This paper investigates a left-hand circularly polarized (LHCP) antenna and a right-hand circularly polarized (RHCP) antenna on LEO Satellite, which is based on the phase-tuning metasurface. We overcome its inherent limitations in size, weight and power, and designed a high-gain, ultra-lightweight, scalable antenna for small satellite communications. The antenna can generate continuous and large tunability of subwavelength, with low-Q resonators. The simulated and experimental results verify that different capacitance and inductance modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The maximum gain of the normal position within the angle of the uplink and downlink is 4~9 dBi higher than that of the ordinary polarized antenna. In addition, the design method proposed to this article is superior to the reference system in terms of impedance bandwidth, axial ratio bandwidth, and operation frequency. The performance achievements of this paper are implemented within the bandwidth of 3 MHz of uplink and downlink, such as impedance bandwidth is 3 MHz with impedance of 50, axial ratio bandwidth is 2.5 MHz, operation frequency of uplink is 240–243 MHz, downlink is 320 MHz and 401 MHz, and the voltage standing wave ratio (VSWR) is less than 2 dB which is so called S parameter, the above parameters can meet the performance index design requirements.
Citation: Jie Shen, Han-min Liu, Jing Wang. Mechanical stress induces a scalable circularly polarized LEO satellite antenna with Quadrifilar spiral[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 2120-2146. doi: 10.3934/mbe.2022099
This paper investigates a left-hand circularly polarized (LHCP) antenna and a right-hand circularly polarized (RHCP) antenna on LEO Satellite, which is based on the phase-tuning metasurface. We overcome its inherent limitations in size, weight and power, and designed a high-gain, ultra-lightweight, scalable antenna for small satellite communications. The antenna can generate continuous and large tunability of subwavelength, with low-Q resonators. The simulated and experimental results verify that different capacitance and inductance modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The maximum gain of the normal position within the angle of the uplink and downlink is 4~9 dBi higher than that of the ordinary polarized antenna. In addition, the design method proposed to this article is superior to the reference system in terms of impedance bandwidth, axial ratio bandwidth, and operation frequency. The performance achievements of this paper are implemented within the bandwidth of 3 MHz of uplink and downlink, such as impedance bandwidth is 3 MHz with impedance of 50, axial ratio bandwidth is 2.5 MHz, operation frequency of uplink is 240–243 MHz, downlink is 320 MHz and 401 MHz, and the voltage standing wave ratio (VSWR) is less than 2 dB which is so called S parameter, the above parameters can meet the performance index design requirements.
[1] | J. Gou, T. Zhang, J. Wang, Y. Jiang, Spiral antenna-coupled microbridge structures for THz application, Nanoscale Res. Lett., 12 (2017), 91. doi: 10.1186/s11671-017-1857-7. doi: 10.1186/s11671-017-1857-7 |
[2] | G. Rui, D. C. Abeysinghe, R. L. Nelson, Q. Zhan, Demonstration of beam steering via dipole-coupled plasmonic spiral antenna, Sci. Rep., 3 (2013), 1–7. doi: 10.1038/srep02237. doi: 10.1038/srep02237 |
[3] | T. Alam, A. F. Almutairi, M. Samsuzzaman, M. Cho, M. T. Islam, Metamaterial array based meander line planar antenna for cube satellite communication, Sci. Rep., 11 (2021), 1–12. doi: 10.1038/s41598-021-93537-6. doi: 10.1038/s41598-021-93537-6 |
[4] | Y. Zhu, W. Dang, X. Liu, Y. Chen, X. Zhou, H. Lu, Generation of plane spiral orbital angular momentum using circular double-slot Vivaldi antenna arra, Sci. Rep., 10 (2020), 1–9. doi:10.1038/s41598-020-75202-6. doi: 10.1038/s41598-020-75202-6 |
[5] | H. Dai, W. Tao, J. Zhang, Design of compact circular polarization Quadrifilar spiral antenna for RFID, Electron. Meas. Technol., 2017 (2017). |
[6] | B. Ma, F. Lu, G. Zhi, X. Xue, X. Zhao, C. Ma, et al., Development of an X-band reflectarray antenna for satellite communications, Sci. Rep., 11 (2021), 1–9. doi: 10.1038/s41598-021-85132-6. doi: 10.1038/s41598-021-85132-6 |
[7] | A. Altaf, J. W. Jung, Y. Yang, K. Y. Lee, K. C. Hwang, Vertical-strip-fed broadband circularly polarized dielectric resonator antenna, Sensors, 17 (2017), 1911. doi:10.3390/s17081911. doi: 10.3390/s17081911 |
[8] | T. T. Le, H. Y. Park, T. Y. Yun, Simple reconfigurable circularly polarized antenna at three bands, Sensors, 9 (2019), 2316. doi:10.3390/s19102316. doi: 10.3390/s19102316 |
[9] | E. Arnaud, L. Huitema, R. Chantalat, A. Bellion, T. Monediere, Circularly polarized ferrite patch antenna for LEO satellite applications, Int. J. Microwave Wireless Technol., 12 (2020), 332–338. doi: 10.1017/S1759078719001429. doi: 10.1017/S1759078719001429 |
[10] | M. Matsunaga, A linearly and circularly polarized double-band cross spiral antenna, IEICE Trans. Commun., 99 (2016), 430–438. doi: 10.1587/transcom.2015EBP3222. doi: 10.1587/transcom.2015EBP3222 |
[11] | D. Rice, A Circularly Polarized Tapered Spiral Cross-Slot Antenna, 2017. Available from: https://digitalcommons.georgiasouthern.edu/research_symposium/2017/2017/89. |
[12] | S. Wu, Y. Liu, G. Radice, S. Tan, Autonomous pointing control of a large satellite antenna subject to parametric uncertainty, Sensors, 17 (2017), 560. doi:10.3390/s17030560. doi: 10.3390/s17030560 |
[13] | Y. Letestu, A. Sharaiha, Broadband folded printed Quadrifilar helical antenna, IEEE Trans. Antennas Propag., 54 (2006), 1600–1604. doi: 10.1109/TAP.2006.874365. doi: 10.1109/TAP.2006.874365 |
[14] | K. S. Rao, D. R. Jahagirdar, Quadrifilar helical antenna with integrated compact feed for TTC application in LEO satellite, in 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), (2018), 1–4. |
[15] | C. Mengmeng, H. Weina, A printed Quadrifilar-helical antenna for Ku-band mobile satellite communication terminal, in 2017 IEEE 17th International Conference on Communication Technology (ICCT), (2017), 755–759. |
[16] | P. Rezaei, Design of Quadrifilar helical antenna for use on small satellites, in IEEE Antennas and Propagation Society Symposium, (2004), 2895–2898. |
[17] | N. Bhuma, C. Himabindh, Right hand circular polarization of a Quadrifilar helical antenna for satellite and mobile communication systems, in Recent Advances in Space Technology Services and Climate Change 2010 (RSTS & CC-2010), (2010), 307–310. |
[18] | H. Nakano, T. Shimizu, H. Kataoka, J. Yamauchi, Circularly and linearly polarized waves from a metamaterial spiral antenna, in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), (2014), 535–536. |
[19] | M. Liu, Y. Yuan, J. Ou, Y. Chai, Research on attitude models and antenna phase center correction for Jason-3 satellite orbit determination, Sensors, 19 (2019), 2408. doi:10.3390/s19102408. doi: 10.3390/s19102408 |
[20] | L. Li, X. Zhou, Mechanically reconfigurable single-arm spiral antenna array for generation of broadband circularly polarized orbital angular momentum vortex waves, Sci. Rep., 8 (2018), 1–9. doi: 10.1038/s41598-018-23415-1. doi: 10.1038/s41598-018-23415-1 |
[21] | J. Hong, R. Tu, R. Zhang, L. Fan, P. Zhang, J. Han, et al., Analyzing the satellite-induced code bias variation characteristics for the BDS-3 Via a 40 m dish antenna, Sensors, 20 (2020), 1339. doi:10.3390/s20051339. doi: 10.3390/s20051339 |
[22] | Y. I. Abdulkarim, L. Deng, H. N. Awl, F. F. Muhammadsharif, O. Altintas, M. Karaaslan, et al., Design of a broadband coplanar waveguide-fed antenna incorporating organic solar cells with 100% insolation for Ku band satellite communication, Materials, 13 (2020), 142. doi: 10.3390/ma13010142. doi: 10.3390/ma13010142 |
[23] | M. Bashirpour, M. Forouzmehr, S. E. Hosseininejad, M. Kolahdouz, M. Kolahdouz, Improvement of terahertz photoconductive antenna using optical antenna array of ZnO nanorods, Sci. Rep., 9 (2019), 1–8. doi: 10.1038/s41598-019-38820-3. doi: 10.1038/s41598-019-38820-3 |
[24] | B. K. Ahn, I. J. Hwang, K. S. Kim, S. C. Chae, J. W. Yu, H. L. Lee, Wide-angle scanning phased array antenna using high gain pattern reconfigurable antenna elements, Sci. Rep., 9 (2019), 1–13. doi: 10.1038/s41598-019-54120-2. doi: 10.1038/s41598-019-54120-2 |
[25] | J. Li, Y. Huang, G. Wen, Compact CP antenna based on resonant Quadrifilar spiral structure for UHF RFID handheld reader, in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (2017), 2449–2450. |
[26] | M. Boyarsky, T. Sleasman, M. F. Imani, J. N. Gollub, D. R. Smith, Electronically steered metasurface antenna, Sci. Rep., 11 (2021), 1–10. doi: 10.1038/s41598-021-83377-9. doi: 10.1038/s41598-021-83377-9 |
[27] | J. Li, T. A. Khan, J. Chen, M. U. Raza, A. Zhang, Design of low RCS circularly polarized patch antenna array using metasurface for CNSS adaptive antenna applications, Materials, 12 (2019), 1898. doi: 10.3390/ma12121898. doi: 10.3390/ma12121898 |
[28] | M. Faenzi, G. Minatti, D. González-Ovejero, F. Caminita, E. Martini, C. Della Giovampaola, et al., Metasurface antennas: new models, applications and realizations, Sci. Rep., 9 (2019), 1–14. doi: 10.1038/s41598-019-46522-z. doi: 10.1038/s41598-019-46522-z |
[29] | B. Ferreira-Gomes, O. N. Oliveira, J. R. Mejía-Salazar, Chiral dielectric metasurfaces for highly integrated, broadband circularly polarized antenna, Sensors, 21 (2021), 2071. doi:10.3390/s21062071. doi: 10.3390/s21062071 |
[30] | Z. Wang, L. Zhao, Y. Cai, S. Zheng, Y. Yin, A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system, Sci. Rep., 8 (2018), 1–9. doi: 10.1038/s41598-018-21619-z. doi: 10.1038/s41598-018-21619-z |
[31] | R. Kazemi, J. Palmer, F. Quaiyum, A. E. Fathy, Steerable miniaturised printed Quadrifilar helical array antenna using digital phase shifters for BGAN/GPS applications, IET Microwaves Antennas Propag., 12 (2018), 1196–1204. doi: 10.1049/iet-map.2017.0959. doi: 10.1049/iet-map.2017.0959 |
[32] | P. A. Obraztsov, V. V. Bulgakova, P. A. Chizhov, A. A. Ushakov, D. S. Gets, S. V. Makarov, et al., Hybrid perovskite terahertz photoconductive antenna, Nanomaterials, 11 (2021), 313. doi: 10.3390 /nano11020313. doi: 10.3390/nano11020313 |
[33] | Y. Han, H. Wang, Z. Wang, Y. Yao, Y. Feng, K. Hu, et al., Dual-band spiral printed quadrifilar helical antenna miniaturized by surface and inner dielectric loading, IEEE Access, 7 (2019), 30244–30251. doi: 10.1109/ACCESS.2019.2902308. doi: 10.1109/ACCESS.2019.2902308 |
[34] | L. Sun, W. Huang, S. Gao, W. Li, X. Guo, J. Yang, Joint timekeeping of navigation satellite constellation with inter-satellite links, Sensors, 20 (2020), 670. doi: 10.3390/s20030670. doi: 10.3390/s20030670 |
[35] | Y. Wen, J. Zhu, Y. Gong, Q. Wang, X. He, Distributed orbit determination for global navigation satellite system with inter-satellite link, Sensors, 19 (2019), 1031. doi: 10.3390/s19051031. doi: 10.3390/s19051031 |
[36] | M. Hosseini, M. Hakkak, P. Rezaei, Design of a dual-band quadrifilar helix antenna, IEEE Antennas Wireless Propag. Lett., 4 (2005), 39–42. doi: 10.1109/LAWP.2005.844142. doi: 10.1109/LAWP.2005.844142 |