Research article

Stability of a class of nonlinear hierarchical size-structured population model

  • Received: 17 May 2022 Revised: 18 June 2022 Accepted: 07 July 2022 Published: 19 July 2022
  • This paper investigates the existence of positive equilibrium as well as the stability of positive equilibrium and zero equilibrium in a nonlinear size-structured hierarchical population model. Under the condition that larger individuals are more competitive advantages than smaller ones, a non-zero fixed point theorem is used to show that there is at lest one positive equilibrium in the system. Moreover, we obtain the stability results of positive equilibrium and zero equilibrium by deriving characteristic equations and establishing Liapunov function. Finally, some numerical experiments are presented.

    Citation: Weicheng Chen, Zhanping Wang. Stability of a class of nonlinear hierarchical size-structured population model[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10143-10159. doi: 10.3934/mbe.2022475

    Related Papers:

  • This paper investigates the existence of positive equilibrium as well as the stability of positive equilibrium and zero equilibrium in a nonlinear size-structured hierarchical population model. Under the condition that larger individuals are more competitive advantages than smaller ones, a non-zero fixed point theorem is used to show that there is at lest one positive equilibrium in the system. Moreover, we obtain the stability results of positive equilibrium and zero equilibrium by deriving characteristic equations and establishing Liapunov function. Finally, some numerical experiments are presented.



    加载中


    [1] D. Dewsbury, Dominance rank, copulatory behavior, and differential reproduction, Q. Rev. Biol., 57 (1982), 135–159. https://doi.org/10.1086/412672 doi: 10.1086/412672
    [2] J. Cushing, The dynamics of hierarchical age-structured populations, J. Math. Biol., 32 (1994), 705–729. https://doi.org/10.1007/BF00163023 doi: 10.1007/BF00163023
    [3] K. W. Blayneh, A hierarchical size-structured population model, Ph.D thesis, University of Arizona, 1996.
    [4] À. Calsina, J. Saldaña, Asymptotic behaviour of a model of hierarchically structured population dynamics, J. Math. Biol., 35 (1997), 967–987. https://doi.org/10.1007/s002850050085 doi: 10.1007/s002850050085
    [5] S. Jang, J. Cushing, A discrete hierarchical model of intra-specific competition, J. Math. Anal. Appl., 280 (2003), 102–122. https://doi.org/10.1016/S0022-247X(03)00050-7 doi: 10.1016/S0022-247X(03)00050-7
    [6] A. S. Ackleh, K. Deng, J. Thibodeaux, A monotone approximation for a size-structured population model with a generalized environment, J. Biol. Dynam., 1 (2007), 305–319. https://doi.org/10.1080/17513750701605564 doi: 10.1080/17513750701605564
    [7] Y. Liu, Z. R. He, On the well-posedness of a nonlinear hierarchical size-structured population model, ANZIAM J., 58 (2017), 482–490. https://doi.org/10.21914/ANZIAMJ.V58I0.10831 doi: 10.21914/ANZIAMJ.V58I0.10831
    [8] A. S. Ackleh, K. Deng, S. H. Hu, A quasilinear hierarchical size-Structured model: well-posedness and approximation, Appl. Math. Opt., 51 (2005), 35–59. https://doi.org/10.1007/S00245-004-0806-2 doi: 10.1007/S00245-004-0806-2
    [9] E. Kraev, Existence and uniqueness for height structured hierarchical population model, Nat. Resour. Model., 14 (2008), 45–70. https://doi.org/10.1111/J.1939-7445.2001.TB00050.X doi: 10.1111/J.1939-7445.2001.TB00050.X
    [10] S. Henson, J. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest, J. Math. Biol., 34 (1996), 755–772. https://doi.org/10.1007/BF00161518 doi: 10.1007/BF00161518
    [11] J. Cushing, A size-structured model for cannibalism, Theor. Popul. Biol., 42 (1992), 347–361. https://doi.org/10.1016/0040-5809(92)90020-T doi: 10.1016/0040-5809(92)90020-T
    [12] W. Gurney, R. Nisbet, Ecological stability and social hierarchy, Theor. Popul. Biol., 16 (1979), 48–80. https://doi.org/10.1016/0040-5809(79)90006-6 doi: 10.1016/0040-5809(79)90006-6
    [13] J. Z. Farkas, T. Hagen, Stability and regularity results for a size-structured population model, J. Math. Anal. Appl., 328 (2007), 119–136. https://doi.org/10.1016/J.JMAA.2006.05.032 doi: 10.1016/J.JMAA.2006.05.032
    [14] X. R. Li, The stability of nonlinear age-dependent population equation, Appl. Math. Lett., 11 (1998), 19–26. https://doi.org/10.1016/S0893-9659(98)00096-2 doi: 10.1016/S0893-9659(98)00096-2
    [15] J. Z. Farkas, P. Hinow, Steady states in hierarchical structured populations with distributed states at birth, Discrete Contin. Dyn. Syst. B, 17 (2012), 2671–2689. https://doi.org/10.3934/dcdsb.2012.17.2671 doi: 10.3934/dcdsb.2012.17.2671
    [16] Z. R. He, Z. Q. Zhang, Y. Wang, Stability of a class of nonlinear hierarchical age-dependent population model (in Chinese), Acta Math. Sci. Ser. A, 40 (2020), 1712–1722. http://121.43.60.238/sxwlxbA/CN/Y2020/V40/I6/1712
    [17] Z. R. He, N. Zhou, Stability for a competing system of hierarchical age-structured populations, Int. J. Biomath., 13 (2020), 2050070. https://doi.org/10.1142/S1793524520500709 doi: 10.1142/S1793524520500709
    [18] J. Prüss, On the qualitative behaviour of populations with age-specific interactions, Comput. Math. Appl., 9 (1983), 327–339. https://doi.org/10.1016/0898-1221(83)90020-2 doi: 10.1016/0898-1221(83)90020-2
    [19] M. Farkas, On the stability of stationary age distributions, Appl. Math. Comput., 131 (2002), 107–123. https://doi.org/10.1016/S0096-3003(01)00131-X doi: 10.1016/S0096-3003(01)00131-X
    [20] J. Z. Farkas, Stability conditions for a non-linear size-structured model, Nonlinear Anal. Real World Appl., 6 (2006), 962–969. https://doi.org/10.1016/J.NONRWA.2004.06.002 doi: 10.1016/J.NONRWA.2004.06.002
    [21] K. Yosida, Function Analysis, 6th edition, Springer-Verlag, Berlin, 1980. https://doi.org/10.1007/978-3-662-25762-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1446) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog