
We study a simple model for a vector-borne disease with control intervention based on clothes and household items treated with mosquito repellents, which has constraints on the extent (population coverage) and on the time duration reflecting technological and physical properties. We compute first, the viability kernel of initial data of the model for which exists an optimal control that maintains the infected host population below a given cap for all future times. Second, we use the viability kernel to compute the set of initial data of the model for which exists an optimal control that brings this population below the cap in a time period not exceeding the intervention's duration. We discuss applications of this framework in predicting and evaluating the performance of control interventions under the given type of constraints.
Citation: Peter Rashkov. Modeling repellent-based interventions for control of vector-borne diseases with constraints on extent and duration[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 4038-4061. doi: 10.3934/mbe.2022185
[1] | Zhong-Jie Han, Enrique Zuazua . Decay rates for elastic-thermoelastic star-shaped networks. Networks and Heterogeneous Media, 2017, 12(3): 461-488. doi: 10.3934/nhm.2017020 |
[2] | Zhong-Jie Han, Enrique Zuazua . Decay rates for 1−d heat-wave planar networks. Networks and Heterogeneous Media, 2016, 11(4): 655-692. doi: 10.3934/nhm.2016013 |
[3] |
Dongyi Liu, Genqi Xu .
Input-output |
[4] | Yaru Xie, Genqi Xu . The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11(3): 527-543. doi: 10.3934/nhm.2016008 |
[5] | Martin Gugat, Mario Sigalotti . Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299 |
[6] | Serge Nicaise, Julie Valein . Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks and Heterogeneous Media, 2007, 2(3): 425-479. doi: 10.3934/nhm.2007.2.425 |
[7] | Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger . Feedback stabilization of a coupled string-beam system. Networks and Heterogeneous Media, 2009, 4(1): 19-34. doi: 10.3934/nhm.2009.4.19 |
[8] | Gen Qi Xu, Siu Pang Yung . Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks and Heterogeneous Media, 2008, 3(4): 723-747. doi: 10.3934/nhm.2008.3.723 |
[9] | Caihong Gu, Yanbin Tang . Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005 |
[10] | Abdelaziz Soufyane, Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Imad Kissami, Mostafa Zahri . Stability results of a swelling porous-elastic system with two nonlinear variable exponent damping. Networks and Heterogeneous Media, 2024, 19(1): 430-455. doi: 10.3934/nhm.2024019 |
We study a simple model for a vector-borne disease with control intervention based on clothes and household items treated with mosquito repellents, which has constraints on the extent (population coverage) and on the time duration reflecting technological and physical properties. We compute first, the viability kernel of initial data of the model for which exists an optimal control that maintains the infected host population below a given cap for all future times. Second, we use the viability kernel to compute the set of initial data of the model for which exists an optimal control that brings this population below the cap in a time period not exceeding the intervention's duration. We discuss applications of this framework in predicting and evaluating the performance of control interventions under the given type of constraints.
In recent years the problems of control and stabilisation for thermoelastic systems have been studied intensively. We refer for instance to [22], [42] in the context of controllability, and to [14], [18], [23], [24], [35] for stabilization, among others.
A closely related interesting issue is the asymptotic behaviour of a system consisting of two different materials joined together at the interface, one being purely elastic and the other thermoelastic (see Figure 1). In these systems, other than the intrinsic coupling effects of thermal and elastic components, typical in thermoelasticity, the thermoelastic and purely elastic rods are also coupled through the interface.
Exponential and polynomial decay properties for this kind of systems were proved by Rivera et al. in [12], [28], [31] and Messaoudi et al. in [30], using the energy multiplier method. Han and Xu in [15] got a sharp polynomial decay rate for a thermoelastic transmission problem with joint mass, based on a detailed spectral analysis and resolvent operator estimates. We also refer to [29] for the analysis of the large time behaviour of transmission problems of multi-dimensional thermoelasticity.
In this work, we consider similar transmission problems in multi-connected networks. More precisely, we are interested in the large time behaviour of star-shaped networks constituted by coupled thermoelastic and purely elastic rods (see Figure 2).
The aim of this work is to give a complete analysis on the large time behaviour of these systems proving exponential, polynomial and slow decay rates. The optimality of these results is also discussed.
In order to present the problems under consideration more precisely some notations are needed. We denote by
{uk,tt(x,t)−uk,xx(x,t)+αkθk,x(x,t)=0,x∈(0,ℓk),k=1,2,...,N1,t>0,θk,t(x,t)−θk,xx(x,t)+βkuk,tx(x,t)=0,x∈(0,ℓk),k=1,2,...,N1,t>0, | (1) |
and the other edges in the network are all purely elastic ones given by
uj,tt(x,t)−uj,xx(x,t)=0,x∈(0,ℓj),j=N1+1,⋯,N,t>0. | (2) |
Here and in the sequel
Assume that the exterior nodes of the network are all clamped, and the displacements and temperatures are all continuous at the common node. There is no heat exchange between thermoelastic components and purely elastic ones and the balance of forces at the common node is fulfilled. Thus, the boundary and transmission conditions read as follows:
{uj(ℓj,t)=0,j=1,2⋯,N,t>0,uj(0,t)=uk(0,t),∀j,k=1,2,3,⋯,N,t>0,θk(ℓk,t)=0,k=1,2,...,N1,t>0,θk(0,t)=θj(0,t),∀j,k=1,2,...,N1,t>0,N∑j=1uj,x(0,t)=N1∑j=1αjθj(0,t),N1∑j=1αjβjθj,x(0,t)=0,t>0 | (3) |
with initial conditions
u|t=0=u(0):=(u(0)j)Nj=1,ut|t=0=u(1):=(u(1)j)Nj=1,θ|t=0=θ(0):=(θ(0)j)N1j=1. | (4) |
Overall the thermoelastic-elastic network system under consideration reads as follows:
{uj,tt(x,t)−uj,xx(x,t)+αjθj,x(x,t)=0,x∈(0,ℓj),j=1,2,⋯,N1,t>0,θj,t(x,t)−θj,xx(x,t)+βjuj,tx(x,t)=0,x∈(0,ℓj),j=1,2,⋯,N1,t>0,uj,tt(x,t)−uj,xx(x,t)=0,x∈(0,ℓj),j=N1+1,⋯,⋯,N,t>0,uj(ℓj,t)=0,j=1,2,⋯,N,t>0,uj(0,t)=uk(0,t),∀j,k=1,2,3,⋯,N,t>0,θk(ℓk,t)=0,k=1,2,⋯,N1,t>0,θk(0,t)=θj(0,t),∀j,k=1,2,...N1,t>0,N∑j=1uj,x(0,t)=N1∑j=1αjθj(0,t),N1∑j=1αjβjθj,x(0,t)=0,t>0,u(t=0)=u(0),ut(t=0)=u(1),θ(t=0)=θ(0). | (5) |
Remark 1. The transmission problem in Figure 1 can be considered as a special case of the above network (
The natural energy of this system is as follows
E(t)=12N∑j=1∫ℓj0[u2j,t+u2j,x]dx+12N1∑j=1αjβj∫ℓj0θ2jdx, |
and a direct calculation yields the dissipation law
E′(t)=−N1∑k=1αkβk∫ℓk0θ2k,xdx≤0. | (6) |
Hence, the energy of system (5) is decreasing. Moreover, from (6), it is easy to see that the dissipation mechanism only acts in the thermoelastic rods. This motivates the problem of whether or not the dissipation is strong enough to make the total energy of the network decay to zero, and with which rate.
In this paper, the large time behaviour of system (5) is mainly discussed based on frequency domain analysis ([5], [6], [13], [19], [25], [26] and [34]). In [37], Shel showed the exponential stability of networks of thermoelastic and elastic materials for some special cases by similar methods. However, it was assumed that there was no heat exchange between the thermoelastic rods connected at the common nodes. In this paper, we allow for the heat exchange between thermoelastic rods at common nodes, which is a natural assumption.
By estimating the resolvent operator along the imaginary axis and employing multiplier techniques, we get a necessary and sufficient condition for system (5) to decay uniformly exponentially, namely that there is no more than one purely elastic rod entering in the network. If this condition fails, the system lacks exponential decay and we further show that the decay rate of the networks can not be faster than
To discuss the sharpness of slow decay rates it is useful to get explicit information on the spectrum of the system, and compare its real and imaginary parts (see [6] and [41]). However, spectra of PDE networks are often difficult to calculate. Thus, we prove the optimality by estimating the norm of the resolvent operator along the imaginary axis (see [1]). But resolvent estimates are hard to be achieved due to the thermoelastic coupling. Thus, we employ diagonalisation argument to deal with the resolvent problem. This allows building explicit approximations of solutions ensuring that the polynomial decay rates we get are nearly optimal.
The rest of the paper is organised as follows. In section 2, the main result of this paper is given. Section 3 is devoted to show the well-posedness and strong asymptotic stability of the system (5). In section 4, we prove the exponential and nearly optimal slow decay rates, under different conditions. Section 5 is devoted to discuss some more general slow decay rates for system (5). Especially, for the special case
The results in this paper contribute to the understanding of the decay properties of wave and thermoelastic wave networks, a topic in which important issues are still to be understood.
There has been an extensive literature on other closely related issues such as the large time behaviour and controllability properties of elastic networks with node and boundary feedback controls. We refer, among others (the present list of references is by no means complete), to Lagnese et al.[21] for the modelling and control of elastic networks; Ammari et al. [2], [3] and [4] and Nicaise et al. [32] for stabilisation problems on networks of wave and Euler-Bernoulli beams with star-shaped and tree-shaped configurations; Dáger and Zuazua [8], [9] and [10] for boundary controllability of wave networks; Xu et al. [16], [17] and [40] for the stabilisation and spectral properties of the wave networks.
This section is devoted to state the main result of this paper.
As we will see later, system (5) can be rewritten as an abstract Cauchy problem in an appropriate Hilbert space
dU(t)dt=AU(t), t>0; U(0)=U0, | (7) |
where
The problem of whether the energy of solutions tends to zero as time goes to infinity or not has a simple answer:
Theorem 2.1. Operator
1).
2).
We now obtain explicit decay rates for network (5).
It is well known that if all the components in the network are thermoelastic, that is
In fact, in Propositions 1 and 2 in section 4, we obtain the following necessary and sufficient condition for the exponential decay.
Theorem 2.2. The energy of system (5) decays to zero exponentially if and only if
Accordingly, when
Definition 2.3. ([36], [11]) Real numbers
The notation (S) for this condition was introduced in [11] to refer to the fundamental contribution by Schmidt [36], that defined this class of irrational numbers for the simultaneous approximation by rational ones. It should be noted that the condition (S) denotes a narrow class of irrationals, since the set of algebraic numbers is countable and has Lebesgue measure zero.
By a detailed frequency domain analysis, we have the following explicit polynomial decay rate for system (5).
Theorem 2.4. When
lim inft→∞tE(t)>0. | (8) |
Thus, we can not expect a decay rate which is beyond first order polynomial. Furthermore, if
E(t)≤Cϵt−11+ϵ‖(u(0),u(1),θ(0))‖2D(A),∀t≥0, | (9) |
for all
Remark 2. Using the method of proof of Theorem 2.4, we can obtain more general slow decay rates (polynomial, logarithmic or arbitrarily slow decay), which will be presented in section 5. Especially, for a very special case that there are two purely elastic rods involved in the network (
Remark 3. The optimality result in (8) is well-known for wave-like equations with velocity damping in the case of one single string with damping on an internal point, which is equivalent to a simple star-like network constituted only by two strings ([20], [11]).
Here we show the same lower bound on the decay rate for the more general system involving thermoelastic rods. However, for general cases that more than two purely elastic rods entering in the networks, it is still an open problem to find the condition to guarantee achieving a sharp polynomial decay rate.
This section is devoted to show the well-posedness of network (5) by the semigroup theory and prove Theorem 2.1, with a necessary and sufficient condition for strong stability of this system.
Let us first introduce an appropriate Hilbert space setting for the well-posedness of the system.
For
L2(Rn)={u|uj∈L2(0,ℓj),∀j=1,2,⋯,n}, |
Vn:={ϕ∈n∏j=1H1(0,ℓj)|ϕj(0)=ϕk(0),ϕj(ℓj)=0,∀k,j=1,2,⋯,n}. |
Set the state space
H=VN×L2(RN)×L2(RN1), |
equipped with inner product:
(W,˜W)H=N∑j=1∫ℓj0uj,x¯˜uj,xdx+N∑j=1∫ℓj0wj¯˜wjdx+N1∑k=1αkβk∫ℓk0θk¯˜θkdx, |
for
Then, define the system operator
A(uwθ)=(wuxx−αIN×N1θxθxx−βw1,x)=(0I0∂xx0−αIN×N1∂x0−βITN×N1∂x∂xx)[uwθ] |
where
D(A)={(u,w,θ)∈[VN∩∏Nj=1H2(0,ℓj)]×VN×∏N1j=1H2(0,ℓj)|N∑j=1uj,x(0)=N1∑k=1αjθj(0)θj(ℓj)=0,j=1,2,⋯,N1θj(0)=θk(0),j,k=1,2,⋯,N1N1∑j=1αjβjθj,x(0)=0}. |
Thus, system (5) can be rewritten as the evolution equation (7) in
It is easy to check that
Now, we focus on proving the strong stability property of the system in Theorem 2.1. The proof by contradiction is mainly used here.
Proof of Theorem 2.1.
Sufficiency. If the strong stability of system (5) does not hold, then by the Lyubich-Phóng strong stability theorem (see [27]), there exists at least one
˜W=((uj)Nj=1,˜λ(uj)Nj=1,(θk)N1k=1)T∈D(A) |
is an eigenvector of
0=ℜ˜λ‖˜W‖2H=ℜ(A˜W,˜W)H=−N1∑k=1αkβk∫ℓk0θ2k,xdx, |
which yields
{˜λ2uj(x)−uj,xx(x)=0,x∈(0,ℓj),j=1,2,⋯,N,βj˜λuj,x(x)=0,x∈(0,ℓj),j=1,2,⋯,N1,uj(ℓj)=0,j=1,2,⋯,N,uj(0)=uk(0),∀j,k=1,2,3,⋯,N,N∑j=1uj,x(0)=0. | (10) |
If
If
{uk=0,k=1,2,⋯,N1,uj=cjsinh˜λx,j=N1+1,N1+2,⋯,N, |
which satisfy
cjsinh˜λℓj=0,j=N1+1,N1+2,⋯,N, and N∑j=N1+1cj=0. |
Since
cj1,cj2≠0. |
Hence,
Necessity. If there exist
ˆui0(x)=sin(pπx/ℓi0),ˆuj0(x)=−sin(q0πx/ℓj0), |
ˆuj(x)=0,j=1,2,⋯,N,j≠i0,j0. |
This contradicts the strong stability property of system (5). Therefore,
Remark 4. For the proof of "Sufficiency", we also can use the unique continuation property for wave networks in Dager and Zuazua [11] (See Corollary 5.28, p.135). Indeed, (10), in the absence of thermal components, corresponds to the eigenproblem associated with the pure wave system and, according to the results in [11], its unique solution is the trivial one, which contradicts that
This section is devoted to achieve explicit decay rates of the total energy of solutions of system (5). The exponential decay and slow decay rates are deduced under different assumptions of the various components of the network.
In this subsection, we analyse the decay rate of network (5) when
Lemma 4.1. Let
iR⊂ρ(A) | (11) |
and
‖(iσI−A)−1‖H≤C,∀σ∈R. | (12) |
We are then in conditions to prove the following proposition, which is one of the main statements in Theorem 2.1:
Proposition 1. When
Proof. It is sufficient to show that the conditions in Lemma 4.1 are fulfilled. It should be noted that although the idea of this proof is similar to the one in [37], some different multipliers are employed to get certain estimates so as to deal with the transmission conditions in the present paper.
By the argument of the proof of Theorem 2.1, it is easy to see that, in the present case, there is no eigenvalue of
If condition (12) is not fulfilled, then there exists a sequence of real numbers
TnF=(iσnI−A)−1F=˜Ψn→∞,in H,n→∞. |
Thus,
(iσnI−A)˜Ψn‖˜Ψn‖H=F‖˜Ψn‖H→0,in H,n→∞. |
So there exists a sequence
limn→∞‖(iσnI−A)Φn‖H=0, |
namely,
iσnunj−vnj→0, inH1(0,ℓj),j=1,2,⋯,N, | (13) |
iσnvnj−unj,xx+αjθnj,x→0, inL2(0,ℓj),j=1,2,⋯,N−1, | (14) |
iσnθnj−θnj,xx+βjvnj,x→0, inL2(0,ℓj),j=1,2,⋯,N−1, | (15) |
iσnvnN−unN,xx→0, inL2(0,ℓN). | (16) |
Note that
θnj,x→0,inL2(0,ℓj),j=1,2,⋯,N−1 | (17) |
and hence by Poincaré inequality, we get
θnj(0)→0,j=1,2,⋯,N1. | (18) |
Removing
iσnvnj−unj,xx→0,inL2(0,ℓj),j=1,2,⋯,N−1. | (19) |
and taking the inner product of (19) with
(−σ2nunj,xunj,x)−(unj,xx,xunj,x)→0,j=1,2,⋯,N−1. |
Note that
2ℜ(−σ2nunj,xunj,x)=−σ2nunj(ℓj)¯ℓjunj(ℓj)−(−σ2nunj,unj)=−(−σ2nunj,unj), |
2ℜ(unj,xx,xunj,x)=unj,x(ℓj)¯ℓjunj,x(ℓj)−(unj,x,unj,x). |
Hence,
(−σ2nunj,(x−ℓj)unj,x)−(unj,xx,(x−ℓj)unj,x)→0,j=1,2,⋯,N−1. |
Hence,
2ℜ(−σ2nunj,(x−ℓj)unj,x)−2ℜ(unj,xx,(x−ℓj)unj,x)=−σ2nunj(0)¯ℓjunj(0)−(−σ2nunj,unj)−unj,x(0)¯ℓjunj,x(0)+(unj,x,unj,x). | (20) |
Thus,
Dividing (15) by
(−θnj,xxiσn,unj,x)+(βjunj,x,unj,x)→0,j=1,2,⋯,N−1. | (21) |
Integrating the above by parts, we have
−θnj,x(ℓj)iσn¯unj,x(ℓj)+θnj,x(0)iσn¯unj,x(0)+(θnj,xiσn,unj,xx)+(βjunj,x,unj,x)→0,j=1,2,⋯,N−1. | (22) |
Note that dividing (14) by
(θnj,xiσn,unj,xx)→0,j=1,2,⋯,N−1. |
By the Gagliardo-Nirenberg inequality,
‖θnj,x‖L∞√iσn≤d1‖θnj,xxiσn‖12‖θnj,x‖12+d2‖θnj,x‖√iσn→0, | (23) |
we have
unj,x→0, inL2(0,ℓj), j=1,2,⋯,N−1. | (24) |
Thus,
(vnj,vnj)−(unj,xxiσn,vnj)→0,j=1,2,⋯,N−1, |
and hence
Integrating by parts, we have
(vnj,vnj)−unj,x(0)unj(0)−(unj,x,unj,x)→0,j=1,2,⋯,N−1. | (25) |
Note that
vnj→0,inL2(0,ℓj),j=1,2,⋯,N−1. | (26) |
Then from (20), we have
unj,x(0),σnunj(0)→0,j=1,2,⋯,N−1. | (27) |
On the other hand, on the segment
Taking the inner product of (16) with
(iσnunN,(x−ℓN)unN,x)−(unN,xx,(x−ℓN)unN,x)→0. | (28) |
Note that
2ℜ(iσnunN,(x−ℓN)unN,x)=−iσnunN(0)¯ℓNwnN(0)+(vnN,iσnunN)→(vnN,vnN), |
2ℜ(unN,xx,(x−ℓN)unN,x)=−unN,x(0)¯ℓNunN,x(0)−(unN,x,unN,x)→−(unN,x,unN,x). |
Thus,
ℜ(iσnvnN,(x−ℓN)unN,x)−ℜ(wnj,xx,(x−ℓN)unN,x)=(vnN,vnN)+(unN,x,unN,x)→0. | (29) |
Hence,
unN,x,vnN→0,inL2(0,ℓN). | (30) |
Thus, by (17), (24) and (26), we get
In this subsection, we shall show that if more than one purely elastic undamped rod is involved in the network, the exponential decay rate does not hold.
Proposition 2. If
Proof. Note that from Lemma 4.1, it is sufficient to show that the norm of the resolvent operator of system (5) along the imaginary axis is necessarily unbounded when
To do it we consider the resolvent problem
(λI−A)U=F,λ=−iσ,σ∈R, | (31) |
where
{λuj−vj=fj,j=1,2,⋯,N,λvj−(uj,xx−αjθj,x)=gj,j=1,2⋯,N1,λθj−(θj,xx−βjvj,x)=ηj,j=1,2⋯,N1,λvj−uj,xx=gj,j=N1+1,N1+2,⋯,N. | (32) |
Choose
{λuj−vj=0,j=1,2,⋯,N,λvj−(uj,xx−αjθj,x)=0,j=1,2⋯,N1,λθj−(θj,xx−βjvj,x)=0,j=1,2⋯,N1,λvj−uj,xx=gj,j=N1+1,N1+2,⋯,N. | (33) |
Using explicit representation formulas we get
uj(x)=u(0)sinσℓjsinσ(ℓj−x)+sinσ(ℓj−x)σsinσℓj∫ℓj0gj(ℓj−s)sinσ(ℓj−s)ds −1σ∫ℓj−x0gj(ℓj−s)sinσ(ℓj−x−s)ds,j=N1+1,N1+2,⋯,N. | (34) |
In order to calculate
{λuj−vj=0,j=1,2⋯,N1,λvj−(uj,xx−αjθj,x)=0,j=1,2⋯,N1,λθj−(θj,xx−βjvj,x)=0,j=1,2⋯,N1, |
that is,
{λ2uj−(uj,xx−αjθj,x)=0,j=1,2⋯,N1,λθj−(θj,xx−βjλuj,x)=0,j=1,2⋯,N1. | (35) |
We rewrite (35) in the vector form
dYj(x)dx=AjYj(x),j=1,2,⋯,N1, |
where
Set
Pj=[11˜bj−˜bj√dj,1λ−√dj,1λ˜bj√dj,2λ˜bj√dj,2λ˜aj−˜aj11˜aj√dj,1λ˜aj√dj,1λ√dj,2λ−√dj,2λ] |
and
˜aj=1αj√dj,1(−λ2+dj,1),˜bj=1β√dj,2(−1+dj,2λ). |
We then have
In this way we obtain the following system
Zj(x)=[e√dj,10000e−√dj,10000e√dj,20000e−√dj,2]Z(0), |
and
Yj(x)=PjZj(x)=Pj[e√dj,10000e−√dj,10000e√dj,20000e−√dj,2]P−1jYj(0). | (36) |
By the boundary and transmission conditions in (5), together with (34), we get the following estimate (the technical details are given as in Appendix):
σu(0)=N∑j=N1+1N∏k≠jk=N1+1sinσℓkcosσℓj∫ℓj0gj(ℓj−s)sinσ(ℓj−s)dsN∏k=N1+1sinσℓkN1∑j=1(icosh(iσ+αjβj2)ℓjsinh(iσ+αjβj2)ℓj+O(1√σ))−N∑j=N1+1N∏k≠jk=N1+1sinσℓkcosσℓj−N∑j=N1+1N∏k=N1+1sinσℓk∫ℓj0gj(ℓj−s)cosσ(ℓj−s)dsN∏k=N1+1sinσℓkN1∑j=1(icosh(iσ+αjβj2)ℓjsinh(iσ+αjβj2)ℓj+O(1√σ))−N∑j=N1+1N∏k≠jk=N1+1sinσℓkcosσℓj. | (37) |
Choosing
sinσnkℓj→0,j=N1+2,N1+3,⋯,N. |
In fact, note that there is always a sequence of rational numbers
sinσnkℓj=sin(σnkℓN1+1ℓjℓN1+1)=sin(π(N∏m=N1+2qkm)ℓjℓN1+1) →sin(π(N∏m=N1+2qkm)pkjqkj)=0,k→∞,j=N1+2,N1+3,⋯,N. |
Set
∫ℓN1+10gnkN1+1(ℓj−s)sinσnk(ℓj−s)ds→−ℓN1+12,nk→∞, |
∫ℓN1+10gnkN1+1(ℓj−s)cosσnk(ℓj−s)ds→0,nk→∞. |
Thus, from (37), we get
σnkunk(0)→ℓN1+12,nk→∞. |
Hence, by (34), we have
iσnkunkj(x)→∞,inL2(0,ℓj),j=N1+2,N1+3,⋯,N, |
due to the fact that
vnkj→∞,inL2(0,ℓj),j=N1+2,N1+3,⋯,N. |
Summarising the developments above we find a sequence
‖(iσnI−A)−1Fn‖H→∞,σn→+∞, |
which implies the lack of exponential decay rate of system (5). The proof is complete.
This subsection is devoted to get the lower bounds on the polynomial decay rate as stated in Theorem 2.4.
We need the following result from [6] (see also [26]).
Lemma 4.2. A
‖etAU0‖≤Ct−1ℓ‖U0‖D(A),∀U0∈D(A),t→∞ |
for some constant
Proposition 3. The decay rate of the energy of system (5) can be, at most, polynomial of order
Proof. From Lemma 4.2, it is sufficient to show that there exists at least one sequence
‖(iσnI−A)−1Fn‖>˜Cσ2n, | (38) |
where
For simplicity, we consider the case
Step 1). Choose
Since
sinσℓN1+1=sinσ(ℓN1+1+ℓN1+2−ℓN1+2) =sinσ(ℓN1+1+ℓN1+2)cosσ(ℓN1+2)−cosσ(ℓN1+1+ℓN1+2)sinσ(ℓN1+2), |
we have
sinσnℓN1+1=±sinσnℓN1+2,cosσnℓN1+1=±cosσnℓN1+2. |
Step 2). Choose
Substituting the above into (37), we get
σnu(0)=±sinσnℓN1+2cosσnℓN1+1∫ℓN1+10sinσnssinσn(ℓN1+1−s)ds(sinσnℓN1+2)2N1∑j=1(icosh(iσn+αjβj2)ℓjsinh(iσn+αjβj2)ℓj+O(1√σn))±(sinσnℓN1+2)2∫ℓN1+10sinσnscosσn(ℓN1+1−s)ds(sinσnℓN1+2)2N1∑j=1(icosh(iσn+αjβj2)ℓjsinh(iσn+αjβj2)ℓj+O(1√σn)). | (39) |
Note that
∫ℓN1+10sinσnssinσn(ℓN1+1−s)ds→−ℓN1+1cosσnℓN1+12,n→∞, |
∫ℓN1+10sinσnscosσnk(ℓj−s)ds→ℓN1+1sinσnℓN1+12,n→∞, |
and
N1∑j=1(icosh(iσn+αjβj2)ℓjsinh(iσn+αjβj2)ℓj+O(1√σn))=O(1)∉R. |
Hence,
|σnu(0)|=|ℓN1+1cos2σnℓN1+22sinσnℓN1+2±ℓN1+1sinσnℓN1+22|O(1). | (40) |
Step 3). Note that we have chosen in Step 1) that
sinσnℓN1+2=sin(ℓN1+2ℓN1+1+ℓN1+2(ℓN1+1+ℓN1+2)σn)=sin(ℓN1+2ℓN1+1+ℓN1+2nπ). |
By Dirichlet theorem, we can always find an infinite subsequence
|||ℓN1+2ℓN1+1+ℓN1+2nk|||<1nk, |
and hence
Thus, there exists a positive constant
|σnku(0)|>Cnk. | (41) |
Note that from (33) and (34), we get
uN1+2(x)=u(0)sinσℓN1+2sinσ(ℓN1+2−x)+sinσ(ℓN1+2−x)σsinσℓN1+2∫ℓN1+20gN1+2(ℓN1+2−s)sinσ(ℓN1+2−s)ds−1σ∫ℓN1+2−x0gN1+2(ℓN1+2−s)sinσ(ℓN1+2−x−s)ds. |
Hence, by (41), there exists a positive constant
‖vnkN1+2‖>ˆCn2k. |
Summarizing above, we have found a sequence
σnk=1ℓN1+1+ℓN1+2nkπ,Fnk=F=((fj)Nj=1,(gj)Nj=1,(ηj)N1j=1), |
in which
‖(iσnkI−A)−1Fnk‖>˜Cσ2nk,σnk→∞, |
where
Remark 5. For general case
In subsection 4.2 we proved that if there are more than one purely elastic rods involved in the network (5), the system can not achieve the exponential decay. We have also shown that the decay rate can be, at most, polynomial of order
The mutual-irrationality of the radii of
Now, we prove effective and explicit polynomial decay results when
Proof of Theorem 2.4. Similarly to the proof of Theorem 2.2, we argue by contradiction, on the basis of Lemma 4.2.
Let
\lim\limits_{n\to\infty} \sigma_n^{2(1+\epsilon)}\|(i\sigma_n I-\mathcal{A})\Phi^n\|_{\mathcal{H}}=0, |
where
\sigma_n^{2(1+\epsilon)}(i\sigma_n u_j^n-v_j^n)=f_j^n \to 0, \; in\; H^1(0, \ell_j),j=1,2,\cdots,N, \label{nnss1+} | (42) |
\sigma_n^{2(1+\epsilon)}(i\sigma_n v_j^n- u^n_{j,xx}+\alpha_j\theta^n_{j,x})=g_j^n \to 0,\; in\; L^2(0, \ell_j), j=1,2,\cdots, N_1, \label{nnss2+} | (43) |
\sigma_n^{2(1+\epsilon)}(i\sigma_n \theta_j^n-\theta^n_{j,xx}+\beta_j v^n_{j,x})=y_j^n \to 0,\; in\; L^2(0, \ell_j), j=1,2,\cdots,N_1,\label{nnss3+} | (44) |
and
\sigma_n^{2(1+\epsilon)}( i\sigma_n v_j^n-u^n_{j,xx})=g_j \to 0,\; in\; L^2(0, \ell_j), j=N_1\!+\!1,N_1\!+\!2,\!\cdots\!,N. \label{nnss4+} | (45) |
Note that
Hence,
\sigma_n^{(1+\epsilon)}\theta^n_{j,x}\to 0, in\; L^2(0, \ell_j),\; j=1,2,\cdots, N_1. | (46) |
Thus, by Poincaré inequality,
\sigma_n^{(1+\epsilon)}\theta^n_{j}\to 0, in\; L^2(0, \ell_j), j=1,2,\cdots,N_1. |
Similar to the proof of Theorem 2.2, we can get that
\sigma_n^{(1+\epsilon)}u_{j,x}^n(x),\; \sigma_n^{(1+\epsilon)} v_j^n(x),\; \sigma_n^{(1+\epsilon)} \theta_j^n(x)\to 0,\; in\; L^2(0, \ell_j),\; j=1,2,\cdots,N_1, | (47) |
\sigma_n^{(1+\epsilon)} u_{j,x}^n(0),\; \sigma_n^{(1+\epsilon)} \sigma_n u_j^n(0),\; \sigma_n^{(1+\epsilon)}\theta_j^n(0)\to 0,\; j=1,2,\cdots,N_1. | (48) |
Thus, by the transmission conditions at the common node, we get
\sigma_n^{(1+\epsilon)} \sigma_n u_j^n(0)\to0,\; j=N_1+1,N_1+2,\cdots,N, \label{ss-nnss5+} | (49) |
\sigma_n^{(1+\epsilon)}\sum\limits_{j=N_1+1}^N u_{j,x}^n(0)\to0.\label{ss-nnss6+} | (50) |
Then we will prove that
Case 1). Assume that
By (42), (45), we can easily get that
Thus a direct calculation yields
u_j^n(x) = \frac{u^n(0)}{\sin\sigma_n\ell_j}\sin\sigma_n(\ell_j-x)\\ \ \ \ \ \ \ \ \ \ \ +\frac{\sin\sigma_n(\ell_j-x)}{\sigma_n\sin\sigma_n\ell_j}\int_0^{\ell_j}\frac{g_j^n(\ell_j-s)+i\sigma_nf_j^n(\ell_j-s)}{\sigma_n^{2(1+\epsilon)}}\sin(\sigma_n(\ell_j-s))ds\\ \ \ \ \ \ \ \ \ \ -\frac{1}{\sigma_n}\int_0^{\ell_j-x}\frac{g_j^n(\ell_j-s)+i\sigma_n f_j^n(\ell_j-s)}{\sigma_n^{2(1+\epsilon)}}\sin\sigma_n(\ell_j-x-s)ds,\\ \ \ \ \ \ \ \ \ \ j=N_1+1, N_1+2,\cdots,N. |
Hence,
u_{j,x}^n(0) = -\frac{\sigma_nu^n(0)\cos\sigma_n\ell_j}{\sin\sigma_n\ell_j} \\ \ \ \ \ \ \ \ \ \ -\frac{\cos\sigma_n\ell_j}{\sin\sigma_n\ell_j}\int_0^{\ell_j}\frac{g_j^n(\ell_j-s)+i\sigma_nf_j^n(\ell_j-s)}{\sigma_n^{2(1+\epsilon)}}\sin(\sigma_n(\ell_j-s))ds \\ \ \ \ \ \ \ \ \ \ +\int_0^{\ell_j}\frac{g_j^n(\ell_j-s)+i\sigma_n f_j^n(\ell_j-s)}{\sigma_n^{2(1+\epsilon)}}\cos\sigma_n(\ell_j-s)ds, \\ \ \ \ \ \ \ \ \ \ j=N_1+1, N_1+2,\cdots,N. | (51) |
It is easy to show that
\int_0^{\ell_j}[{g_j^n(\ell_j-s)+i\sigma_n f_j^n(\ell_j-s)}]\sin\sigma_n(\ell_j-s)ds \to 0, \\ \int_0^{\ell_j}[{g_j^n(\ell_j-s)+i\sigma_n f_j^n(\ell_j-s)}]\cos\sigma_n(\ell_j-s)ds \to 0.\label{ssnn6} | (52) |
Set
\gamma_n=\max\limits_{j=N_1+1,N_1+2,\cdots,N}\prod\limits_{i=N_1+1,\; i\neq j}^N\limits|\sin(\sigma_n\ell_i)|,\; \forall n\geq 1. | (53) |
When
\gamma_n\geq \frac{c_\epsilon}{\sigma_n^{1+\epsilon}},\; \forall \epsilon > 0. | (54) |
For any given sequence
\gamma_n=\prod\limits_{i=N_1+1,\; i\neq j^n_0}^N\limits|\sin(\sigma_n\ell_i)|. |
Hence, for any
{|\sin\sigma_n\ell_{j}|}\geq \gamma_n, |
which implies that
\frac{1}{|\sin\sigma_n\ell_{j}|}\leq \frac{1}{\gamma_n}\leq \frac{1}{c_\epsilon}\sigma_n^{1+\epsilon}. |
Therefore, by (49) and (52) together with (51), we get that
u_{j,x}^n(0)\to 0,\; N_1+1\leq j\leq N,\; j\neq j^n_0, n\to \infty. | (55) |
Then by the transmission condition (50), we obtain that
u_{j,x}^n(0)\to 0, \; N_1+1\leq j\leq N, n\to\infty. | (56) |
Taking the inner product of (45) with
(i\sigma_n v^n_j,(x-\ell_j)u^n_{j,x})-({u^n_{j,xx}},(x-\ell_j)u^n_{j,x})\to 0, j=N_1+1,N_1+2,\cdots,N. | (57) |
We have
2\Re(i\sigma_n v^n_j,(x-\ell_j)u^n_{j,x})= i\sigma_n v^n_j(0)\overline{\ell_ju^{n}_j(0)}+(v^n_j,i\sigma_n u^n_j)\to (v^n_j,v^n_j), |
2\Re({u^n_{j,xx}},(x-\ell_j)u^n_{j,x})=u^n_{j,x}(0)\overline{\ell_j u^n_{j,x}(0)}-(u^n_{j,x}, u^n_{j,x}) \to -(u^n_{j,x}, u^n_{j,x}). |
Hence,
\Re(i\sigma_n v^n_j,(x-\ell_j)u^n_{j,x})-\Re({u^n_{j,xx}},(x-\ell_j)u^n_{j,x})=(v^n_j,v^n_j)+(u^n_{j,x}, u^n_{j,x})\to0. | (58) |
Therefore,
u^n_{j,x},\; v^n_j\to 0, in\;\; L^2(0, \ell_j),\; j=N_1+1,N_1+2,\cdots,N. | (59) |
Thus, by (47) and (59), we have obtained
\Phi^n=((u_j^n)_{j=1}^N, (v_j^n)_{j=1}^N, (\theta_j^n)_{j=1}^{N_1})\to 0, in\; \mathcal{H}, n\to\infty, |
which contradicts
Now let us continue to consider the second step:
Case 2). Assume that there exists
Note that there exists at most one
\gamma_n=\prod\limits_{i=N_1+1,\; i\neq j_0^n}^N\limits|\sin(\sigma_n\ell_i)|, |
where
u_{j,x}^n(0)\to 0,\; N_1+1\leq j\leq N,\; j\neq j_0^n, n\to \infty, |
which together with the transmission condition (50), implies
u_{j,x}^n(0)\to 0,\; N_1+1\leq j\leq N, n\to \infty. |
Then by (57)-(59) in
u^n_{j,x},\; v^n_j\to 0, in\;\; L^2(0, \ell_j),\; j=N_1+1,N_1+2,\cdots,N. |
Hence, the same contradiction holds as in
Therefore, by Lemma 4.2, we get the polynomial decay rate of system (5), that is
E(t)\leq C_\epsilon{t^{-\frac{1}{1+\epsilon}}}\|(u^{(0)}, u^{(1)},\theta^{(0)})\|_{\mathcal{D}(\mathcal{A})}^2,\; \forall t\geq 0. |
Note that in Proposition 3, we have proved that the polynomial decay order of the energy of system (5) is at most
In the last section, we have shown that, when
In fact, the discussion of the proof of Theorem 2.4 (see subsection 4.3), shows that the slow decay rate of the system is determined by
To do this, let us introduce the following definition on the irrational sets (see p. 209 in [11]), which is deduced from [7] (see Theorem Ⅰ, p. 120).
Definition 5.1. (Theorem [7], [11]) 1. Set
2. Set
We have the following result:
Corollary 1. For any
E(t)\leq C_{\widetilde{s}}{t^{-\frac{1}{\widetilde{s}}}}\|(u^{(0)}, u^{(1)},\theta^{(0)})\|_{\mathcal{D}(\mathcal{A})}^2,\; \forall t\geq 0, | (60) |
where
Proof. Since the proof is similar to the one of Theorem 2.4, we only give a sketch of it.
If the decay rate is not fulfilled, there exists a sequence
\lim\limits_{n\to\infty} \sigma_n^{2\widetilde{s}}\|(i\sigma_n I-\mathcal{A})\Phi^n\|_{\mathcal{H}}=0, |
where
By Diophantine approximation (see [11]), different estimates can be gotten for
(1) if
(2) if
Thus, proceeding as in the discussion of the proof of Theorem 2.4, finally we can get
\Phi^n\to 0, in\; \mathcal{H}, n\to\infty. |
This contradicts
Remark 6. By Corollary 1, it is easy to see that when
More generally, by the similar proof as the one for Theorem 2.4, together with the so called
Corollary 2. Set
If
\gamma_n\geq\frac{1}{\sqrt{M(\sigma_n)}},\; n > 0, |
where
\gamma_n=\max\limits_{j=N_1+1,N_1+2,\cdots,N}\limits\prod\limits_{i=N_1+1,\; i\neq j}^N\limits|\sin(\sigma_n\ell_i)|,\; \forall \sigma_n\to\infty, |
then
E(t)\leq C\frac{1}{(M_{\log}^{-1}(ct))^2}\|(u^{(0)}, u^{(1)},\theta^{(0)})\|_{\mathcal{D}(\mathcal{A})}^2,\; \forall t\geq 0, | (61) |
where
Especially, if
Proof. We can still use the proof of Theorem 2.4 to derive
\limsup\limits_{|\sigma|\to\infty}\limits\frac{1}{(M(\sigma))}\|(i\sigma-\mathcal{A})^{-1}\| < \infty, |
which together with
Remark 7. From Corollary 2, we see that in order to obtain an explicit decay rate, it is very important to estimate the lower bound of
This section is devoted to present some numerical simulations on the dynamical behaviour of system (5) to support the results obtained above.
The backward Euler method in time (time step:
For simplicity, we assume that the star-shaped network consists of three edges, the lengths of which are given as
\ell_1=1,\; \ell_2=2,\; \ell_3=1. |
The following cases are considered:
Case A.
In this case, all the three edges of the network are constituted by thermoelastic ones. First, choose the initial conditions as follows:
\left\{ \begin{array}{l} u_1(x,0)=5\sin(\pi x), \; u_2(x,0)=5\sin(\frac{\pi x}{\ell_2}),\; u_3(x,0)=-5\sin(\pi x),\\ u_{1,t}(x,0)=9\sin(\pi x), \; u_{2,t}(x,0)=4\sin(\frac{\pi x}{\ell_2}),\; u_{3,t}(x,0)=-9\sin(\pi x),\\ \theta_1(x,0)=3\sin(\frac{1}{2}\pi x+\frac{\pi}{2}), \theta_2(x,0)=3\sin(\frac{\pi}{2\ell_2}x+\frac{\pi}{2}), \theta_3(x,0)=3\sin(\frac{1}{2}\pi x+\frac{\pi}{2}). \end{array} \right. | (62) |
and the parameters in system (5):
\alpha_1=1,\; \beta_1=1,\; \alpha_2=2,\; \beta_2=1,\;\alpha_1=3,\; \beta_3=1. | (63) |
The dynamical behaviour of
Case B.
In this case, the network consists of purely elastic rods, that is, no thermal-damping dissipates energy. The initial conditions are the same as in Case A. Solutions are plotted in Figure B-1, 2, 3, which confirms the conservative character of the system.
Case C.
In this case, the network is constituted by two thermoelastic rods and one purely elastic one. The initial conditions and parameters in system (5) are chosen as (62) and (63). We get the dynamical behaviour in Figure C-1, 2, 3, 4, 5.
In these figures, we can see that the behaviour of each
Case D.
In this case, the network consists of one thermoelastic rod and two purely elastic ones. The lengths of rods are still given as
Case E.
In this case, the network is still constituted by one thermoelastic rod and two purely elastic ones. This time the length
In Figure E-1, 2, 3, 4, we observe a very slow decay rate. It implies that the energy of this system decays to zero but lacks exponential growth rate.
Moreover, we presented Figure F-1, 2 to compare the decay rate of the energy for each case. Figure F-1 shows the dynamical behaviours of the logarithmic scale of the energy for Case A, B and C. Figure F-2 shows the dynamical behaviours of the energies for Case D and E. From these two figures, we can clearly see the behaviours of energies for each case respect time, which are consistent with our theoretical results obtained in this paper.
This appendix is devoted to show how to get (37).
Note that
Thus, by (36), for
u_j(x) = \frac{u(0)}{-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}}[-\sqrt{d_{j,2}}\cosh\sqrt{d_{j,1}}x+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}\cosh\sqrt{d_{j,2}}x] \\ \ \ \ \ \ \ \ \ \ +\frac{u_{j,x}(0)}{\sqrt{d_{j,1}}-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}}[\sinh\sqrt{d_{j,1}}x-\widetilde{a}_j\widetilde{b}_j\sinh\sqrt{d_{j,2}}x] \\ \ \ \ \ \ \ \ \ \ +\frac{\theta(0)}{\sqrt{d_{j,1}}-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}}[-\widetilde{b}_j\sqrt{d_{j,2}}\sinh\sqrt{d_{j,1}}x+\widetilde{b}_j\sqrt{d_{j,1}}\sinh\sqrt{d_{j,2}}x] \\ \ \ \ \ \ \ \ \ \ +\frac{\theta_{j,x}(0)}{-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}}[\widetilde{b}_j\cosh\sqrt{d_{j,1}}x-\widetilde{b}_j\cosh\sqrt{d_{j,2}}x],\\ \theta_j(x) = \frac{u(0)}{-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}}[-\sqrt{d_{j,2}}\widetilde{a}_j\sinh\sqrt{d_{j,1}}x+\widetilde{a}_j\sqrt{d_{j,1}}\sinh\sqrt{d_{j,2}}x] \\ \ \ \ \ \ \ \ \ \ +\frac{u_{j,x}(0)}{\sqrt{d_{j,1}}-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}}[\widetilde{a}_j\cosh\sqrt{d_{j,1}}x-\widetilde{a}_j\cosh\sqrt{d_{j,2}}x] \\ \ \ \ \ \ \ \ \ \ +\frac{\theta(0)}{\sqrt{d_{j,1}}-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}}[-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}\cosh\sqrt{d_{j,1}}x+\sqrt{d_{j,1}}\cosh\sqrt{d_{j,2}}x] \\ \ \ \ \ \ \ \ \ \ +\frac{\theta_{j,x}(0)}{-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}}[\widetilde{a}_j\widetilde{b}_j\sinh\sqrt{d_{j,1}}x-\sinh\sqrt{d_{j,2}}x]. |
Thus, by the boundary condition
0 = \frac{u(0)}{-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}}[-\sqrt{d_{j,2}}\cosh\sqrt{d_{j,1}}\ell_j +\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}\cosh\sqrt{d_{j,2}}\ell_j] \\ \ \ \ \ \ \ \ \ \ +\frac{u_{j,x}(0)}{\sqrt{d_{j,1}}-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}}[\sinh\sqrt{d_{j,1}}\ell_j-\widetilde{a}_j\widetilde{b}_j\sinh\sqrt{d_{j,2}}\ell_j] \\ \ \ \ \ \ \ \ \ \ +\frac{\theta(0)}{\sqrt{d_{j,1}}-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}}[-\widetilde{b}_j\sqrt{d_{j,2}}\sinh\sqrt{d_{j,1}}\ell_j+\widetilde{b}_j\sqrt{d_{j,1}}\sinh\sqrt{d_{j,2}}\ell_j] \\ \ \ \ \ \ \ \ \ \ +\frac{\theta_{j,x}(0)}{-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}}[\widetilde{b}_j\cosh\sqrt{d_{j,1}}\ell_j-\widetilde{b}_j\cosh\sqrt{d_{j,2}}\ell_j],\\ 0 = \frac{u(0)}{-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}}[-\sqrt{d_{j,2}}\widetilde{a}_j\sinh\sqrt{d_{j,1}}\ell_j+\widetilde{a}_j\sqrt{d_{j,1}}\sinh\sqrt{d_{j,2}}\ell_j] \\ \ \ \ \ \ \ \ \ \ +\frac{u_{j,x}(0)}{\sqrt{d_{j,1}}-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}}[\widetilde{a}_j\cosh\sqrt{d_{j,1}}\ell_j-\widetilde{a}_j\cosh\sqrt{d_{j,2}}\ell_j] \\ \ \ \ \ \ \ \ \ \ +\frac{\theta(0)}{\sqrt{d_{j,1}}-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}}[-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}\cosh\sqrt{d_{j,1}}\ell_j+\sqrt{d_{j,1}}\cosh\sqrt{d_{j,2}}\ell_j] \\ \ \ \ \ \ \ \ \ \ +\frac{\theta_{j,x}(0)}{-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}}[\widetilde{a}_j\widetilde{b}_j\sinh\sqrt{d_{j,1}}\ell_j-\sinh\sqrt{d_{j,2}}\ell_j]. |
Then a direct calculation yields, for
\left( \begin{array}{c} u_{j,x}(0)\\ \theta_{j,x}(0) \end{array}\right) =\left( \begin{array}{cc} C^j_{11}&C^j_{12}\\ C^j_{21}&C^j_{22} \end{array}\right)\left( \begin{array}{c} u(0)\\ \theta(0) \end{array}\right), | (A.1) |
where
C^j_{11} = \Big[{(\sqrt{d_{j,1}}-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}})(-\widetilde{a}_j\widetilde{b}_j\sinh\sqrt{d_{j,1}}\ell_j\cosh\sqrt{d_{j,2}}\ell_j+\cosh\sqrt{d_{j,1}}\ell_j\sinh\sqrt{d_{j,2}}\ell_j)}\Big]\Big/D_j,\\ C^j_{12} = \Big[-\widetilde{a}_j\widetilde{b}_j^2\sqrt{d_{j,2}}\!-\!\widetilde{b}_j\sqrt{d_{j,1}}\!+\!\widetilde{b}_j\sqrt{d_{j,1}}(-\!\widetilde{a}_j\widetilde{b}_j\sinh\sqrt{d_{j,1}}\ell_j\sinh\sqrt{d_{j,2}}\ell_j\!+\!\cosh\sqrt{d_{j,1}}\ell_j\cosh\sqrt{d_{j,2}}\ell_j) \\ \ \ \ \ \ \ \ \ \ +\widetilde{b}_j\sqrt{d_{j,2}}(-\sinh\sqrt{d_{j,1}}\ell_j\sinh\sqrt{d_{j,2}}\ell_j+\widetilde{a}_j\widetilde{b}_j\cosh\sqrt{d_{j,1}}\ell_j\cosh\sqrt{d_{j,2}}\ell_j)\Big]\Big/D_j,\\ C^j_{21} = \Big[-\widetilde{a}_j^2\widetilde{b}_j\sqrt{d_{j,1}}-\widetilde{a}_j\sqrt{d_{j,2}} +\widetilde{a}_j\sqrt{d_{j,1}}(\widetilde{a}_j\widetilde{b}_j\cosh\sqrt{d_{j,1}}\ell_j\cosh\sqrt{d_{j,2}}\ell_j-\sinh\sqrt{d_{j,1}}\ell_j\sinh\sqrt{d_{j,2}}\ell_j) \\ \ \ \ \ \ \ \ \ \ +\widetilde{a}_j\sqrt{d_{j,2}}(\cosh\sqrt{d_{j,1}}\ell_j\cosh\sqrt{d_{j,2}}\ell_j-\widetilde{a}_j\widetilde{b}_j\sinh\sqrt{d_{j,1}}\ell_j\sinh\sqrt{d_{j,2}}\ell_j)\Big]\Big/D_j,\\ C^j_{22} = \Big[{(-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}})(\widetilde{a}_j\widetilde{b}_j\cosh\sqrt{d_{j,1}}\ell_j\sinh\sqrt{d_{j,2}}\ell_j -\sinh\sqrt{d_{j,1}}\ell_j\cosh\sqrt{d_{j,2}}\ell_j)}\Big]\Big/D_j, |
and
D_j={-2\widetilde{a}_j\widetilde{b}_j-(1+\widetilde{a}_j^2\widetilde{b}_j^2)\sinh\sqrt{d_{j,1}}\ell_j\sinh\sqrt{d_{j,2}}\ell_j+2\widetilde{a}_j\widetilde{b}_j\cosh\sqrt{d_{j,1}}\ell_j\cosh\sqrt{d_{j,2}}\ell_j} . |
Then by the transmission condition
\sum\limits_{j=1}^{N_1}\frac{\alpha_j}{\beta_j}(C^j_{21} u(0)+C^j_{22}\theta(0))=0, | (A.2) |
which implies that
\theta(0)=- u(0)\frac{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{21}}{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{22}}. |
Hence by (A.1),
u_{j,x}(0)=C^j_{11} u(0)\!+\!C_{12}^j\theta(0)=u(0)\left(C_{11}^j-C_{12}^j\frac{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{21}}{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{22}} \right),\; j=1,2,\cdots,N_1. | (A.3) |
On the other hand, by (34),
u_{j,x}(0) = -\frac{\sigma u(0)\cos\sigma\ell_{j}}{\sin\sigma\ell_{j}}-\frac{\cos\sigma\ell_{j}}{\sin\sigma\ell_{j}}\int_0^{\ell_{j}}g_{j}(\ell_{j}-s)\sin\sigma(\ell_{j}-s)ds \\ \ \ \ \ \ \ \ \ \ +\int_0^{\ell_{j}}g_j(\ell_{j}-s)\cos\sigma(\ell_{j}-s)ds,\; j=N_1+1,N_1+2,\cdots,N. | (A.4) |
Then by the transmission condition
\ \ \ \ \ \ \ \ \ u(0)\left( \sum\limits_{j=1}^{N_1} \Big(C_{11}^j-C_{12}^j\frac{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{21}}{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{22}}+\alpha_j \frac{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{21}}{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{22}}\Big) -\sum\limits_{j=N_1+1}^{N}\frac{\sigma\cos\sigma\ell_{j}}{\sin\sigma\ell_{j}}\right) \\ = \sum\limits_{j=N_1+1}^N\frac{\cos\sigma\ell_{j}}{\sin\sigma\ell_{j}}\!\int_0^{\ell_{j}}g_{j}(\ell_{j}\!-\!s)\!\sin\sigma(\ell_{j}\!-\!s)ds \\ \ \ \ \ \ \ \ \ \ -\sum\limits_{j=N_1+1}^N\int_0^{\ell_{j}}g_j(\ell_{j}\!-\!s)\cos\sigma(\ell_{j}\!-\!s)ds. | (A.5) |
Hence,
\sigma u(0)\!=\!\frac{\sum\limits_{j=N_1\!+\!1}^N\limits\!\Big(\!\frac{\cos\sigma\ell_{j}}{\sin\sigma\ell_{j}}\int_0^{\ell_{j}}g_{j}(\ell_{j}\!-\!s)\sin\sigma(\ell_{j}\!-\!s)ds\!-\!\int_0^{\ell_{j}}g_j(\ell_{j}\!-\!s)\!\cos\sigma(\ell_{j}\!-\!s)ds\!\Big)} {\frac{1}{\sigma}\sum\limits_{j=1}^{N_1}\limits \Big(C_{11}^j-C_{12}^j\frac{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{21}}{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{22}}+\alpha_j \frac{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{21}}{\sum\limits_{j=1}^{N_1}\limits\frac{\alpha_j}{\beta_j}C^j_{22}}\Big) -\sum\limits_{j=N_1+1}^{N}\limits\frac{\cos\sigma\ell_{j}}{\sin\sigma\ell_{j}}}. | (A.6) |
As
d_{j,1}=(i\sigma)^2+\alpha_j\beta_j(i\sigma)+\alpha_j\beta_j+O(\frac{1}{\sigma}), d_{j,2}=i\sigma-\alpha_j\beta_j+O(\frac{1}{\sigma}). |
Hence,
\sqrt{d_{j,1}}=i\sigma+\frac{\alpha_j\beta_j}{2}+O(\frac{1}{\sigma}), \sqrt{d_{j,2}}=\sqrt{i\sigma}-\frac{\alpha_j\beta_j}{2\sqrt{i\sigma}}+O(\frac{1}{\sigma^{3/2}}), |
\widetilde{a}_j=\beta_j+O(\frac{1}{\sigma}), \widetilde{b}_j=-{\alpha_j} (i\sigma)^{-\frac{3}{2}}+O(\frac{1}{\sigma^{5/2}}). |
and
-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}}=-\sqrt{i\sigma}-\frac{\alpha_j\beta_j}{\sqrt{i\sigma}}+O(\frac{1}{\sigma^{3/2}}), |
\sqrt{d_{j,1}}-\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}=i\sigma+\frac{\alpha_j\beta_j}{2}+\frac{\alpha_j\beta_j}{\sqrt{i\sigma}}+O(\frac{1}{\sigma}). |
Substituting the above into (A.1), we get that
C_{11}^j=\frac{(\!\sqrt{d_{j,1}}\!-\!\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,2}}\!)\cosh\sqrt{d_{j,1}}\ell_j}{(1+\widetilde{a}_j^2\widetilde{b}_j^2)\sinh\sqrt{d_{j,1}}\ell_j} \!+\!O(\!\frac{1}{\sigma^{3/2}}\!) \!=\!(i\sigma\!+\!\frac{\alpha_j\beta_j}{2}\!+\!\frac{\alpha_j\beta_j}{\sqrt{i\sigma}})\frac{\cosh\sqrt{d_{j,1}}\ell_j}{\sinh\sqrt{d_{j,1}}\ell_j}\!+\!O(\frac{1}{\sigma}),\\ | (A.7) |
C_{12}^j = \frac{(\widetilde{b}_j\sqrt{d_{j,1}})\cosh\sqrt{d_{j,1}}\ell_j}{(1+\widetilde{a}_j^2\widetilde{b}_j^2)\sinh\sqrt{d_{j,1}}\ell_j} +O(\!\frac{1}{\sigma^{3/2}}\!)=-\frac{\alpha_j}{\sqrt{i\sigma}}\frac{\cosh\sqrt{d_{j,1}}\ell_j}{\sinh\sqrt{d_{j,1}}\ell_j}+O(\frac{1}{\sigma}), | (A.8) |
C_{21}^j = -\frac{(\widetilde{a}_j\sqrt{d_{j,1}})}{(1+\widetilde{a}_j^2\widetilde{b}_j^2)} +O(\!\frac{1}{\sigma^{3/2}}\!)=-{i\beta_j\sigma}+\frac{\alpha_j\beta_j^2}{2}+O(\frac{1}{\sigma}), | (A.9) |
C_{22}^j = -\frac{(-\sqrt{d_{j,2}}+\widetilde{a}_j\widetilde{b}_j\sqrt{d_{j,1}})}{(1+\widetilde{a}_j^2\widetilde{b}_j^2)} +O(\!\frac{1}{\sigma^{3/2}}\!) =\sqrt{i\sigma}+\frac{\alpha_j\beta_j}{\sqrt{i\sigma}}+O(\frac{1}{\sigma}). | (A.10) |
Then by (A.6),
\sigma u(0) = \frac{\sum\limits_{j=N_1+1}^N\limits\Big(\frac{\cos\sigma\ell_{j}}{\sin\sigma\ell_{j}}\int_0^{\ell_{j}}g_{j}(\ell_{j}-s)\sin\sigma(\ell_{j}-s)ds-\int_0^{\ell_{j}}g_j(\ell_{j}-s)\cos\sigma(\ell_{j}-s)ds\Big)} {\sum\limits_{j=1}^{N_1}\limits \Big(i\frac{\cosh(i\sigma+\frac{\alpha_j\beta_j}{2})\ell_j}{\sinh(i\sigma+\frac{\alpha_j\beta_j}{2})\ell_j}+O(\frac{1}{\sqrt{\sigma}})\Big) -\sum\limits_{j=N_1+1}^{N}\limits\frac{\cos\sigma\ell_{j}}{\sin\sigma\ell_{j}}} \\ = \frac{\sum\limits_{j=N_1+1}^N\limits\Big(\frac{\cos\sigma\ell_{j}}{\sin\sigma\ell_{j}}\int_0^{\ell_{j}}g_{j}(\ell_{j}-s)\sin\sigma(\ell_{j}-s)ds-\int_0^{\ell_{j}}g_j(\ell_{j}-s)\cos\sigma(\ell_{j}-s)ds\Big)} {\sum\limits_{j=1}^{N_1}\limits \Big(i\frac{\cosh(i\sigma+\frac{\alpha_j\beta_j}{2})\ell_j}{\sinh(i\sigma+\frac{\alpha_j\beta_j}{2})\ell_j}+O(\frac{1}{\sqrt{\sigma}})\Big) -\sum\limits_{j=N_1+1}^{N}\limits\frac{\cos\sigma\ell_{j}}{\sin\sigma\ell_{j}}} \\ = \frac{\sum\limits_{j=N_1+1}^N\limits\prod\limits_{\tiny\begin{array}{c}k\neq j\\ k=N_1+1\end{array}}^N\limits\sin\sigma\ell_k\cos\sigma\ell_j \int_0^{\ell_{j}}g_{j}(\ell_{j}-s)\sin\sigma(\ell_{j}-s)ds} {\prod\limits_{\tiny k=N_1+1}^N\limits\sin\sigma\ell_k\sum\limits_{j=1}^{N_1}\limits \Big(i\frac{\cosh(i\sigma+\frac{\alpha_j\beta_j}{2})\ell_j}{\sinh(i\sigma+\frac{\alpha_j\beta_j}{2})\ell_j}+O(\frac{1}{\sqrt{\sigma}})\Big) -\sum\limits_{j=N_1+1}^{N}\limits\prod\limits_{\tiny\begin{array}{c}k\neq j\\ k=N_1+1\end{array}}^N\limits\sin\sigma\ell_k\cos\sigma\ell_{j}} \\ \ \ \ \ \ \ \ \ \ -\!\frac{\sum\limits_{\tiny j=N_1+1}^N\limits\prod\limits_{\tiny k=N_1+1}^N\limits\sin\sigma\ell_k\int_0^{\ell_{j}}g_j(\ell_{j}-s)\cos\sigma(\ell_{j}-s)ds} {\prod\limits_{\tiny k=N_1+1}^N\limits\sin\sigma\ell_k\sum\limits_{j=1}^{N_1}\limits \Big(i\frac{\cosh(i\sigma+\frac{\alpha_j\beta_j}{2})\ell_j}{\sinh(i\sigma+\frac{\alpha_j\beta_j}{2})\ell_j}\!+\!O(\frac{1}{\sqrt{\sigma}})\Big) \!-\!\sum\limits_{\tiny j=N_1+1}^{N}\limits\!\prod\limits_{\tiny\begin{array}{c}k\neq j\\ k=N_1+1\end{array}}^N\limits\sin\sigma\ell_k\cos\sigma\ell_{j}}. |
Thus, (37) has been obtained.
[1] | World Health Organization, Global Strategy for Dengue Prevention and Control 2012–2020, WHO, 2012. |
[2] |
G. F. Killeen, N. Chitnis, Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: A mathematical modelling analysis, Malaria J., 13 (2014), 97. https://doi.org/10.1186/1475-2875-13-97 doi: 10.1186/1475-2875-13-97
![]() |
[3] |
T. L. Russell, N. J. Govella, S. Azizi, C. J. Drakeley, S. P. Kachur, G. F. Killeen, Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania, Malaria J., 10 (2011), 80. https://doi.org/10.1186/1475-2875-10-80 doi: 10.1186/1475-2875-10-80
![]() |
[4] |
E. Sherrard-Smith, J. E. Skarp, A. D. Beale, C. Fornadel, L. C. Norris, S. J. Moore, et al., Mosquito feeding behavior and how it influences residual malaria transmission across Africa, Proc. Nat. Acad. Sci. USA, 116 (2019), 15086–15095. https://doi.org/10.1073/pnas.1820646116 doi: 10.1073/pnas.1820646116
![]() |
[5] |
E. K. Thomsen, G. Koimbu, J. Pulford, S. Jamea-Maiasa, Y. Ura, J. B. Keven, et al., Mosquito behavior change after distribution of bednets results in decreased protection against malaria exposure, J. Infect Dis., 215 (2016), 790–797. https://doi.org/10.1093/infdis/jiw615 doi: 10.1093/infdis/jiw615
![]() |
[6] |
D. L. Smith, K. E. Battle, S. I. Hay, C. M. Barker, T. W. Scott, F. E. McKenzie, Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens, PLoS Pathog., 8 (2012), e1002588. https://doi.org/10.1371/journal.ppat.1002588 doi: 10.1371/journal.ppat.1002588
![]() |
[7] |
J. Vontas, E. Kioulos, N. Pavlidi, E. Morou, A. della Torre, H. Ranson, Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti, Pestic. Biochem. Physiol, 104 (2012), 126–131. https://doi.org/10.1016/j.pestbp.2012.05.008 doi: 10.1016/j.pestbp.2012.05.008
![]() |
[8] |
C. L. Moyes, J. Vontas, A. J. Martins, L. C. Ng, S. Y. Koou, I. Dusfour, et al., Contemporary status of insecticide resistance in the major aedes vectors of arboviruses infecting humans, PLoS Negl. Trop Dis., 11 (2017), e0005625. https://doi.org/10.1371/journal.pntd.0005625 doi: 10.1371/journal.pntd.0005625
![]() |
[9] |
S. D. Rodriguez, H. N. Chung, K. K. Gonzales, J. Vulcan, Y. Li, J. A. Ahumada, et al., Efficacy of some wearable devices compared with spray-on insect repellents for the yellow fever mosquito, Aedes aegypti (L.) (Diptera: Culicidae), J. Insect. Sci., 17 (2017), 24. https://doi.org/10.1093/jisesa/iew117 doi: 10.1093/jisesa/iew117
![]() |
[10] |
M. Sibanda, W. Focke, L. Braack, A. Leuteritz, H. Brünig, N. H. A. Tran, et al., Bicomponent fibres for controlled release of volatile mosquito repellents, Mater. Sci. Eng. C. Mater. Biol. Appl., 91 (2018), 754–761. https://doi.org/10.1016/j.msec.2018.06.016 doi: 10.1016/j.msec.2018.06.016
![]() |
[11] |
R. Tisgratog, U. Sanguanpong, J. P. Grieco, R. Ngoen-Kluan, T. Chareonviriyaphap, Plants traditionally used as mosquito repellents and the implication for their use in vector control, Acta. Trop., 157 (2016), 136–144. https://doi.org/10.1016/j.actatropica.2016.01.024 doi: 10.1016/j.actatropica.2016.01.024
![]() |
[12] | A. M. Grancarić, L. Botteri, P. Ghaffari, Combating invasive mosquitoes by textiles and paints, in AUTEX2019 19th World Textile Conference on Textiles at the Crossroads, Belgium, 2019. |
[13] |
B. Buonomo, R. Della Marca, Optimal bed net use for a dengue disease model with mosquito seasonal pattern, Math. Meth. Appl. Sci., 41 (2018), 573–592. https://doi.org/10.1002/mma.4629 doi: 10.1002/mma.4629
![]() |
[14] |
A. A. Momoh, A. Fügenschuh, Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model, Operat. Res. Health Care, 18 (2018), 99–111. https://doi.org/10.1016/j.orhc.2017.08.004 doi: 10.1016/j.orhc.2017.08.004
![]() |
[15] |
G. G. Mwanga, H. Haario, V. Capasso, Optimal control problems of epidemic systems with parameter uncertainties: Application to a malaria two-age-classes transmission model with asymptomatic carriers, Math. Biosci., 261 (2015), 1–12. https://doi.org/10.1016/j.mbs.2014.11.005 doi: 10.1016/j.mbs.2014.11.005
![]() |
[16] |
H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres, Seasonality effects on dengue: basic reproduction number, sensitivity analysis and optimal control, Math. Meth. Appl. Sci., 39 (2016), 4671–4679. https://doi.org/10.1002/mma.3319 doi: 10.1002/mma.3319
![]() |
[17] |
M. De Lara, L. S. Sepulveda Salcedo, Viable control of an epidemiological model, Math. Biosci., 280 (2016), 24–37. https://doi.org/10.1016/j.mbs.2016.07.010 doi: 10.1016/j.mbs.2016.07.010
![]() |
[18] |
P. Rashkov, A model for a vector-borne disease with control based on mosquito repellents: a viability analysis, J. Math. Analysis Appl., 498 (2021), 124958. https://doi.org/10.1016/j.jmaa.2021.124958 doi: 10.1016/j.jmaa.2021.124958
![]() |
[19] | F. Agusto, A. Goldberg, O. Ortega, J. Ponce, S. Zaytseva, S. Sindi, et al., Using mathematics to understand biological complexity: from cells to populations, Springer International Publishing, (2021), 83–109. https://doi.org/10.1007/978-3-030-57129-0_5 |
[20] | V. Capasso, Mathematical structures of epidemic systems, Springer-Verlag, Berlin Heidelberg, 2008. |
[21] |
N. W. Ruktanonchai, D. L. Smith, P. De Leenheer, Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control, Math. Biosci., 279 (2016), 90–101. https://doi.org/10.1016/j.mbs.2016.06.012 doi: 10.1016/j.mbs.2016.06.012
![]() |
[22] |
F. Rocha, M. Aguiar, M. Souza, N. Stollenwerk, Time-scale separation and centre manifold analysis describing vector-borne disease dynamics, Int. J. Comput. Math., 90 (2013), 2105–2125. https://doi.org/10.1080/00207160.2013.783208 doi: 10.1080/00207160.2013.783208
![]() |
[23] |
P. Rashkov, E. Venturino, M. Aguiar, N. Stollenwerk, B. W. Kooi, On the role of vector modeling in a minimalistic epidemic model, Math. Biosci. Eng., 16 (2019), 4314–4338. https://doi.org/10.3934/mbe.2019215 doi: 10.3934/mbe.2019215
![]() |
[24] | H. L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, Americal Mathematical Society, Providence, Rhode Island, 2008. |
[25] | M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser, Basel, 2008. |
[26] | J. P. Aubin, Viability theory, Birkhäuser, Boston, 2009. |
[27] | J. P. Aubin, H. Frankowska. Set-Valued analysis, Birkhäuser, Boston, 1990. |
[28] |
A. Altarovici, O. Bokanowski, H. Zidani, A general Hamilton-Jacobi framework for non-linear state-constrained control problems, ESAIM Contr. Optim. Ca. Va., 19 (2013), 337–357. https://doi.org/10.1051/cocv/2012011 doi: 10.1051/cocv/2012011
![]() |
[29] |
S. Osher, C. W. Shu, Higher-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal., 28 (1991), 907–922. https://doi.org/10.1137/0728049 doi: 10.1137/0728049
![]() |
[30] | S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, Springer-Verlag, New York, 2003. |
[31] | M. Assellaou, O. Bokanowski, A. Desilles, H. Zidani, A Hamilton-Jacobi-Bellman approach for the optimal control of an abort landing problem, in 2016 IEEE 55th Conference on Decision and Control, Las Vegas, USA, (2016), 3630–3635. https://doi.org/10.1109/CDC.2016.7798815 |
[32] |
M. Assellaou, O. Bokanowski, A. Desilles, H. Zidani, Value function and optimal trajectories for a maximum running cost control problem with state constraints. Application to an abort landing problem, ESAIM Math Model Num, 52 (2018), 305–335. https://doi.org/10.1051/m2an/2017064 doi: 10.1051/m2an/2017064
![]() |
[33] |
O. Bokanowski, N. Forcadel, H. Zidani, Reachability and minimal times for state-constrained nonlinear control problems without any controllability assumption, SIAM J. Control Optim., 45 (2010), 4292–4316. https://doi.org/10.1137/090762075 doi: 10.1137/090762075
![]() |
[34] |
L. Esteva, C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131–151. https://doi.org/10.1016/S0025-5564(98)10003-2 doi: 10.1016/S0025-5564(98)10003-2
![]() |
[35] |
C. Vargas-De-León, Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes, Math. Biosci. Eng., 9 (2012), 165–174. https://doi.org/10.3934/mbe.2012.9.165 doi: 10.3934/mbe.2012.9.165
![]() |
[36] |
M. O. Souza, Multiscale analysis for a vector-borne epidemic model, J. Math. Biol., 68 (2014), 1269–1293. https://doi.org/10.1007/s00285-013-0666-6 doi: 10.1007/s00285-013-0666-6
![]() |
[37] | P. Rashkov, Stability analysis of a model for a vector-borne disease with an asymptomatic class, in Proceedings 50th Jubilee Spring Conference of the Union of Bulgarian Mathematicians, 2021. |
[38] |
E. Barrios, P. Gajardo, O. Vasilieva, Sustainable thresholds for cooperative epidemiological models, Math. Biosci., 302 (2018), 9–18. https://doi.org/10.1016/j.mbs.2018.05.011 doi: 10.1016/j.mbs.2018.05.011
![]() |
[39] |
K. Hargreaves, R. H. Hunt, B. D. Brooke, J. Mthembu, M. M. Weeto, T. S. Awolola, et al., Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa, Med. Vet. Entomol., 17 (2003), 417–422. https://doi.org/10.1111/j.1365-2915.2003.00460.x doi: 10.1111/j.1365-2915.2003.00460.x
![]() |
[40] |
M. L. H. Mabaso, B. Sharp, C. Lengeler, Historical review of malarial control in Southern Africa with emphasis on the use of indoor residual house-spraying, Trop. Med. Int. Health, 9 (2004), 846–856. https://doi.org/10.1111/j.1365-3156.2004.01263.x doi: 10.1111/j.1365-3156.2004.01263.x
![]() |
[41] |
N. J. Govella, F. O. Okumu, G. F. Killeen, Insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors, Am. J. Trop. Med. Hyg., 82 (2010), 415–419. https://doi.org/10.4269/ajtmh.2010.09-0579 doi: 10.4269/ajtmh.2010.09-0579
![]() |
[42] | J. L. Aron R. M. May, The population dynamics of infectious diseases: theory and applications, Chapman and Hall, London, (1982), 139–179. |
[43] | L. S. Pontryagin, Ordinary differential equations, Wesley Publishing Company, 1963. |
1. | Kaïs Ammari, Farhat Shel, 2022, Chapter 4, 978-3-030-86350-0, 57, 10.1007/978-3-030-86351-7_4 | |
2. | Kaïs Ammari, Farhat Shel, 2022, Chapter 2, 978-3-030-86350-0, 15, 10.1007/978-3-030-86351-7_2 | |
3. | Victor Verbiţchi, Radu Cojocaru, Lia Nicoleta Boțilă, Cristian Ciucă, Ion Aurel Perianu, Considerations on the Ultimate Tensile Strength of Butt Welds of the EN AW 5754 Aluminium Alloy, Made by Friction Stir Welding (FSW), 2020, 1157, 1662-8985, 38, 10.4028/www.scientific.net/AMR.1157.38 | |
4. | Vaibhav Mehandiratta, Mani Mehra, Günter Leugering, Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph, 2019, 477, 0022247X, 1243, 10.1016/j.jmaa.2019.05.011 | |
5. | Vaibhav Mehandiratta, Mani Mehra, A difference scheme for the time-fractional diffusion equation on a metric star graph, 2020, 158, 01689274, 152, 10.1016/j.apnum.2020.07.022 | |
6. | Victor Verbiţchi, Horia Florin Daşcău, Lia Nicoleta Boțilă, Radu Cojocaru, Experiments on Friction Stir Processing (FSP), with Tilted Parent Metal, 2021, 890, 1662-9795, 95, 10.4028/www.scientific.net/KEM.890.95 | |
7. | Hai-E. Zhang, Gen-Qi Xu, Hao Chen, Min Li, Stability of a Variable Coefficient Star-Shaped Network with Distributed Delay, 2022, 35, 1009-6124, 2077, 10.1007/s11424-022-1157-x | |
8. | Mo Faheem, Arshad Khan, A collocation method for time‐fractional diffusion equation on a metric star graph with η \eta edges, 2023, 0170-4214, 10.1002/mma.9023 | |
9. | Karim El Mufti, Rania Yahia, Polynomial stability in viscoelastic network of strings, 2022, 15, 1937-1632, 1421, 10.3934/dcdss.2022073 | |
10. | Alaa Hayek, Serge Nicaise, Zaynab Salloum, Ali Wehbe, Exponential and polynomial stability results for networks of elastic and thermo-elastic rods, 2022, 15, 1937-1632, 1183, 10.3934/dcdss.2021142 | |
11. | Mohammad Akil, Genni Fragnelli, Ibtissam Issa, The energy decay rate of a transmission system governed by the degenerate wave equation with drift and under heat conduction with the memory effect, 2024, 297, 0025-584X, 3766, 10.1002/mana.202300571 | |
12. | Bienvenido Barraza Martínez, Jonathan González Ospino, Jairo Hernández Monzón, Analysis of the exponential stability of a beam-string-beam transmission problem with local damping on the string, 2024, 77, 09473580, 100988, 10.1016/j.ejcon.2024.100988 | |
13. | Bienvenido Barraza Martinez, Jairo Hernandez Monzon, Gustavo Vergara Rolong, Exponential stability of a damped beam-string-beam transmission problem, 2022, 2022, 1072-6691, 30, 10.58997/ejde.2022.30 | |
14. | Gonzalo Arias, Eduardo Cerpa, Swann Marx, Stability analysis of a linear system coupling wave and heat equations with different time scales, 2025, 543, 0022247X, 128923, 10.1016/j.jmaa.2024.128923 | |
15. | R. Ch. Kulaev, A. A. Urtaeva, On the Existence of a Solution of a Boundary Value Problem on a Graph for a Nonlinear Equation of the Fourth Order, 2023, 59, 0012-2661, 1175, 10.1134/S0012266123090033 | |
16. | R. Ch. Kulaev, A. A. Urtaeva, On the Existence of a Solution of a Boundary Value Problem on a Graph for a Nonlinear Equation of the Fourth Order, 2023, 59, 0374-0641, 1181, 10.31857/S0374064123090030 | |
17. | Junping Nan, Weimin Hu, You-Hui Su, Yongzhen Yun, EXISTENCE AND STABILITY OF SOLUTIONS FOR A COUPLED HADAMARD TYPE SEQUENCE FRACTIONAL DIFFERENTIAL SYSTEM ON GLUCOSE GRAPHS, 2024, 14, 2156-907X, 911, 10.11948/20230202 | |
18. | Vaibhav Mehandiratta, Mani Mehra, Space-time fractional parabolic equations on a metric star graph with spatial fractional derivative of Sturm-Liouville type: analysis and discretization, 2025, 1311-0454, 10.1007/s13540-025-00376-7 | |
19. | Mohammad Akil, Genni Fragnelli, Sarah Ismail, Ahmet Özkan Özer, Exponential Stabilization of an Euler-Bernoulli Beam by a Heat Equation Involving Memory Effects, 2025, 0921-7134, 10.1177/09217134241310063 | |
20. | Shengda Zeng, Moncef Aouadi, Decay with respect to boundary conditions in nonsimple thermoelasticity with microtemperatures*, 2025, 0149-5739, 1, 10.1080/01495739.2025.2466102 |