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Abstract: We study a simple model for a vector-borne disease with control intervention based on
clothes and household items treated with mosquito repellents, which has constraints on the extent
(population coverage) and on the time duration reflecting technological and physical properties. We
compute first, the viability kernel of initial data of the model for which exists an optimal control that
maintains the infected host population below a given cap for all future times. Second, we use the
viability kernel to compute the set of initial data of the model for which exists an optimal control
that brings this population below the cap in a time period not exceeding the intervention’s duration.
We discuss applications of this framework in predicting and evaluating the performance of control
interventions under the given type of constraints.
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1. Introduction

Vector-borne diseases exhibit a common feature: a two-way transmission of the pathogen between
human hosts and various species of arthropods, most often mosquitos, that serve as carriers (or vec-
tors) of the pathogen, but direct host-host transmission is impossible for most of them. Diseases caused
by pathogens transmitted by mosquito bites (malaria, dengue fever, yellow fever, zika, chikungunya)
cause periodic outbreaks in the countries located in tropical climate zones, and pose a growing burden
on their healthcare systems, as seen, for instance, in a 30-fold increase in dengue fever’s incidence
since the 1970s [1]. Control campaigns against them are based on two broad types of measures: sup-
pression of transmission and elimination of the vector. They rely on the use of long-lasting insecticidal
nets (LLINs), indoor residual spraying with insecticide, use of larvicide, as well as use of personal
protection means with repellent activity that include spray-on repellents or repellent-treated textiles
and household items.
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The success of control measures aimed at the vector’s demography, like bed nets and insecticide
spraying, in reducing the disease burden has been limited for various reasons. On the one hand, there is
evidence for changing patterns in the transmission of malaria to outdoor environments [2–5], while the
main vectors of dengue, yellow fever and zika viruses, female mosquitoes of the Aedes genus are active
during daytime hours. Indiscriminate use of insecticide and larvicide, on the other hand, poses danger
to human health and the ecosystem. Furthermore, insecticide resistance has contributed to the failure
of the Global Malaria Eradication Programme [6] and has been noted among Aedes mosquitos [7, 8].

Use of repellent-treated clothes and household items as preventive measure could serve to suppress
transmission of pathogens from vector to host and vice versa. Changing mosquito host-seeking be-
havior by repellent application could reduce the biting rate of the female mosquitoes, and this strategy
has gained attention among entomologists. This includes studies of the effect of spray-on repellents
and wearable repellent devices on mosquito host-seeking behavior [9], and tests of fibers for controlled
release of volatile mosquito repellents to prevent bites in the context of malaria control [10]. Devel-
opment of mosquito repellents based on organic substances from plant oils [11], and of methods for
estimation of efficacy of repellents used in textiles and paints [12] reveal new perspectives for such
measures.

Mathematical modeling can help analyze and predict the performance of such interventions for
meeting policy objectives. We study a simple Ross-Macdonald type model [6] for a vector-borne
disease with control based on distribution of textiles and household items with repellent properties. The
constraints on an intervention campaign of this kind encompass, first, the economic cost of production,
distribution, etc. of the repellent-treated textiles, which influences its extent, that is, the maximum
fraction ū of the target population employing products with mosquito repellent property. Second, due
to technological and physical limitations, such as evaporation, washing, UV radiation exposure, etc.,
the repellent property is assumed to be lost after a period of duration T days. .

In this study we propose a method to analyze whether a control campaign under those constraints
is able to reduce and maintain the size of the infected host compartment below a certain level, denoted
henceforth as the infection cap. The infection cap Ī is a constraint on a state variable of the model
(infected hosts) and its value depends on factors, such as the availability of treatment, healthcare system
capacity or societal or political tolerances, etc. For the purpose of our analysis, we state the following
Questions.

Q.1 Given ū, Ī and initial data on infected hosts and vectors, establish whether the size of the infected
host compartment can remain below the infection cap for all future times and find the optimal
strategy to maintain it.

Q.2 If the initial data are such that the objective from Q.1 can not be met, we address the following:
given ū, Ī,T , find the optimal strategy to bring the size of the infected host compartment below
the infection cap Ī in a minimal time not exceeding T , and maintain it below the cap Ī until the
campaign’s end.

Both questions concern characterization of initial data inside the model’s state space unlike stan-
dard control analysis in the context of vector-borne diseases, which addresses optimal resource allo-
cation [13–16] These questions can be addressed using the toolbox of optimal control theory. Ques-
tion Q.1 is a viability problem and we study the existence of viable trajectories of the dynamical system,
namely those that satisfy the constraint stated in Q.1. The maximum set of initial data for Q.1 where
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this constraint is met, is the viability kernel. There has been some analysis of viable controls in epi-
demiology: in reference [17] viability kernels for a model with control on the mosquito population by
fumigation have been computed and validated with data from a dengue outbreak in Cali, Colombia.
In a previous work [18] we have characterized the viability kernel of a model for a vector-borne dis-
ease with susceptible, infected and removed compartments for the host population. Even though this
problem has an infinite time horizon, its solution shall be used for the solution of Question Q.2 .

For Question Q.2 we study a reachability problem for a target set (the viability kernel), and compute
the minimal entry time function to it. Such analysis can serve as a guide to policy makers to determine
determine whether and how fast the repellent-based control campaign constrained by its coverage ū
and duration T is able to reduce the size of the infected host compartment below the infection cap Ī. If
the minimal time lies within the given time horizon (0,T ), the campaign is considered effective. Else,
the campaign should be considered ineffective because it cannot meet this objective. The reachability
problem framed by Question Q.2 is important as it can provide an indicator of the control campaign’s
performance under the constraints to decision makers.

We use a variational approach to compute numerically approximations of the viability kernel of the
controlled system and the minimal entry time function to the viability kernel, using sub-zero level set
of a value function solving a Hamilton-Jacobi equation associated to the model system. The viability
kernel can also be described analytically by its boundary in the phase plane of the state variables
(infected hosts and infected vectors) [17]. However, the numerical approximation of the value function
from the variational approach allows us to reconstruct the control function which solves the viability
and reachability problems. We illustrate the application of this method from optimal control theory
using parameterized models for malaria transmission in Botswana and Zimbabwe [19] and discuss the
efficacy of the repellent-based control campaign in meeting the stated objectives.

2. Mathematical model

We use the compartmental model for a vector-borne disease as presented in [20], which follows the
dynamics of susceptible and infected hosts S h(t), Ih(t) and susceptible and infected female mosquitoes
S v(t), Iv(t) that serve as vectors for the pathogen, at time t ≥ 0. Susceptible hosts become infected after
receiving a bite from an infectious mosquito. A susceptible mosquito becomes infected after biting an
infected host, and after an incubation period of length τ becomes infectious and is able to transmit the
pathogen. We model the incubation period without a specific compartment as done by [19, 21]. If the
within-vector incubation period τ and the expected life-time of a mosquito 1/µ are of the same order
of magnitude, the probability of death of an infected mosquito during the pathogen incubation is not
negligible. Hence, merely a fraction exp(−µτ) of the infected mosquitoes Iv is capable of transmitting
the pathogen to the host [21]. In this model no protective immunity is assumed. Hosts from the infected
compartment after a short infectious period re-enter immediately the susceptible compartment [22,23],
the length of the period is 1/γ, with γ the recovery rate.

Let u(t) denote the proportion of the target population at time t using the measures provided by the
control campaign. With k being the repellent efficacy, the modified mosquito biting rate due to use of
control measures is am(1−ku(t)). Such modified infection rates are used in reference [15] in the context
of an age-structured model for malaria and controls by long-lasting insecticidal nets. We assume that
the cost of control effort C(u(t)) (production and distribution of the repellent-treated textiles or spray-
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on repellents) is borne by decision makers and is a linear function of u(t) (compare reference [38]), and
that C(u(t)) ≤ Cmax for all t ≥ 0. This means that u(t) ≤ ū for all t ≥ 0 for some maximum coverage
ū ∈ (0, 1] of the target population. The set of control functions we consider is

U = {u(t) : R+ → [0, ū], u − piecewise continuous }.

Observe that for u = ū we have the maximum available reduction of the biting rate, while for u = 0
there is no control used, and hence no reduction of the biting rate.

The host population is assumed to be constant over time, S h(t) + Ih(t) = N. We assume that the
repellent-based control does not lead to changes in the total populations of female mosquitoes over
time, M = S v(t)+ Iv(t). Hence, we can reduce the number of state variables by letting S h = N− Ih, S v =

M − Iv and non-dimensionalizing x1 = Ih/N, x2 = Iv/M. In our notation, x(t) denotes the vector of state
variables describing the different compartments of the epidemiological model at time t, and f (x, u)
denotes the model dynamics subject to a control function u ∈ U.

Letting ν = M/N be the average number of female mosquitoes per host and setting for shortness’s
sake α = am ph exp(−µτ), β = am pv, we work with the 2-dimensional non-autonomous system:

d
dt

x = f (x, u) with

f1(x, u) = (1 − ku(t))ανx2(1 − x1) − γx1

f2(x, u) = (1 − ku(t))βx1(1 − x2) − µx2 ,

(2.1)

subject to initial conditions x0 = (x1(0), x2(0)) ∈ Ω = [0, 1]2. The domain of definition Ω corresponds
to the states x with relevant epidemiological meaning for (2.1). On the segments on the boundary ∂Ω
defined by x1 = 0, x2 = 0, x2 = 1, x1 = 1, one can verify that the flow defined by f points towards
int Ω. Thus, Ω is forward invariant under f .

The associated trajectory of (2.1) for a given control function u ∈ U with initial condition x0 will be
denoted by xu(t; x0) = {(xu

1(t), xu
2(t)), t > 0}. The set of feasible trajectories on the time interval [0,+∞)

starting at x0 ∈ Ω at time t = 0 will be denoted by

S(x0,U) := {xu(t; x0) | u ∈ U} .

The system (2.1) is cooperative (or quasimonotone [20]) because ∂xi f j ≥ 0, i , j. Hence, tools from
the theory of ordinary differential equations such as comparison principles [24] are at our disposal to
establish properties of the feasible trajectories.

We conclude this section with

Lemma 1. The function f in system (2.1) is Lipschitz continuous on Ω with Lipschitz constant

L = [(max{2αν, αν + γ})2 + (max{2β, β + µ})2]1/2 (2.2)

Proof. The estimate follows from direct computation of the Euclidean norm for | f (x, u) −
f (x′, u′)|, x, x′ ∈ Ω, u, u′ ∈ [0, ū]. □

Using the Lipschitz continuity of f on Ω (Lemma 1) as well as the facts that a) the set { f (x, u), 0 ≤
u ≤ ū} is convex for all x ∈ Ω and b) we can choose C > 0 so f (x, u) ≤ C(1 + |x|) on Ω ( f has linear
growth), we establish that solutions to system (2.1) exist for t ≥ 0 [25, Chapter III.5]. In addition, since
the domain and graph of f are closed, f is a Marchaud map on Ω [26, Corollary 2.2.5].
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3. Viability analysis

In Question Q.1 we are interested in finding the initial conditions x0 of (2.1) such that for a given
maximum extent ū and infection cap Ī > 0, there exists u(t) ∈ U such that xu

1(t) ≤ Ī,∀t ≥ 0. Let
A(Ī) = {(x1, x2) ∈ Ω | x1 ≤ Ī}, which is a closed subset of Ω with a compact boundary. A feasible
trajectory x ∈ S(x0,U) is called viable for A(Ī) if the constraint xu

1(t) ≤ Ī,∀t ≥ 0 is met, in other
words, x(t) ∈ A(Ī) for t ∈ [0,+∞]. A set D ⊂ Ω is a viability domain for f if from any initial state
x0 ∈ D, at least one trajectory x ∈ S(x0,U) is viable forD [26, 27].

To answer Question Q.1, we characterize the viability kernel associated toAĪ, ū, that is the follow-
ing set of initial data for (2.1):

V(Ī, ū) := {x0 ∈ Ω | ∃x ∈ S(x0,U) with x(t) ∈ A(Ī),∀t ≥ 0}. (3.1)

Evidently, V(Ī, ū) is the set of all initial data x0 ∈ A(Ī) from which viable trajectories for A(Ī) for
t ≥ 0 exist. It is the largest closed viability domain of f inside A(Ī) [27]. The set A(Î) being closed,
and f being a Marchaud map, the viability kernel V(Ī, ū) for system (2.1) is well-defined [26, Theorem
4.1.2]. The viability kernel will depend on the constraint on the control ū, and on the state constraint
(the infection cap Ī).

We introduce the effective basic reproduction number for control intervention u(t) ≡ ū

Rū =
αβν(1 − kũ)2

γµ
(3.2)

and the critical threshold of infection

Icrit =
Rū − 1

Rū +
β

µ
(1 − kū)

, (3.3)

whenever Rū > 1, Icrit > 0. Following reference [18], Icrit equals the share of infected hosts at the
endemic equilibrium E∗ of system (3.4) at the maximum coverage with repellent-treated products.

Here we briefly recall stability properties of the model equilibria under constant controls u(t) = ū.
In that case the system (2.1) becomes autonomous,

d
dt

x1 = αν(1 − kū)x2(1 − x1) − γx1,

d
dt

x2 = β(1 − kū)x1(1 − x2) − µx2 .

(3.4)

System (3.4) has a trivial, disease-free equilibrium at the origin O and an endemic equilibrium:

E∗ = (x∗1, x
∗
2) =

Icrit,
Rū − 1

Rū +
αν
γ

(1 − kū)

 . (3.5)

Note that E∗ ∈ int Ω* if and only if Rū > 1. At Rū = 1, a transcritical bifurcation occurs and E∗
and O coincide [23].

*By int X we denote the interior of a set X.
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Lemma 2. The system (3.4) has the following asymptotic behavior:

(i) Rū ≤ 1 implies that the disease-free equilibrium O is globally asymptotically s for (3.4) in Ω.

(ii) Rū > 1 implies that the endemic equilibrium E∗ (3.5) is globally asymptotically stable for (3.4) in
Ω \ O.

The proofs of Lemma 2 and further statements are in the Supplementary Material.
Using Ī and Icrit, we characterize whether the viability kernel for system (2.1) has a positive

Lebesgue measure in R2:

Proposition 1. Consider the model with constant vector population (2.1). Let

(i) Ī ≥ max{0, Icrit}. Then int V(Ī, ū) has positive Lebesgue measure in R2.

(ii) Icrit > 0 and Ī < Icrit. Then V(Ī, ū) = O.

Based on Proposition 1, the description ofV(Ī, ū) can be refined by defining its boundaries. This has
been the approach in reference [17], and we recall the details for model (2.1). We start by a technical
result:

Lemma 3. Let Ī > max{0, Icrit}. Set v̄ = γĪ
αν(1−kū)(1−Ī) and assume v̄ < 1. The initial value problem

d
ds

z =
f1(z, s, ū)
f2(z, s, ū)

=
αν(1 − kū)(1 − z)s − γz
β(1 − kū)z(1 − s) − µs

, s > v̄,

z(v̄) = Ī,
(3.6)

has a unique non-negative solution which is monotone decreasing on the interval (v̄,min{1, v∗}), where
v∗ is such that z(v∗) = 0.

Due to the inverse function theorem, Lemma 3 implies the existence of an inverse map z−1 to z
defined on [0, Ī] such that z−1(z(s)) = s. We denote byZ the solution curve (z(s), s) inΩ of the problem
in Lemma 3 to describe explicitly the boundary of the viability kernel for the case Ī > max{0, Icrit}.

Proposition 2. For given Ī, ū the viability kernel V(Ī, ū) takes one of the following forms

(i) Let Ī > (1−kū)αν
(1−kū)αν+γ , then V(Ī, ū) = A(Ī).

(ii) Let Ī ∈ (max{0, Icrit},
(1−kū)αν

(1−kū)αν+γ ]. Then

V(Ī, ū) = {[0, Ī] × [0, v̄]} ∪ {(x1, x2)|v̄ ≤ x2 ≤ min{v∗, 1}, 0 ≤ x1 ≤ z(x2)}, (3.7)

where z(x) is the solution to the initial value problem (3.6) in Lemma 3, and v∗ such that z(v∗) = 0.

Unfortunately, this “direct” approach does not work for the case Ī = Icrit. While Proposition 1 shows
that the viability kernel has positive measure, the approach from Lemma 3 cannot work, because the
right-hand side of (3.6) is not defined at the initial condition z(v̄) = Ī, which is precisely at the endemic
equilibrium E∗.

To avoid this problem, we state an alternative characterization of the viability kernel using a vari-
ational formulation. Following reference [28], we consider an infinite horizon minimization problem
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with exact penalization of the state constraint. The constraint is expressed via the cost function, defined
by the signed distance function Γ

Γ(x) =


inf

y∈A(Ī)
|x − y|, x ∈ Ω \ intA(Ī)

− inf
y∈Ω\A(Ī)

|x − y|, x ∈ Ω ∩ intA(Ī).
(3.8)

Note that Γ(x) ≤ 0 if and only if x ∈ A(Ī). Following the steps in reference [28], we consider for ℓ > 0
the value function

v(x) = inf
u∈U

sup
t∈(0,+∞)

e−ℓtΓ(xu(t; x)), x ∈ R2. (3.9)

Note that v takes finite values on Ω. From (3.9), it follows v(x) ≤ 0 if and only if xu(t; x) ∈ V(Ī, ū) for
all t ∈ (0,+∞). Therefore, the viability kernel may be characterized using sub-zero-level sets of the
value function v:

V(Ī, ū) = {x ∈ Ω | v(x) ≤ 0} . (3.10)

Let ℓ > L with L being the Lipschitz constant of f (Lemma 1). Then the value function v satisfies
the following dynamic programming principle

v(x) = inf
u∈U

max
{

e−ℓtv(x), sup
s∈(0,t]

e−ℓsΓ(xu
x(s))

}
, ∀t > 0

and is Lipschitz continuous [28].
Let ∇v denote the gradient of v, ∇v = (∂x1v, ∂x2v). The results in reference [28, Section 4] imply

that v is the unique continuous viscosity solution [33, Definition 2] of the Hamilton-Jacobi-Bellman
equation

min{ℓv(x) +max
u∈U
H(x, u,∇v), v(x) − Γ(x)} = 0, x ∈ R2. (3.11)

with ℓ as above and Hamiltonian

H(x, u,∇v) = ⟨− f (x, u),∇v⟩. (3.12)

We refer the reader to reference [25, Chapter 1.3] for the definitions of viscosity solutions to partial
differential equations.

Hence, using well-known numerical methods for Hamilton-Jacobi equations based on finite differ-
ence discretization of the spatial derivative [29,30], one can compute the solution of (3.11) and find an
approximation of the viability kernel V(Ī, ū) for given values of target infection cap Ī and maximum
coverage ū.

In our case the quantity maxu∈UH(x, u,∇v) has an explicit form :

max
u∈U
H(x, u,∇v) = (γx1 − αν(1 − x1)x2) ∂x1v + (µx2 − βx1(1 − x2)) ∂x2v

+max
{
0, ανkū(1 − x1)x2∂x1v

}
+max

{
0, βkū(1 − x2)x1∂x2v

}
. (3.13)

Using the computed value function v, we can answer Q.1, compute the optimal control function u(t)
and reconstruct the optimal trajectory for a given initial condition x0 ∈ V(Ī, ū) using the reconstruction
algorithm from reference [31, 32]. This algorithm is applied in reference [18] to approximate the
viability kernel for another model of a vector-borne disease.
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4. Minimal entry time problem

Once we have computed the viability kernel, we turn our attention to the reachability problem from
Question Q.2. Let the initial data x0 = (x1(0), x2(0)) on infected hosts and vectors, the maximum extent
ū, the duration T , and the infection cap Ī be given. We ask if there exists an optimal strategy u(t) to
bring x1 population below the infection cap Ī in a minimal time τ < T and maintain x1(t) < Ī for
t ∈ (τ,T ].

To this purpose we define the minimal entry time function TX(x) for initial data x to the target set X
as follows:

TX(x) =

+∞, if {t ≥ 0 | xu(t; x) ∈ X} = ∅,

inf
u∈U

min{t ≥ 0 | xu(t; x) ∈ X}, else.
(4.1)

The objective in Question Q.2 is to compute the minimal entry time function for the target set being
the viability kernel V(Ī, ū). This makes sense unless the viability kernel is trivial (in other words, we
are interested in computing T for V(Ī, ū) , O). By definition, V(Ī, ū) ⊂ Ω is a compact set, hence
∂V(Ī, ū) is compact. We shall characterize the minimal entry time function using the value function v
from (3.9) based on the approach presented in references [28, 33].

Using the value function v which solves (3.11) and defines the viability kernel V(Ī, ū) via its sub-
zero level set (3.10) from the previous section we formulate a variational problem for the minimal entry
time function. The backwards reachable set for the target set (which is viability kernel V(Ī, ū)) at time
T , denoted byW(T ), is defined as the set of those initial data x for system (2.1) such that there exists a
feasible trajectory x ∈ S(x,U) with xu(t; x) ∈ V(Ī, ū) for t ≤ T .

In other words,

W(T ) = {x ∈ R2 | ∃t ∈ [0,T ], u ∈ U : xu(t; x) ∈ V(Ī, ū)} . (4.2)

Note that {W(t), t ≥ 0} is a family of increasing closed sets [33, Remark 2]. We remark that even
though the biologically relevant domain for system (2.1) is Ω, the proof of Lemma 2 implies Ω attracts
the trajectories of (2.1) starting at any x0 ∈ R2

+, so in principle there exist T > 0 with Ω ⊂W(T ).
The setW(T ) can be characterized using a level-set approach based on the computed value function

v by avoiding any controllability assumption for (2.1). We formulate a minimization problem (4.3) for
a value function w, which is the unique continuous viscosity solution of a Hamilton-Jacobi-Bellman
equation [33, Definition 2 and Theorem 2].

To impose a restriction W(T ) ⊆ Ω into the variational formulation, we introduce a penalization
term GΩ(x), which is a Lipschitz-continuous function which satisfies the condition for sub-zero-level
set, GΩ(x) ≤ 0 if and only if x ∈ Ω. To compute the minimal entry time function, we consider the
solution w of the minimization problem

w(t, x) = min
u∈U
{max{v(xu(t; x)),max

0≤s≤t
GΩ(xu(s; x))}}, (4.3)

Note that w is defined over R2, but the penalization term in (4.3) makes the value function w positive if
the trajectory leaves the domain Ω. The backwards reachable setW(T ) for (2.1) is thus defined as the
sub-zero-level set of the function w,W(T ) = {x ∈ R2 | w(T, x) ≤ 0}, and (4.3) impliesW(T ) ⊆ Ω.
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Following reference [33, Lemma 1], the value function w satisfies the following dynamic program-
ming principle

w(t + s, x) = inf
u∈U
{max{w(t, xu(s; x), max

τ∈[0,s]
GΩ(xu(τ; x))}}

w(0, x) = max{v(x),GΩ(x)},
(4.4)

and w is the unique continuous viscosity solution to the Hamilton-Jacobi-Bellman equation

min
{
∂

∂t
w(t, x) +max

u∈U
H(x, u,∇w),w(t, x) −GΩ(x)

}
= 0, t ≥ 0

w(0, x) = max{v(x),GΩ(x)}, x ∈ R2.

(4.5)

with ∇w = (∂x1w, ∂x2w), and HamiltonianH provided by (3.12).
Using w, we define the minimal entry time function (4.1) TV(Ī,ū)(x) for V(Ī, ū) for a trajectory with

initial condition x as

TV(Ī,ū)(x) = inf{t ≥ 0|x ∈W(t)} = inf{t ≥ 0|w(t, x) ≤ 0}.

As there is no controllability assumption for (2.1), TV(Ī,ū) need not be continuous over Ω. In fact, the
proof of part (ii) of Proposition 2 reveals that the minimal entry time function exhibits a discontinuity
across the boundary of the viability kernel V(Ī, ū) traced by the solution curveZ defined in Lemma 3.
Observe that even though the biologically relevant domain for (2.1) is just Ω, TV(Ī,ū)(x) may take finite
values for points x < Ω, while TV(Ī,ū)(x) = +∞ for x : x1, x2 < 0.

For the purpose of our study we are interested in minimal entry times not exceeding a given time
horizon T . As Ω is positively invariant under f , we employ the penalization term

GΩ(x) =

−1, x ∈ Ω ,

1, x < Ω .

To achieve higher accuracy of approximation for w(t, x), t ∈ [0,T ] close to the boundary ∂Ω we
solve numerically (4.5) on a uniform stencil for a domain which contains Ω in its interior using a
second-order Runge-Kutta scheme for the time integration. We find an approximation of the minimal
entry time function on Ω by using the obtained solution values for w(t, x), x ∈ Ω, as well as the optimal
control using the reconstruction algorithm given in references [31, 32].

5. Results and discussion

Mathematical analysis of models for vector-borne diseases tends to concern the asymptotic rather
than the transient behavior of their solutions using the basic reproduction number R0 as a criterion
for the stability of the disease-free equilibrium [34–37]. Of interest are the parameter values that
keep R0 below unity. Applications of optimal control theory often focus on optimal allocation of re-
sources (by minimizing cost functionals of different form) without addressing future transient dynamic
behavior [38].

In this work we study the latter question by considering a control problem with restricted state
space, defined by a cap on the size of the infected host compartment, and address two major questions.
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In Question Q.1 we seek the viability kernel V for the model (2.1), the subset of the state space Ω
that comprises those initial data such that a viable control u(t) exists to maintain the size of infected
host compartment x1(t) below the infection cap Ī for all future times. Then, we address a reachability
problem formulated as Question Q.2. If the interventions start from an initial condition x0 < V which
is outside the viability kernel, the objective stated in Question Q.1 cannot be met, so instead we are
interested in finding the optimal control strategy u(t) which reduces x1(t) below Ī in the shortest time.
The motivation behind Question Q.2 relates to the fact that control measures studied here are restricted
in duration due to technological and design limitations leading to a loss of product’s repellent property.

Analysis of viability and reachability allows decision makers to assess the effect of this control
intervention on future transient behavior given the epidemic situation at the start. This framework
gives an opportunity to analyze the dynamic behavior of the controlled model on its entire domain of
definition, or large subsets thereof, by describing existence of viable controls and of sets reachable in
finite time. In particular, it is possible to estimate whether under the constraints of cost Cmax (which
determines the population coverage ū) and duration of repellent action T , the objective of reducing the
size of the infected host compartment below the infection cap Ī can be met.

The reachability analysis could serve as a predictive indicator for the performance of the interven-
tion with parameters ū, Ī,T by providing analysis of the model’s trajectories. If a trajectory which
reaches the target (viability kernel) within the time interval (0,T ) exists, the campaign is considered
effective. Else, the intervention strategy is to be considered insufficient and may need to be supple-
mented by additional measures (use of repellents with higher efficacy, use of LLINs, indoor residual
spraying, vaccinations, preventive treatment, etc.).

We use parameter values for a malaria model fitted for Botswana and Zimbabwe from reference [19]
(listed in Table 1) as a basis for the numerical simulations to exemplify this method. Viability kernels
and minimal entry time functions are computed and compared across different values of ū.

The main differences between the parameters is the mosquito biting rate, am = 0.082 for Botswana
and am = 0.241 for Zimbabwe, and the expected life-time of a mosquito 1/µ, which is three times
higher in Botswana. According to reference [19] and therein cited references, the parameter µ reflects
a difference in overall coverage of indoor residual spraying in the two countries. This intervention
influences the vector’s demography and ecology by direct insecticidal or repellent action, but different
spraying solutions are used in homes built from traditional materials (wood, clay or mud bricks) and
in Western-style housing [39]. While it has suppressed the transmission of malaria in the past, societal
refusal to indoor spraying due to pungency, home wall staining, bug infestation, etc. is on the rise [40],
and the positive trends in disease control have been reversed.

The results from Proposition 1 enable us to compute the threshold for population coverage min ū
such that for a given infection cap Ī the viability kernel V(Ī, ū) is not trivial:

min ū =
1
k
−
βγĪ +

√
(βγĪ)2 + 4αβγµν(1 − Ī)
2αβγν(1 − Ī)k

. (5.1)

If min ū ≤ 0, then the viability kernel V(Ī, ū) has a positive Lebesgue measure in R2 for all 0 ≤ ū ≤ 1.
Figure 1 plots the trade-off relationship (5.1) between Ī,min ū for both countries for two values

of repellent efficacy k. It shows the minimal coverage ū required to produce a viability kernel of
positive Lebesgue measure for the given infection cap Ī. An immediate consequence is that in the case
of Botswana, for Ī ≥ 0.01, any extent of the control measures will suffice to produce a non-trivial
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Table 1. Model parameters based on reference [19] used in the numerical simulation for
Botswana and Zimbabwe. The values in parentheses refer to Zimbabwe.

Parameter Description Value Unit
am Mosquito biting rate 0.082 (0.241) day-1

(average number of blood meals per day)
pv Probability of the pathogen transmission

from a human host to mosquito 0.1
ph Probability of the pathogen transmission

from a mosquito to a human host 0.5
ν Ratio of female mosquitoes to hosts 10
γ Recovery rate for hosts 1

14 day-1

τ Within-vector incubation period 10 day
µ Mosquito death rate 1

30 ( 1
10 ) day-1

Control
k Efficacy of repellents 60%
ū Campaign extent (maximum coverage) as indicated
T Campaign duration 100 day
Ī Infection cap 0.1

viability kernel. In contrast, more control efforts must be employed in the case of Zimbabwe, where at
least 20% population coverage is required (min ū > 0.2) to produce a non-trivial viability kernel. Of
course, we must look at the area of the viability kernel to evaluate better the potential for keeping the
epidemic peak below Ī with the repellent-based strategy under consideration.

k = 0.6
k = 0.5

b)

Ī

m
in
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m
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Figure 1. Trade-off relationship between Ī and min ū to keep the viability kernel V(Ī, ū) with
positive Lebesgue measure. Range of Ī : (10−3, 10−1) for two values of the repellent efficacy
k. Parameters used for a) Botswana, b) Zimbabwe.

The infection cap is Ī = 0.1 and repellent efficacy k = 0.6. The epidemiological parameters for
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Figure 2. Area of the viability kernel V(Ī, ū) as function of the campaign’s extent ū. Param-
eters for a) Botswana; b) Zimbabwe.

Botswana indicate that the viability kernels are not trivial for all 0 ≤ ū ≤ 1. Figure 2a) displays the
area of the viability kernel for a range of values of ū. There is a positive correlation between ū and the
area of V(Ī, ū). For the given epidemiological parameters in Zimbabwe, the situation is different: for
Ī = 0.1 the viability kernel is trivial if ū < 0.2152; in other words, under this assumption the model
predicts it is not possible to maintain the size of infected host compartment below Ī for any initial data
in Ω if the population coverage is less than 21.5%. The area of the viability kernel for a range of values
of ū ≥ 0.215 is plotted in Figure 2b).

Examples of viability kernels’ shape for Botswana are shown in Figure 3. The viability kernels for
Zimbabwe have a similar shape as those for Botswana, displayed in the panels of Figure 3, and are not
shown.

An example for a reconstructed optimal trajectory inside Ω is given in Figure 4a), and the control
effort – in Figure 4b) – it is computed using the algorithm from reference [31]. Note that for the
same initial data, without intervention, the size of infected host compartment x1 exceeds the cap Ī (the
trajectory follows the purple curve in Figure 4a).

The numerical approximations for the minimal entry time functions TV(Ī,ū) are shown in Figure 5
for Botswana and Figure 6 for Zimbabwe. In the simulations we use an infection cap of 10% of the
population (Ī = 0.1) and a time horizon of three months (T = 100 days). The results show that with
these constraints, under the parameter values for Botswana, an outbreak would be successfully brought
under the infection cap within the given time horizon, unless the proportion of infected mosquitos is
very high. In fact, for ū = 0.6, the set of initial data x0 such that TV(x0) < 100 days (those such
that the size of the infected host compartment can be reduced to less than 0.1 within 100 days) is
contained within the rectangle [0, 1] × [0, 0.25] and for ū = 0.9, it coincides almost fully with the
rectangle [0, 1]× [0, 0.5]. That means that increasing the coverage from 60% to 90% of the population
approximately doubles the area of the set {x0 | TV(x0) < 100 days}. However, at very high levels of
infected mosquitos at the start of the intervention (x2(0) > 0.5) the intervention cannot be considered
effective as for all different extents of coverage ū ∈ [0.6, 0.9] the minimal time needed to reduce the
outbreak size below the prescribed cap exceeds 100 days.
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Figure 3. Numerical approximation of the viability kernel V(Ī, ū) for the epidemiological
model. Parameters for Botswana with maximum coverage: a) ū = 0.6, b) ū = 0.7, c) ū = 0.8,
d) ū = 0.9.
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Figure 4. a) An example of a reconstructed optimal trajectory (red) maintained inside the
viability kernel versus the trajectory with no control u(t) ≡ 0 (purple). b) Plot of the corre-
sponding control function. Parameters for Botswana with ū = 0.6.
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Figure 5. Numerical approximation of the minimum entry time function TV(Ī,ū) (plot of
isolines indicating days). Parameters for Botswana with maximum coverage: a) ū = 0.6, b)
ū = 0.7, c) ū = 0.8, d) ū = 0.9.
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Figure 6. Numerical approximation of the minimum entry time function TV(Ī,ū) (plot of
isolines indicating days). Parameters for Zimbabwe with maximum coverage: a) ū = 0.6, b)
ū = 0.7, c) ū = 0.8, d) ū = 0.9.
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Figure 7. Reconstructed optimal trajectories for the minimal time needed to bring the size
of the infected compartment I below the cap Ī = 0.1 (dashed line in the left panels) if the
intervention starts at initial data x0 = (0.3, 0.2) for a) Botswana the minimal entry time
T (x0) = 86.7 days, b) Zimbabwe the minimal entry time T (x0) = 63.4 days. Parameter of
maximum coverage ū = 0.6.

For Zimbabwe, the minimal entry time functions show that for the same maximum population
coverage with repellent ū less time is required to bring the outbreak under the chosen infection cap Ī.
The isolines in Figure 6 follow a radial pattern rather than parallel shifts like those for Botswana. Even
at ū = 0.6 for the entire set of initial conditions x0 ∈ [0, 1] × [0, 0.5] the minimal entry time to the
viability kernel is less than 90 days. Reconstructed optimal trajectories for the reachability problem in
Question Q.2 for an initial condition x0 = (0.3, 0.2) are plotted in Figure 7.

It may seem paradoxical that for the model with parameters for Zimbabwe the minimal entry time
to the respective viability kernel is shorter than for Botswana; in other words, a scenario with a higher
basic reproduction number R0 appears more elastic in its response to the campaign of repellent-based
interventions modeled by (2.1). That elasticity could be explained with the difference in the vector’s
ecology: the model is parameterized with a threefold higher mortality rate for the mosquitos in Zim-
babwe (µ = 1

10 ) relative to Botswana (µ = 1
30 ), despite the fact that the pathogen transmission rate from

vector to host α, and R0 for a baseline scenario of no control (u(t) = 0) are higher for Zimbabwe [19].
This simple example shows how transient dynamical properties of the controlled system (2.1) in the
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case of endemicity stay decoupled from the value of a traditional epidemiological metric R0.
These simulations agree with entomological observations of the importance of interventions which

target the vector’s demography such as indoor residual spraying, LLINs, etc, for suppressing pathogen
transmission [41]. Different societal behavior and inconsistent following of measures such as indoor
spraying [19] can potentially have an impact on the performance of interventions such as those consid-
ered here and their ability to suppress sporadic outbreaks in the shortest time. The extent of compliance
with a measure that is considered primary for malaria control by the WHO may influence the perfor-
mance of alternative interventions reliant on repellent-based personal protection. This result stresses
the importance for a multi-modal approach in controlling vector-borne disease outbreaks.

Our model has several limitations: first, it assumes that the host population is homogeneous, and
does not consider age structure or differentiation in terms of disease status (such as asymptomatic,
mild, severe and in need of treatment). Second, the host and vector populations are taken constant in
time, ignoring effects of seasonal changes on the transmission dynamics. Third, it assumes that all
hosts receive the same level of protection by the control effort, but population heterogeneity due to
variability in repellent action may exist. Finally, (2.1) does not model immunity in the population.
These issues can be addressed by increasing model complexity, including seasonal variations in the
mosquito population, adding more compartments for the host population, etc. The state constraint
(infection cap) can also be redefined to the respective class of infected (e.g., those in need of treatment).
The proposed analytical framework can be adapted for extensions of the model (2.1), such as a time-
delay system, a combination of measures (use of insecticides or vaccinations), or a system with an
infected and infectious vector compartments [42].

6. Conclusion

We have used optimal control theory to solve problems of existence of viable controls and of reach-
ability for a simple model of a vector-borne disease. Available mathematical tools exist that allow
decision and policy makers to assess effects of the control intervention on transient dynamics of the
model in finite times, rather than just to determine asymptotic properties of equilibria. This approach
reveals that, sometimes, depending on the epidemiological parameters and the state of the epidemic
(determined by the size of infected host and vector compartments), even extending control efforts to
the maximum may not suffice to meet policy objectives such as reduction of the size of the infected
compartment below a given level in a fixed time span. Hence, existence of controls that satisfy the
constraints of the intervention can be interpreted as an efficiency metric, which suggest whether the
current intervention is sufficient or a combination of additional intervention modes may be required.
Of course, to be able to make reliable predictions for the performance of a given control intervention,
the model should use parameters rightful for the provided epidemiological and/or entomological data.

The presented model is based on assumptions of population homogeneity, simple disease dynamics
and linear cost function for the control, and bringing the model closer to real-world scenarios will un-
doubtedly increase its complexity. Adding additional state variables means adding an extra dimension
to the Hamilton-Jacobi-Bellman equation, and increases the computational complexity for the numer-
ical approximation of the value function and the minimal entry time function. This obstacle should be
addressed by development of appropriate, more efficient numerical methods for solving the associated
optimal control problem.
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Supplementary Material

Proof of Lemma 2. For part (i), consider the Lyapunov candidate function on Ω:

L =
β(1 − kū)
γ

y1 + y2.

Note that on Ω ∈ R2
+, L ≥ 0 with equality attained only at the disease-free equilibrium at the origin O.

Note that
dL
dt
=

(
αβ(1 − kū)2ν

γ
− µ

)
y2 −
αβ(1 − kū)2ν

γ
y1y2 − β(1 − kū)y1y2 < 0

everywhere on R2
+ \ O because

αβ(1 − kū)2ν

γ
− µ = µ

(
αβ(1 − kū)2ν

γµ
− 1

)
≤ 0.

Hence L is positive definite, |L| → +∞ on R2
+ and dL/dt is negative definite on R2

+ \ O. Then
Lyapunov’s stability theorem [43, Chapter 5.26] implies that the disease-free equilibrium O is globally
asymptotically stable.

For part (ii), the global asymptotic stability of the endemic equilibrium (3.5) for the 2-dimensional
system (2.1) is shown using the Lyapunov candidate function:

L = β(1 − y∗2)y∗1

(
y1 − y∗1 − y∗1 ln

y1

y∗1

)
+ αν(1 − y∗1)y∗2

(
y2 − y∗2 − y∗2 ln

y2

y∗2

)
.

Note that L > 0 and |L| → +∞ on Ω (for y1 → 0, y2 → 0). After some algebraic transformations we
arrive to

dL
dt
= −αβν(1 − y∗2)y∗1

y2

y1
(y1 − y∗1)2 − αβν(1 − y∗1)y∗2

y1

y2
(y2 − y∗2)2

− αβν(1 − y∗1)(1 − y∗2)
(
y∗1

√
y2

y1
− y∗2

√
y1

y2

)2

≤ 0 .

As y1, y2 > 0, equality dL/dt = 0 can be achieved only at E∗. Thus L is positive definite and dL/dt
is negative definite on Ω \ O. Lyapunov’s stability theorem implies that the endemic equilibrium E∗ is
globally asymptotically stable. □

Proof of Proposition 1. The proof of case (i) is based on the local asymptotic stability of the disease-
free or the endemic equilibrium of the system (2.1) with constant controls. In particular, we distinguish
between 2 cases: first, if Icrit ≤ 0, then O is globally asymptotically stable for (2.1) with u(t) ≡ ū (see
Lemma 2). This means that trajectories starting from any neighbourhood of O that is sufficiently small
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and contained insideA(Ī) will converge to the equilibrium, maintaining the constraint on x1(t) < Ī for
all t > 0.

Second, if Icrit > 0, then the endemic equilibrium E∗ is globally asymptotically stable for (2.1) with
u(t) ≡ ū, and E∗ ∈ A(Ī) (see Lemma 2). To show that int V has a positive Lebesgue measure in R2,
we consider the lens-shaped set D0 bounded by the x1- and x2-nullcline inside A(Ī), and show it is a
viability domain for (2.1) (see Figure S1). The x1-nullcline is given by

N1 =

{
(x1, x2)|0 ≤ x1 ≤ Icrit, x2 =

γx1

α(1 − kū)ν(1 − x1)

}
(6.1)

with the outward-pointing normal

nN1 =

(
1,−

γ

α(1 − kū)ν(1 − x1)2

)T

.

For x ∈ N1, it holds f2(x, ū) = x1(αβν(1−kū)2−γµ)−x2
1(αβν(1−kū)2+γβ(1−kū))

α(1−kū)ν(1−x1) ≥ 0 with equality at O and E∗, so
⟨ f (x, ū),nN1⟩ = −

γ f2(x,ū)
α(1−kū)ν(1−x1)2 ≤ 0, and the curve (6.1) is impermeable from int D0 for the flow

f (x, ū). The x2-nullcline is given by

N2 =

{
(x1, x2)|0 ≤ x1 ≤ Icrit, x2 =

β(1 − kū)x1

β(1 − kū)x1 + µ

}
(6.2)

with the outward-pointing normal

nN2 =

(
−1,

β(1 − kū)µ
(β(1 − kū)x1 + µ)2

)T

.

For x ∈ N2, it holds f1(x, ū) = x1(αβν(1−kū)2−γµ)−x2
1(αβν(1−kū)2+γβ(1−kū))

β(1−kū)x1+µ
≥ 0 again with equality atO and E∗, so

⟨ f (x, ū),nN2⟩ = − f1(x, ū) ≤ 0 and the curve (6.2) is impermeable from intD0 for the flow f (x, ū). We
conclude that this lens-shaped set D0 is forward invariant under f (x, ū) and D0 ⊂ A(Ī) is a viability
domain, completing the proof of case (i).

The proof of (ii) uses the componentwise inequality f (x, u) ≥ f (x, ū),∀x ∈ Ω to invoke the com-
parison theorem [20] and obtain

xu(t; x0) ≥ xū(t; x0), ∀t > 0 (6.3)

so xū(t; x0) is a subsolution for (2.1) for all x0. Lemma 2 establishes that for any initial condition
x0 ∈ Ω \O, this subsolution converges to E∗ ∈ Ω \A(Ī). In other words, there exists τ > 0 such that for
the subsolution xū(t; x0), xū

1(t) > Ī for all t > τ. The comparison (6.3) implies that for the any feasible
trajectory xu(t; x0) of the control system (2.1), xu

1(t) ≥ xū
1(t) > Ī for all t > τ. Thus, the only forward

invariant set inside V(Ī, ū) is the disease-free equilibrium O. □

Proof of Lemma 3. Denote for the sake of shortness α̃ = αν(1 − kū), β̃ = β(1 − kū), and f̃1(z, s) =
f1(z, s, ū), f̃2(z, s) = f2(z, s, ū), and H(s, z) = f̃1(z,s)

f̃2(z,s) the right-hand side of (3.6).
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f2(x, ū) = 0
f1(x, ū) = 0

x1

x
2

Z

(Ī , v̄)

D0

E∗

ĪIcritO

Figure S1. Phase portrait of the model with nullclines f1 = f2 = 0.

Note that due to the choice of v̄, the numerator f̃1 of H is 0 at s = v̄. Further, the denominator of H
at (v̄, Ī) satisfies

f̃2(Ī, v̄) = β̃Ī(1 − v̄) − µv̄ =
Ī

α̃(1 − Ī)
(α̃β̃ − γµ − Īβ̃(α̃ + γ)) < 0, (6.4)

so long as α̃β̃ − γµ ≤ 0 (when Icrit ≤ 0) or when Ī > Icrit, α̃β̃ − γµ > 0. Therefore,

d
ds

z(v̄) = 0. (6.5)

We have
f̃1(z, s) > f̃1(z̃, s̃), f̃2(z, s) < f̃2(z̃, s̃) if s > s̃, z < z̃, (6.6)

and in particular, f̃1(z, s) > f̃1(Ī, v̄) and f̃2(z, s) < f̃2(Ī, v̄) if s > v̄, z < Ī. Also we have max f̃1(z, s) <
+∞,min f̃2(z, s) > −∞ on Ω.

This implies that the denominator of H is negative and bounded away from 0 on [v̄, 1] × [0, Ī] due
to (6.4). Consequently, being a rational function, H is continuous in s and uniformly Lipschitz in z
on [v̄, 1] × [0, Ī]. By the Picard-Lindelöf theorem, there exists ε > 0 such that (3.6) has a unique
C1-solution z(s) for s ∈ [v̄, v̄ + ε). We show now that this solution z(s) exists on the entire interval
[v̄,+∞).

We verify that z(s) is monotone decreasing on [v̄, v̄ + ε) based on (6.5). Since z is C1, its Taylor
expansion around Ī = z(v̄) reads

z(s) = Ī + O((s − v̄)2) .

Therefore, using the relation f̃1(Ī, v̄) = 0:

f̃1(z(s), s) = α̃(s − v̄)(1 − Ī) − (γ + α̃s)(z(s) − Ī)
= α̃(s − v̄)(1 − Ī) − (γ + α̃s)O((s − v̄)2) ,

f̃2(z(s), s) − f̃2(Ī, v̄) = −µ(s − v̄) − β̃z(s)(s − v̄) + β̃(1 − v̄)O((s − v̄)2)
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= −(µ + β̃Ī)(s − v̄) + β(1 − v̄)O((s − v̄)2) .

Thus, there exists ε > 0 such that for values v̄ < s < v̄ + ε, f̃1(z(s), s) > 0, while f̃2(z(s), s) < 0
due to (6.4). Hence, the solution z is monotone decreasing on [v̄, v̄+ ε), and due to the monotonicity of
f̃1, f̃2 provided by (6.6), H < 0 strictly on (v̄,+∞) × [0, Ī). Because the solution z(s), s > v̄ is bounded
by z(v̄) = Ī irrespectively of ε, it can be continued on the whole interval [v̄,+∞, and remains monotone
decreasing because dz/ds < 0.

Note that it might happen that z(v∗) = 0 for some v̄ < v∗ ≤ 1. Then we restrict the solution curveZ
to the domain [v̄, v∗]. This completes the proof. □

Proof of Proposition 2. The proof follows the ideas from reference [17]. To show that the proposed
sets are viability kernels, we have to verify their forward invariance under f (x, u) (that is, that they are
viability domains for f ) and their maximality.

Case (i). Consider the segment s = {Ī} × [0, 1], which forms the eastern boundary of A(Ī) in
the (x1, x2)-state space and the outward-pointing normal to s, ns = (1, 0)T . Then ⟨ f (Ī, x2, ū),ns⟩ =

α(1− kū)νx2(1− Ī)− γĪ ≤ (1− kū)αν(1− Ī)− γĪ < 0. This means there exists a control function u ∈ U
such that the entire setA(Ī) is forward invariant under (2.1), and therefore, V(Ī, ū) = A(Ī).

Case (ii). Let D = {[0, Ī] × [0, v̄]} ∪ {(x1, x2)|v̄ ≤ x2 ≤ min{v∗, 1}, 0 ≤ x1 ≤ z(x2)}. Recall v̄ from
Lemma 3. Observe that on the segment s2 = {Ī} × (v̄, 1], the inner product of the velocity field f and
the outward-pointing normal n2 to s2, ⟨ f (Ī, x2, u),n2⟩ = α(1 − ku)νx2(1 − Ī) − γĪ > (1−ku

1−kū − 1)γĪ ≥ 0.
Hence, by continuity of f , a neighbourhood of s2 inA(Ī) is not contained inside V(Ī, ū). On the other
hand, on the segment s1 = {Ī} × [0, v̄] the inner product of the velocity field f and the outward-pointing
normal n1 to s1, ⟨ f (Ī, x2, ū),n1⟩ ≤ 0. Finally, the outward-pointing normal to Z is ñ = (1,−z′(x))T .
Then ⟨ f (z(x2), x2, ū), ñ) = 0. Hence, by choosing u = ū,Z is impermeable to the flow of f (x, ū). Thus,
there exists u such that the interior intD is forward invariant under f (x, u).

Finally to conclude that D is forward invariant, we show that the curve Z ∈ D, itself being a
feasible trajectory for (2.1) with u = ū. Indeed, the inequality x0

2 > v̄, x0
1 < Ī holds for any initial data

x0 = (x0
1, x

0
2) ∈ Z. Therefore, f̃2(x0

1, x
0
2) < f̃2(Ī, v̄) < 0 by (6.4), and since d

dt x2(x0) < 0, it follows
x2(t) < x0

2, t > 0.
Let τB(x0) be the minimal entry time function (4.1) to the target set B = {(x1, x2)| x1 > Ī ∨ x2 < v̄}

for the control u(t) = ū, or
τB(x0) = inf

t>0
{t | xū(t; x0) ∈ B}.

Since B contains the globally asymptotically stable endemic equilibrium E∗ (3.5), τ(x0) < +∞ for all
x0 ∈ Z.

We choose any initial condition x0 ∈ Z. Then the trajectory of (2.1) for u = ū satisfies x2(t) < v̄
for t > τ(x0). Thus, {x2(t)|t ∈ [0, τ(x0)]} ⊂ [v̄,min{v∗, 1}] and x2(t) takes values inside the domain of
the function z which solves the problem (6.4). On t ∈ [0, τ(x0)] the difference between x1(t) and z(x2(t)
remains constant in t because

d
dt

(x1(t) − z(x2(t)) = f1(x, ū) − f2(x, ū)
dz
dx2
= 0,

Due to the initial condition x0 ∈ Z, x1(0) − z(x2(0)) = 0, so the above implies x1(t) − z(x2(t)) = 0, t ∈
(0, τ(x0)) implying that the curveZ is part of a feasible trajectory for (2.1).
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As it holds by construction, either x1(τ(x0)) = Ī or x2(τ(x0)) = v̄, by the inverse function theorem for
z we obtain that xū

x0(τ(x0)) = (Ī, v̄). Since x0 ∈ Z was chosen arbitrary, the entire curveZ as defined by
the Lemma consists of a trajectory for (2.1). We have demonstrated that the set D as defined in (3.6)
is closed, forward invariant under f (x, u) and it is a viability domain for f (x, u).

It remains to show thatD is the maximal viability domain for f (x, u). Consider an initial condition
y0 ∈ A(Ī) \ D for f and claim the trajectory xū(t, y0) leaves A(Ī) in finite time. It holds y0

1 < Ī, but
y0

2 > z−1(y0
1) due to the definition of D. Denote ỹ0 = (y0

1, z
−1(y0

1)), meaning ỹ0 ≤ y0 componentwise.
Since the map f is quasimonotone, we can use the comparison principle [24, Chapter 3] to obtain the
componentwise inequalities

xu(t; y0) ≥ xū(t; y0) ≥ xū(t; ỹ0), ∀t > 0.

Therefore, the first element in the difference vector ∆(t) = xū(t; y0)−xū(t; ỹ0), which we denote by ∆1(t)
satisfies ∆1 ∈ C1(0,+∞),∆1(t) ≥ 0.

Denote τ0 = τ(ỹ0), which means ỹ1(τ0) = [xū(τ0; ỹ0)]1 = Ī. Assume y1(τ0) = [xū(τ0; y0)]1 = Ī,
which translates to ∆1(τ0) = 0, and ∆1 having a local minimum at t = τ0. Hence,

d
dt
∆1(τ0) = 0 ⇒ f1(xū(τ0; y0), ū) = f1(xū(τ0; ỹ0), ū) . (6.7)

Plugging in the equality y1(τ0) = ỹ1(τ0) = Ī into (6.7), we see that

α̃(1 − Ī)(y2(τ0) − ỹ2(τ0)) = 0⇒ y2(τ0) = ỹ2(τ0),

and obtain xū(τ0; y0) = xū(τ0; ỹ0). With y , ỹ, this equality is a contradiction to the uniqueness of the
solution trajectory to the autonomous system d

dt y = f (y, ū). Therefore, y1(τ0) > ỹ1(τ0) = Ī, showing
that y0 < V(Ī, ū). This argument showsD is maximal, and we conclude V(Ī, ū) = D. □
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