Research article Special Issues

Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by L$ {\rm \acute{e}} $vy process with time-varying delay


  • Received: 02 August 2021 Accepted: 08 September 2021 Published: 27 September 2021
  • In this paper, a reaction-diffusion vegetation-water system with time-varying delay, impulse and L$ {\rm \acute{e}} $vy jump is proposed. The existence and uniqueness of the positive solution are proved. Meanwhile, mainly through the principle of comparison, we obtain the sufficient conditions for finite-time stability which reflect the effect of time delay, diffusion, impulse, and noise. Besides, considering the planting, irrigation and other measures, we introduce control variable into the vegetation-water system. In order to save the costs of strategies, the optimal control is analyzed by using the minimum principle. Finally, numerical simulations are shown to illustrate the effectiveness of our theoretical results.

    Citation: Zixiao Xiong, Xining Li, Ming Ye, Qimin Zhang. Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by L$ {\rm \acute{e}} $vy process with time-varying delay[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 8462-8498. doi: 10.3934/mbe.2021419

    Related Papers:

  • In this paper, a reaction-diffusion vegetation-water system with time-varying delay, impulse and L$ {\rm \acute{e}} $vy jump is proposed. The existence and uniqueness of the positive solution are proved. Meanwhile, mainly through the principle of comparison, we obtain the sufficient conditions for finite-time stability which reflect the effect of time delay, diffusion, impulse, and noise. Besides, considering the planting, irrigation and other measures, we introduce control variable into the vegetation-water system. In order to save the costs of strategies, the optimal control is analyzed by using the minimum principle. Finally, numerical simulations are shown to illustrate the effectiveness of our theoretical results.



    加载中


    [1] State Forestry and Grassland Administration Government Network. Desertification. http://www.fore-stry.gov.cn/.
    [2] A. T. Tamen, Y. Dumont, J. J. Tewa, S. Bowong, P. Couteron, Tree-grass interaction dynamics and pulsed fires: Mathematical and numerical studies, Appl. Math. Model., 40 (2016), 6165-6197. doi: 10.1016/j.apm.2016.01.019
    [3] A. T. Tamen, Y. Dumont, J. J. Tewa, S. Bowong, P. Couteron, A minimalistic model of tree-grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality, Math. Comput. Simulat., 133 (2017), 265-297. doi: 10.1016/j.matcom.2016.03.008
    [4] Z. G. Guo, G. Q. Sun, Z. Wang, Z. Jin, L. Li, C. Li, Spatial dynamics of an epidemic model with nonlocal infection, Appl. Math. Comput., 377 (2020), 125158.
    [5] K. M. Yedinak, M. J. Anderson, K. G. Apostol, A. M. Smith, Vegetation effects on impulsive events in the acoustic signature of fires, J. Acoust. Soc. Am., 141 (2017), 557-562. doi: 10.1121/1.4974199
    [6] C. Zeng, Q. Han, T. Yang, H. Wang, Z. Jia, Noise-and delay-induced regime shifts in an ecological system of vegetation, J. Stat. Mech.-Theory E, 2013 (2013), P10017. doi: 10.1088/1742-5468/2013/10/P10017
    [7] Y. Liu, Z. Wang, X. Liu, Exponential synchronization of complex networks with Markovian jump and mixed delays, Phys. Lett. A, 372 (2008), 3986-3998. doi: 10.1016/j.physleta.2008.02.085
    [8] C. Tian, Z. Ling, L. Zhang, Delay-driven spatial patterns in a network-organized semiarid vegetation model, Appl. Math. Comput., 367 (2020), 124778.
    [9] Q. Han, T. Yang, C. Zeng, H. Wang, Z. Liu, Y. Fu, et al., Impact of time delays on stochastic resonance in an ecological system describing vegetation, Physica A, 408 (2014), 96-105. doi: 10.1016/j.physa.2014.04.015
    [10] K. Wang, N. Zhang, D. Niu, Periodic oscillations in a spatially explicit model with delay effect for vegetation dynamics in freshwater marshes, J. Biol. Syst., 19 (2011), 131-147. doi: 10.1142/S0218339011003932
    [11] Z. Xiong, Q. Zhang, T. Kang, Bifurcation and stability analysis of a cross-diffusion vegetation-water model with mixed delays, Math. Methods Appl. Sci., 13 (2021), 9976-9986.
    [12] Y. R. Zelnik, S. Kinast, H. Yizhaq, G. Bel, E. Meron, Regime shifts in models of dryland vegetation, Philos. T. R. Soc. A., 371 (2013), 20120358. doi: 10.1098/rsta.2012.0358
    [13] D. Li, S. Liu, Threshold dynamics and ergodicity of an SIRS epidemic model with semi-Markov switching, J. Differ. Equations, 266 (2019), 3973-4017. doi: 10.1016/j.jde.2018.09.026
    [14] C. Zeng, Q. Xie, T. Wang, C. Zhang, X. Dong, L. Guan, et al., Stochastic ecological kinetics of regime shifts in a time-delayed lake eutrophication ecosystem, Ecosphere, 8 (2017), e01805.
    [15] C. Yang, C. Zeng, B. Zheng, Prediction of regime shifts under spatial indicators in gene transcription regulation systems. EPL-Europhys Lett. 2021; https://doi.org/10.1209/0295-5075/ac156b.
    [16] C. Zeng, C. Zhang, J. Zeng, H. Luo, D. Tian, H. Zhang, et al., Noises-induced regime shifts and-enhanced stability under a model of lake approaching eutrophication, Ecol. Complex, 22 (2015), 102-108. doi: 10.1016/j.ecocom.2015.02.005
    [17] S. Pan, Q. Zhang, M. B. Anke, Near-optimal control of a stochastic vegetation-water system with reaction diffusion, Math. Method. Appl. Sci., 43 (2020), 6043-6061. doi: 10.1002/mma.6346
    [18] C. Zeng, H. Wang, Noise and large time delay: Accelerated catastrophic regime shifts in ecosystems, Ecol. Model., 233 (2012), 52-58. doi: 10.1016/j.ecolmodel.2012.03.025
    [19] R. T. Paine, M. J. Tegner, E. A. Johnson, Compounded perturbations yield ecological surprises, Ecosystems, 1 (1998), 535-545. doi: 10.1007/s100219900049
    [20] P. M. Brando, J. K. Balch, D. C. Nepstad, D. C. Morton, F. E. Putz, M. T. Coe, et al., Abrupt increases in Amazonian tree mortality due to drought Cfire interactions, P. Natl. Acad. Sci. USA, 111 (2014), 6347. doi: 10.1073/pnas.1305499111
    [21] M. Scheffer, S. Carptenter, J. A. Foley, C. Folke, B. Walker, Catastrophic shifts in ecosystems, Nature, 413 (2001), 591-596. doi: 10.1038/35098000
    [22] R. B. Alley, J. Marotzke, W. D. Nordhaus, J. T. Overpeck, D. M. Peteet, R.A. Pielke, et al. Abrupt climate change, Science, 299 (2003), 2005-C2010.
    [23] A. M. Reynolds, Deterministic walks with inverse-square power-law scaling are an emergent property of predators that use chemotaxis to locate randomly distributed prey, Phys. Rev. E Stat. Nonlin. Soft. Matter Phys., 78 (2008), 011906. doi: 10.1103/PhysRevE.78.011906
    [24] Y. Zhao, S. Yuan, Optimal harvesting policy of a stochastic two-species competitive model with L${\rm{\acute{e} }}$vy noise in a polluted environment, Physica A, 477 (2017), 20-33. doi: 10.1016/j.physa.2017.02.019
    [25] H. Zhang, W. Xu, Y. Lei, Y. Qiao, Noise-induced vegetation transitions in the Grazing Ecosystem, Appl. Math. Model., 76 (2019), 225-237. doi: 10.1016/j.apm.2019.06.009
    [26] L. Serdukova, Y. Zheng, J. Duan, J. Kurths, Metastability for discontinuous dynamical systems under L${\rm{\acute{e} }}$vy noise: Case study on Amazonian Vegetation, Sci. Rep., 7 (2017), 1-13. doi: 10.1038/s41598-016-0028-x
    [27] C. Lu, Q. Ma, X. Ding, Persistence and extinction for stochastic logistic model with L${\rm{\acute{e} }}$vy noise and impulsive perturbation, Electron. J. Differ. Eq., 2015 (2015), 1-14. doi: 10.1186/s13662-014-0331-4
    [28] S. Zhao, S. Yuan, H. Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J. Differ. Equations, 268 (2020), 5113-5139. doi: 10.1016/j.jde.2019.11.004
    [29] J. Bao, C. Yuan, Stochastic population dynamics driven by L${\rm{\acute{e} }}$vy noise, J. Math. Anay. Appl., 391 (2012), 363-375. doi: 10.1016/j.jmaa.2012.02.043
    [30] R. Lefever, O. Lejeune, On the origin of tiger bush, B. Math. Biol., 59 (1997), 263-294.
    [31] C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828. doi: 10.1126/science.284.5421.1826
    [32] R. HilleRisLambers, M. Rietkerk, F. van den Bosch, H. H. Prins, H. de Kroom, Vegetation pattern formation in semi-arid grazing systems, Ecology, 82 (2001), 50-61. doi: 10.1890/0012-9658(2001)082[0050:VPFISA]2.0.CO;2
    [33] Y. Wu, J. Cao, A. Alofi, A. M. Abdullah, A. Elaiw, Finite-time boundedness and stabilization of uncertain switched neural networks with time-varying delay, Neural Netw., 69 (2015), 135-143. doi: 10.1016/j.neunet.2015.05.006
    [34] F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, G. de Tommasi, Finite-time stability and control. London: Springer; 2014.
    [35] F. Du, J. G. Lu, Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Appl. Math. Comput., 375 (2020), 125079.
    [36] X. Ren, L. Liu, X. Liu, A weak competition system with advection and free boundaries, J. Math. Anal. Appl., 463 (2018), 1006-1039. doi: 10.1016/j.jmaa.2018.03.055
    [37] A. Elahi, A. Alfi, Finite-time stabilisation of discrete networked cascade control systems under transmission delay and packet dropout via static output feedback control, Int. J. Syst. Sci., 51 (2020), 87-101. doi: 10.1080/00207721.2019.1701132
    [38] Forestry and Grassland Bureau of Ningxia Hui Autonomous Region. Desertification. http://lcj.nx.-gov.cn/.
    [39] X. Mao, M. J. Rassias, Khasminskii-type theorems for stochastic differential delay equations, Stoch. Anal. Appl., 23 (2005), 1045-1069. doi: 10.1080/07362990500118637
    [40] X. Mao, Stochastic Differential Equations and Applications. Horwood Publishing, Chichester, Horwood; 2007.
    [41] K. Wu, B. S. Chen, Synchronization of partial differential systems via diffusion coupling, IEEE T. Circuits-I., 59 (2012), 2655-2668.
    [42] Z. Yang, D. Xu, Stability analysis and design of impulsive control systems with time delay, IEEE T. Automat. Contr., 52 (2007), 1448-1454. doi: 10.1109/TAC.2007.902748
    [43] F. Du, J. G. Lu, New criteria on finite-time stability of fractional-order hopfield neural networks with time delays, IEEE T. Neur. Net. Lear., 32 (2021), 3858-3866. doi: 10.1109/TNNLS.2020.3016038
    [44] M. Y. Yu, Z. B. Huang, F. Fang, Effects of aquasorb mixed with fertilizer on growth and WUE of potatoes in semi-arid areas of China, J. Exp. Bot., 54 (2003), 24.
    [45] W. J. Roberts, Evaporation suppression from water surfaces, T. Am. Geophys. Union, 38 (1957), 740-744. doi: 10.1029/TR038i005p00740
    [46] J. Walter, The use of monomolecular films to reduce evaporation. General Assembly of Berkeley. Gentbrugge, Belgium, International Association of Scientific Hydrology, Publication 62 (1963), 39-48.
    [47] E. H. Hobbs, Evaporation Reduction by Monomolecular Films the Influence of Water Temperature and Application Rate on the Effectiveness of Cetyl Alcohol, (1980), 17-19.
    [48] P. Grandits, R. M. Kovacevic, V. M. Veliov, Optimal control and the value of information for a stochastic epidemiological SIS-model, J. Math. Analy. Appl., 476 (2019), 665-695. doi: 10.1016/j.jmaa.2019.04.005
    [49] J. Yong, X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, Springer Science Business Media, 1999.
    [50] J. F. Banas, A. G. Vacroux, Optimal piecewise constant control of continuous time systems with time-varying delay, Automatica, 6 (1970), 809-811. doi: 10.1016/0005-1098(70)90029-4
    [51] X. Mu, Q. Zhang, L. Rong, Optimal vaccination strategy for an SIRS model with imprecise parameters and L${\rm{\acute{e} }}$vy noise, J. Franklin I, 356 (2019), 11385-11413. doi: 10.1016/j.jfranklin.2019.03.043
    [52] M. Chahim, R. F. Hartl, P. M. Kort, A tutorial on the deterministic Impulse Control Maximum Principle: Necessary and sufficient optimality conditions, Eur. J. Oper. Res., 219 (2012), 18-26. doi: 10.1016/j.ejor.2011.12.035
    [53] M. Rietkerk, M. C. Boerlijst, F. van Langevelde, R. HilleRisLambers, J. V. de Koppel, L. Kumar, et al., Self-organization of vegetation in arid ecosystems, Am. Nat., 160 (2002), 524-530. doi: 10.1086/342078
    [54] Y. Luo, C. Zeng, Negative friction and mobilities induced by friction fluctuation, Chaos, 30 (2020), 053115. doi: 10.1063/1.5144556
    [55] Y. Luo, C. Zeng, B. Q. Ai, Strong-chaos-caused negative mobility in a periodic substrate potential, Phys. Rev. E., 102 (2020), 042114. doi: 10.1103/PhysRevE.102.042114
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2770) PDF downloads(129) Cited by(4)

Article outline

Figures and Tables

Figures(12)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog