The figures in column
1 correspond to data for the Const Poly - Unfold model. Column 2 is for the Poly model.
Column 3 is for the Unfold model.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2408–2438.
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Figure S6. Membrane unfolding / exocytosis active deformation. (A) The total membrane
area added by unfolding / exocytosis. (B) Time evolution of the active strain rate, DA

mem,
representing membrane unfolding / exocytosis. The inset shows the time evolution of the
membrane unfolding rate for times t = 1 to 4.5 min, where largest differences in active rate
of deformation occur.
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Figure S7. A comparison of the effects of membrane unfolding and adhesion dependent
polymerization speed with contractility on equilibrium cell spread area: Top left image
shows spread area dependence on substrate Young’s modulus for the Contant Poly / Unfold
model with contractility. In this case, the equilibrium cell spread area increases by 60.96%
as the substrate Young’s modulus increases from 2.5 kPa to 100 kPa. The bottom left
image shows spread area dependence on substrate Young’s modulus for the Poly model with
contractility. Here, the equilibrium cell spread area increases by 37.88% as the substrate
Young’s modulus increases from 2.5 kPa to 100 kPa. When both FA dependent actin
polymerization speed and membrane unfolding / exocytosis are combined with contractility
(i.e., the Contraction model) the two mechanisms are amplified and the equilibrium cell area
increases by 203.96%. In general, the combination of membrane unfolding / exocytosis with
FA-dependent actin polymerization amplifies the dependence of cell spread area on substrate
stiffness. The addition of contractility slightly decreases the percent increase in spread area
for all combinations of mechanisms.
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Figure S8. Difference in retrograde flow speed of Contract model and Unfold model.
Quantity graphed is (retrograde flow speed for Contract model) - (retrograde flow speed for
Unfold model). In (A) a substrate stiffness of Es = 2.5 kPa is used, and in (B) a substrate
stiffness of Es = 100 kPa. Vertical dashed line indicates transition region at which retrograde
flow speed of Contract model exceeds that of Unfold model. Arrow indicates region where
retrograde flow speed of Contract model is larger. Horizontal axis represents finite element
(FEM) node id. We chose this as the horizontal variable instead of spatial coordinates, which
change as the cell spreads, so that we can compare differences in retrograde flow speeds in
the same position relative to the cell center.
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Figure S9. Changing value of kσ in Contract model. (A) Cell spread area dependence on
substrate stiffness for Contract model with kσ = 100 (Pa)−1. The spread area increases by
193.44%, which is slightly smaller compared to results for kσ = 10 (Pa)−1shown in Figure 7
of main text. (B) Intracellular radial stresses at t = 30 min for Contract model with kσ = 100
(Pa)−1 and substrate stiffness Es = 2.5 kPa (top) and Es = 100 kPa (bottom). Intracellular
radial stresses are almost identical to those for Contract model with kσ = 10 (Pa)−1 shown in
Figure 7 of main text. Black circles indicate regions of intracellular tension. (C) Comparison
of sensitivity of total FA complex to substrate stiffness for the FA model, Unfold model, and
Contract model. All three models (and others not illustrated) follow the same trend.
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