Research article Special Issues

Modelling Botswana's HIV/AIDS response and treatment policy changes: Insights from a cascade of mathematical models

  • Received: 23 November 2021 Revised: 07 September 2022 Accepted: 19 September 2022 Published: 26 October 2022
  • The management of HIV/AIDS has evolved ever since advent of the disease in the past three decades. Many countries have had to revise their policies as new information on the virus, and its transmission dynamics emerged. In this paper, we track the changes in Botswana's HIV/AIDS response and treatment policies using a piece-wise system of differential equations. The policy changes are easily tracked in three epochs. Models for each era are formulated from a "grand model" that can be linked to all the epochs. The grand model's steady states are determined and analysed in terms of the model reproduction number, $ R_{0}. $ The model exhibits a backward bifurcation, where a stable disease-free equilibrium coexists with a stable endemic equilibrium when $ R_{0} < 1. $ The stability of the models for the other epochs can be derived from that of the grand model by setting some parameters to zero. The models are fitted to HIV/AIDS prevalence data from Botswana for the past three decades. The changes in the populations in each compartment are tracked as the response to the disease and treatment policy changed over time. Finally, projections are made to determine the possible trajectory of HIV/AIDS in Botswana. The implications of the policy changes are easily seen, and a discussion on how these changes impacted the epidemic are articulated. The results presented have crucial impact on how policy changes affected and continue to influence the trajectory of the HIV/AIDS epidemic in Botswana.

    Citation: Tefa Kaisara, Farai Nyabadza. Modelling Botswana's HIV/AIDS response and treatment policy changes: Insights from a cascade of mathematical models[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 1122-1147. doi: 10.3934/mbe.2023052

    Related Papers:

  • The management of HIV/AIDS has evolved ever since advent of the disease in the past three decades. Many countries have had to revise their policies as new information on the virus, and its transmission dynamics emerged. In this paper, we track the changes in Botswana's HIV/AIDS response and treatment policies using a piece-wise system of differential equations. The policy changes are easily tracked in three epochs. Models for each era are formulated from a "grand model" that can be linked to all the epochs. The grand model's steady states are determined and analysed in terms of the model reproduction number, $ R_{0}. $ The model exhibits a backward bifurcation, where a stable disease-free equilibrium coexists with a stable endemic equilibrium when $ R_{0} < 1. $ The stability of the models for the other epochs can be derived from that of the grand model by setting some parameters to zero. The models are fitted to HIV/AIDS prevalence data from Botswana for the past three decades. The changes in the populations in each compartment are tracked as the response to the disease and treatment policy changed over time. Finally, projections are made to determine the possible trajectory of HIV/AIDS in Botswana. The implications of the policy changes are easily seen, and a discussion on how these changes impacted the epidemic are articulated. The results presented have crucial impact on how policy changes affected and continue to influence the trajectory of the HIV/AIDS epidemic in Botswana.



    加载中


    [1] Botswana National Policy on HIV/AIDS, 2012, available from: https://www.undp.org/content/dam/botswana/docs/HIVAIDS/Botswana%20HIV%20and%20AIDS%20Policy%202012.pdf (accessed 15 August 2021)
    [2] World Health Organization, Health Policy, available from: https://www.who.int/alliance-hpsr/alliancehpsr_reader.pdf (accessed 22 March 2011)
    [3] L. F. Johnson, P. J. White, A review of mathematical models of HIV/AIDS interventions and their implications for policy, Sex. Transm. Infect., 87 (2011), 629–634. http://dx.doi.org/10.1136/sti.2010.045500 doi: 10.1136/sti.2010.045500
    [4] K. Nah, H. Nishiura, N. Tsuschiya, X. Sun, A. Imamura, Test-and-treat approach to HIV/AIDS: a primer for mathematical modeling, Theor. Biol. Med. Model., 14 (2017), 16. https://doi.org/10.1186/s12976-017-0062-9 doi: 10.1186/s12976-017-0062-9
    [5] R. M. Granich, C. F. Gilks, C. Dye, K. M. De Cock, B. G. Williams, Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model, Lancet, 373 (2009), 48–57. https://doi.org/10.1016/s0140-6736(08)61697-9 doi: 10.1016/s0140-6736(08)61697-9
    [6] A. M. Foss, P. T. Vickerman, M. Alary, C. H. Watts, How much could a microbicide's sexually transmitted infection efficacy contribute to reducing HIV risk and the level of condom use needed to lower risk? Model estimates, Sex. Transm. Dis., 85 (2009), 276–282. https://doi.org/10.1136/sti.2008.032458 doi: 10.1136/sti.2008.032458
    [7] L. Zhang, P. Peng, Y. Wu, X. Ma, N. N. Soe, X. Huang, et al., Modelling the epidemiological impact and cost-effectiveness of PrEP for HIV transmission in MSM in China, AIDS Behav., 23 (2019), 523–533. https://doi.org/10.1007/s10461-018-2205-3 doi: 10.1007/s10461-018-2205-3
    [8] I. Cremin, L. McKinnon, J. Kimani, P. Cherutich, G. Gakii, F. Muriuki, et al., PrEP for key populations in combination HIV prevention in Nairobi: a mathematical modelling study, Lancet HIV, 4 (2017), e214–e222. https://doi.org/10.1016/s2352-3018(17)30021-8 doi: 10.1016/s2352-3018(17)30021-8
    [9] C. Pinto, A. R. Carvalho, D. Baleanu, H. M. Srivastava, Efficacy of the post-exposure prophylaxis and of the HIV latent reservoir in HIV infection, Mathematics, 7 (2019), 515. https://doi.org/10.3390/math7060515 doi: 10.3390/math7060515
    [10] D. E. Gordon, L. R. Ghazaryan, J. Maslak, B. J. Anderson, K. S. Brousseau, A. F. Carrascal, L. C. Smith, Projections of diagnosed HIV infection in children and adolescents in New York State, Paediatr. Perinat. Ep., 26 (2012), 131–139. https://doi.org/10.1111/j.1365-3016.2011.01243.x doi: 10.1111/j.1365-3016.2011.01243.x
    [11] M. Ronoh, F. Chirove, J. Wairimu, W. Ogana, Evidence-based modeling of combination control on Kenyan youth HIV/AIDS dynamics, PloS One, 17 (2020), e0242491. https://doi.org/10.1371/journal.pone.0242491 doi: 10.1371/journal.pone.0242491
    [12] J. A. Smith, S. J. Anderson, K. L. Harris, J. B. McGillen, E. Lee, G. P. Garnett, et al., Maximising HIV prevention by balancing the opportunities of today with the promises of tomorrow: a modelling study, Lancet HIV, 3 (2016), e289–e296. https://doi.org/10.1016/s2352-3018(16)30036-4 doi: 10.1016/s2352-3018(16)30036-4
    [13] N. J. Nagelkerke, S. Moses, S. J. de Vlas, R. C. Bailey, Modelling the public health impact of male circumcision for HIV prevention in high prevalence areas in Africa, BMC Infect. Dis., 7 (2007), 1–5. https://doi.org/10.1186/1471-2334-7-16 doi: 10.1186/1471-2334-7-16
    [14] P. A. Naik, M. Ghoreishi, J. Zu, Approximate solution of a nonlinear fractional-Order HIV model using momotopy analysis method, Int. J. Numer. Anal. Model., 19 (2022), 52–84.
    [15] P. A. Naik, K. M. Owolabi, M. Yavuz, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Soliton Fract., 140 (2020), 110272. https://doi.org/10.1016/j.chaos.2020.110272 doi: 10.1016/j.chaos.2020.110272
    [16] P. A. Naik, M. Yavuz, J. Zu, The role of prostitution on HIV transmission with memory: A modeling approach, Alex. Eng. J., 59 (2020), 2513–2531. https://doi.org/10.1016/j.aej.2020.04.016 doi: 10.1016/j.aej.2020.04.016
    [17] M. Farahani, A. Vable, R. Lebelonyane, K. Seipone, M. Anderson, A. Avalos, et al. Outcomes of the Botswana national HIV/AIDS treatment programme from 2002 to 2010: a longitudinal analysis, Lancet Glob. Health, 2 (2014), e44–e50. https://doi.org/10.1016/s2214-109x(13)70149-9 doi: 10.1016/s2214-109x(13)70149-9
    [18] F. Nyabadza, Z. Mukandavire, Modelling HIV/AIDS in the presence of an HIV testing and screening campaign, J. Theor. Biol., 280 (2011), 167–179. https://doi.org/10.1016/j.jtbi.2011.04.021 doi: 10.1016/j.jtbi.2011.04.021
    [19] S. M. Rahman, N. K. Vaidya, X. Zou, Impact of early treatment programs on HIV epidemics: An immunity-based mathematical model, Math. Biosci., 280 (2016), 38–49. https://doi.org/10.1016/j.mbs.2016.07.009 doi: 10.1016/j.mbs.2016.07.009
    [20] J. M. Hyman, J. Li, The reproductive number for an HIV model with differential infectivity and staged progression, Linear Algebra Appl., 398 (2005), 101–116. https://doi.org/10.1016/j.laa.2004.07.017 doi: 10.1016/j.laa.2004.07.017
    [21] C. C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci., 181 (2003), 1–16. https://doi.org/10.1016/s0025-5564(02)00149-9 doi: 10.1016/s0025-5564(02)00149-9
    [22] F. Nyabadza, Z. Mukandavire, S. D. Hove-Musekwa, Modelling the HIV/AIDS epidemic trends in South Africa: Insights from a simple mathematical model, Nonlinear Anal. Real World Appl., 12 (2011), 2091–2104. https://doi.org/10.1016/j.nonrwa.2010.12.024 doi: 10.1016/j.nonrwa.2010.12.024
    [23] M. Martcheva, An introduction to Mathematical Epidemiology, Vol. 61. Springer, New York, 2015. https://doi.org/10.1007/978-1-4899-7612-3
    [24] I. Ghosh, P. K. Tiwari, S. Samanta, I. M. Elmojtaba, N. Al-Salti, J. Chattopadhyay, A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear, Math. Biosci., 306 (2018), 160–169.
    [25] F. Nyabadza, C. Chiyaka, Z. Mukandavire, S. D. Hove-Musekwa, Analysis of an HIV/AIDS model with public-health information campaigns and individual withdrawal, J. Biol. Syst., 18 (2010), 357–375. https://doi.org/10.1142/S0218339010003329 doi: 10.1142/S0218339010003329
    [26] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibrium for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [27] A. B. Gumel, Causes of backward bifurcations in some epidemiological models, J. Math. Anal. Appl., 395 (2012), 355–365. https://doi.org/10.1016/j.jmaa.2012.04.077 doi: 10.1016/j.jmaa.2012.04.077
    [28] K. P. Hadeler, P. Van den Driessche, Backward bifurcation in epidemic control, Math. Biosci., 146 (1997), 15–35. https://doi.org/10.1016/s0025-5564(97)00027-8 doi: 10.1016/s0025-5564(97)00027-8
    [29] T. Kaisara, F. Nyabadza, On the future of HIV/AIDS in Botswana in the presence of drop-outs: Insights from a simple mathematical model, Int. J. Appl. Computat. Math., 6 (2020), 1–20. https://doi.org/10.1007/s40819-020-00843-0 doi: 10.1007/s40819-020-00843-0
    [30] World Health Organization, World health rankings: live longer live better, 2018.
    [31] S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int. Stat. Rev., 62 (1994), 229–243. https://doi.org/10.2307/1403510 doi: 10.2307/1403510
    [32] B. G. Williams, E. Gouws, R0 and the elimination of HIV in Africa: Will 90-90-90 be sufficient?, available from: https://arXiv.org/ftp/arXiv/papers/1304/1304.3720.pdf (accessed 14 May 2019).
    [33] J. P. LaSalle, The stability of dynamical systems, regional conference series in applied mathematics, Society for industrial and applied mathematics, Philadelphia, USA, 1976.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1954) PDF downloads(114) Cited by(3)

Article outline

Figures and Tables

Figures(11)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog