Research article Special Issues

Constrained hybrid control for parametric uncertainty systems via step-function method


  • Received: 01 July 2022 Revised: 13 July 2022 Accepted: 14 July 2022 Published: 28 July 2022
  • In this paper, considering that sometimes signal transmission may be interrupted, or signal input errors may occur, we establish a novel class of parametric uncertainty hybrid control system models including the impulsive control signals under saturated inputs, which can reflect the signal transmission process more realistically. Based on the step-function method, improved polytopic representation approach and Schur complement, we find the stability conditions, which are less conservative than those with the traditional Lyapunov method, of the considered control system. In addition, we investigate the design of the control gains and the auxiliary control gains for easily finding the suitable control signals, the auxiliary signals and the estimation of the attraction domain. Moreover, our proposed methods are applied to the fixed time impulse problems of uncertain systems with or without Zeno behavior. Simulation results for the uncertain neural network systems are presented to show the feasibility and effectiveness of our stabilization methods using the step-function.

    Citation: Yawei Shi, Hongjuan Wu, Chuandong Li. Constrained hybrid control for parametric uncertainty systems via step-function method[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 10741-10761. doi: 10.3934/mbe.2022503

    Related Papers:

  • In this paper, considering that sometimes signal transmission may be interrupted, or signal input errors may occur, we establish a novel class of parametric uncertainty hybrid control system models including the impulsive control signals under saturated inputs, which can reflect the signal transmission process more realistically. Based on the step-function method, improved polytopic representation approach and Schur complement, we find the stability conditions, which are less conservative than those with the traditional Lyapunov method, of the considered control system. In addition, we investigate the design of the control gains and the auxiliary control gains for easily finding the suitable control signals, the auxiliary signals and the estimation of the attraction domain. Moreover, our proposed methods are applied to the fixed time impulse problems of uncertain systems with or without Zeno behavior. Simulation results for the uncertain neural network systems are presented to show the feasibility and effectiveness of our stabilization methods using the step-function.



    加载中


    [1] X. Li, H. Zhu, S. Song, Input-to-state stability of nonlinear systems using observer-based event-triggered impulsive control, IEEE Trans. Syst. Man Cybern. Syst., 51 (2020), 6892–6900. https://doi.org/10.1109/TSMC.2020.2964172 doi: 10.1109/TSMC.2020.2964172
    [2] X. Wang, X. Liu, K. She, S. Zhong, L. Shi, Delay-dependent impulsive distributed synchronization of stochastic complex dynamical networks with time-varying delays, IEEE Trans. Syst. Man Cybern. Syst., 49 (2018), 1496–1504. https://doi.org/10.1109/TSMC.2018.2812895 doi: 10.1109/TSMC.2018.2812895
    [3] W. Zhang, Y. Tang, Q. Miao, J.-A. Fang, Synchronization of stochastic dynamical networks under impulsive control with time delays, IEEE Trans. Neural Networks Learn. Syst., 25 (2013), 1758–1768. https://doi.org/10.1109/TNNLS.2013.2294727 doi: 10.1109/TNNLS.2013.2294727
    [4] H. Li, C. Li, J. Huang, A hybrid impulsive and sampled-data control framework for a class of nonlinear dynamical systems with input constraints, Nonlinear Anal. Hybrid Syst., 36 (2020), 100881. https://doi.org/10.1016/j.nahs.2020.100881 doi: 10.1016/j.nahs.2020.100881
    [5] S. Dong, H. Zhu, S. Zhong, K. Shi, Y. Zeng, Hybrid control strategy of delayed neural networks and its application to sampled-data systems: an impulsive-based bilateral looped-functional approach, Nonlinear Dyn., 105 (2021), 3211–3223. https://doi.org/10.1007/s11071-021-06774-9 doi: 10.1007/s11071-021-06774-9
    [6] W. Zhang, Y. Tang, Q. Miao, W. Du, Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects, IEEE Trans. Neural Networks Learn. Syst., 24 (2013), 1316–1326. https://doi.org/10.1007/s11071-021-06774-9 doi: 10.1007/s11071-021-06774-9
    [7] C. Li, S. Wu, G. Feng, X. Liao, Stabilizing effects of impulses in discrete-time delayed neural networks, IEEE Trans. Neural Networks, 22 (2011), 323–329. https://doi.org/10.1109/TNN.2010.2100084 doi: 10.1109/TNN.2010.2100084
    [8] W. Zhang, Y. Tang, W. K. Wong, Q. Miao, Stochastic stability of delayed neural networks with local impulsive effects, IEEE Trans. Neural Networks Learn. Syst., 26 (2014), 2336–2345. https://doi.org/10.1109/TNNLS.2014.2380451 doi: 10.1109/TNNLS.2014.2380451
    [9] Y. Feng, C. Li, T. Huang, Periodically multiple state-jumps impulsive control systems with impulse time windows, Neurocomputing, 193 (2016), 7–13. https://doi.org/10.1016/j.neucom.2016.01.059 doi: 10.1016/j.neucom.2016.01.059
    [10] C. Li, G. Feng, T. Huang, On hybrid impulsive and switching neural networks, IEEE Trans. Syst. Man Cybern., 38 (2008), 1549–1560. https://doi.org/10.1109/TSMCB.2008.928233 doi: 10.1109/TSMCB.2008.928233
    [11] W. Zhang, Y. Tang, W. Zheng, Y. Liu, Stability of time-varying systems with delayed impulsive effects, Int. J. Robust Nonlinear Control, 31 (2021), 7825–7843. https://doi.org/10.1002/rnc.5716 doi: 10.1002/rnc.5716
    [12] C. Liao, D. Tu, Y. Feng, W. Zhang, Z. Wang, B. O. Onasanya, A sandwich control system with dual stochastic impulses, IEEE/CAA J. Autom. Sin., 9 (2022), 741–744. https://doi.org/10.1109/JAS.2022.105482 doi: 10.1109/JAS.2022.105482
    [13] R. Qiu, R. Li, J. Qiu, A novel step-function method for stability analysis of T-S fuzzy impulsive systems, IEEE Trans. Fuzzy Syst., (2022). https://doi.org/10.1109/TFUZZ.2022.3152076
    [14] R. I. Leine, T. Heimsch, Global uniform symptotic attractive stability of the non-autonomous bouncing ball system, Phys. D Nonlinear Phenomena, 241 (2012), 2029–2041. https://doi.org/10.1016/j.physd.2011.04.013 doi: 10.1016/j.physd.2011.04.013
    [15] L. Liu, X. Cao, Z. Fu, S. Song, H. Xing, Input-output finite-time control of uncertain positive impulsive switched systems with time-varying and distributed delays, Int. J. Control Autom. Syst., 16 (2018), 670–681. https://doi.org/10.1007/s12555-017-0269-x doi: 10.1007/s12555-017-0269-x
    [16] T. Hayakawa, W. M. Haddad, K. Y. Volyanskyy, Neural network hybrid adaptive control for nonlinear uncertain impulsive dynamical systems, Int. J. Adapt. Control Signal Process., 2 (2008), 862–874. https://doi.org/10.1016/j.nahs.2008.01.002 doi: 10.1016/j.nahs.2008.01.002
    [17] X. Wang, J. H. Park, H. Yang, S. Zhong, An improved impulsive control approach for cluster synchronization of complex networks with parameter mismatches, IEEE Trans. Syst. Man Cybern. Syst., 51 (2019), 2561–2570. https://doi.org/10.1109/TSMC.2019.2916327 doi: 10.1109/TSMC.2019.2916327
    [18] K. Shi, J. Wang, Y. Tang, S. Zhong, Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies, Fuzzy Sets Syst., 381 (2018), 1–25. https://doi.org/10.1016/j.fss.2018.11.017 doi: 10.1016/j.fss.2018.11.017
    [19] X. Cai, S. Zhong, J. Wang, K. Shi, Robust $\text{H}_{\infty}$ control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts, Appl. Math. Comput., 385 (2020), 125432. https://doi.org/10.1007/s40314-022-01879-2 doi: 10.1007/s40314-022-01879-2
    [20] W. Chen, X. Deng, W. Zheng, Sliding-mode control for linear uncertain systems with impulse effects via switching gains, IEEE Trans. Autom. Control, 67 (2022), 2044–2051. https://doi.org/10.1109/TAC.2021.3073099 doi: 10.1109/TAC.2021.3073099
    [21] J. Lee, J. H. Moon, H. J. Lee, Continuous-time synthesizing robust sampled-data dynamic output-feedback controllers for uncertain nonlinear systems in takagi–sugeno form: A descriptor representation approach, Inform. Sci., 565 (2021), 456–468. https://doi.org/10.1016/j.ins.2021.02.032 doi: 10.1016/j.ins.2021.02.032
    [22] T. Hu, Z. Lin, Control systems with actuator saturation analysis and design, Springer science and business media LLC, 2001.
    [23] H. Li, C. Li, D. Ouyang, S. K. Nguang, Impulsive stabilization of nonlinear time-delay system with input saturation via delay-dependent polytopic approach, IEEE Trans. Syst. Man Cybern. Syst., 51 (2020), 7087–7098. https://doi.org/10.1109/TSMC.2019.2963398 doi: 10.1109/TSMC.2019.2963398
    [24] S. Oucheriah, Robust exponential convergence of a class of linear delayed systems with bounded controllers and disturbances, Automatica, 42 (2006), 1863–1867. https://doi.org/10.1016/j.automatica.2006.05.023 doi: 10.1016/j.automatica.2006.05.023
    [25] M. Castro, A. Seuret, V. Leite, L. Silva, Robust local stabilization of discrete time-varying delayed state systems under saturating actuators, Automatica, 122 (2020), 109266. https://doi.org/10.1016/j.automatica.2020.109266 doi: 10.1016/j.automatica.2020.109266
    [26] H. Li, C. Li, D. Ouyang, S. K. Nguang, Impulsive synchronization of unbounded delayed inertial neural networks with actuator saturation and sampled-data control and its application to image encryption, IEEE Trans. Neural Networks Learn. Syst., 32 (2020), 1460–1473. https://doi.org/10.1109/TNNLS.2020.2984770 doi: 10.1109/TNNLS.2020.2984770
    [27] E. N. Sanchez, J. P. Perez, Input-to-state stability (ISS) analysis for dynamic neural networks, IEEE Trans. Circuits Syst., 46 (1999), 1395–1395. https://doi.org/10.1109/81.802844 doi: 10.1109/81.802844
    [28] Y. Wang, L. Xie, C. E. d. Souza, Robust control of a class of uncertain nonlinear systems, Syst. Control Lett., 19 (1992), 139–149. https://doi.org/10.1109/9.159588 doi: 10.1109/9.159588
    [29] X. Yang, D. W. C. Ho, Synchronization of delayed memristive neural networks: robust analysis approach, IEEE Trans. Cybern., 46 (2016), 3377–3387. https://doi.org/10.1109/TCYB.2015.2505903 doi: 10.1109/TCYB.2015.2505903
    [30] Y. Li, Z. Lin, Improvements to the linear differential inclusion approach to stability analysis of linear systems with saturated linear feedback, Automatica, 49 (2013), 821–828. https://doi.org/10.1016/j.automatica.2012.12.002 doi: 10.1016/j.automatica.2012.12.002
    [31] Z. Lin, Y. Li, Estimation of domain of attraction for linear systems with actuator saturation, Control Decis., 33 (2018), 824–834. https://doi.org/10.13195/j.kzyjc.2017.1575 doi: 10.13195/j.kzyjc.2017.1575
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1468) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog