Citation: Swadesh Pal, Malay Banerjee, Vitaly Volpert. Spatio-temporal Bazykin’s model with space-time nonlocality[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262
[1] | A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R Soc. Lond. B, 237 (1952), 37-72. |
[2] | J. M. Fryxell, P. Lundberg, Individual Behavior and Community Dynamics, Chapman & Hall, 1998. |
[3] | M. P. Hassel, The Spatial and Temporal Dynamics of Host-Parasitoid Interactions, Oxford Univ. Press, UK, 2000. |
[4] | A. R. E. Sinclair, J. M. Fryxell, G. Caughley, Wildlife Ecology, Conservation, and Management, 2nd edition, Blackwell Publishing, Oxford, 2006. |
[5] | G. F. Gause, The Strugle for Existence, Williams and Wilkins, Baltimore, USA, 1935. |
[6] | L. L. Luckinbill, Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum, Ecology, 54 (1973), 1320-1327. |
[7] | L. L. Luckinbill, The effects of space and enrichment on a predator-prey system, Ecology, 55 (1974), 1142-1147. |
[8] | M. Banerjee, S. Petrovskii, Self-organized spatial patterns and chaos in a ratio-dependent predator-prey system, Theor. Ecol., 4 (2011), 37-53. |
[9] | D. L. Benson, P. K. Maini, J. Sherratt, Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients, Math. Comp. Model., 17 (1993), 29-34. |
[10] | J. A. Sherratt, B. T. Eagan, M. Lewis, Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality?, Phil. Trans. R Soc. Lond. B, 357 (1997), 21-38. |
[11] | J. Huisman, F. J. Weissing, Biodiversity of plankton by oscillations and chaos, Nature, 402 (1999), 407-410. |
[12] | S. A. Levin, L. A. Segel, Hypothesis for origin of planktonic patchiness, Nature, 259 (1976), 659-659. |
[13] | C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828. |
[14] | A. Medvinsky, S. Petrovskii, I. Tikhonova, H. Malchow, B. L. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44 (2002), 311-370. |
[15] | S. V. Petrovskii, A. Y. Morozov, E. Venturino, Allee effect makes possible patchy invasion in predator-prey system, Ecol. Lett., 5 (2002), 345-352. |
[16] | N. Shigesada, K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997. |
[17] | S. V. Petrovskii, H. Malchow, A minimal model of pattern formation in a prey-predator system, Math. Comp. Model., 29 (1999), 49-63. |
[18] | S. V. Petrovskii, H. Malchow, Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics, Theor. Pop. Biol., 59 (2001), 157-174. |
[19] | X. Zhang, G. Sun, Z. Jin, Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response, Phys. Rev. E, 85 (2012), 021924. |
[20] | R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-diffusion Equations, Wiley, London, 2003. |
[21] | J. D. Murray, Mathematical Biology II, Heidelberg, Springer-Verlag, 2002. |
[22] | V. Volpert, Elliptic partial differential equations. Vol. 2. Reaction-diffusion equations, Birkhauser, Heidelberg, New York, 2014. |
[23] | M. Banerjee, S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio dependent Holling-Tanner model, Math. Biosci., 236 (2012), 64-76. |
[24] | P. Feng, Dynamics and pattern formation in a modified Leslie-Gower model with Allee effect and Bazykin functional response, Int. J. Biomath., 10 (2017), 1750073. |
[25] | A. Morozov, S. Petrovskii, B. L. Li, Spatio-temporal complexity of patchy invasion in a predator-prey system with the Allee effect, J. Theor. Biol., 238 (2006), 18-35. |
[26] | V. Volpert, S. Petrovskii, Reaction-diffusion waves in biology, Phys. Life Rev., 6 (2009), 267-310. |
[27] | M. Kot, Elements of Mathematical Biology, Cambridge University Press, Cambridge, 2001. |
[28] | K. Manna, M. Banerjee, Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay, Math. Biosci. Eng., 16 (2019), 2411-2446. |
[29] | M. Banerjee, V. Volpert, Spatio-temporal pattern formation in Rosenzweig-MacArthur model: Effect of nonlocal interactions, Ecol. Compl., 30 (2017), 2-10. |
[30] | M. Banerjee, V. Volpert Prey-predator model with a nonlocal consumption of prey, Chaos, 26 (2016), 083120. |
[31] | S. M. Merchant, W. Nagata, Selection and stability of wave trains behind predator invasions in a model with non-local prey competition, IMA J. Appl. Math., 80 (2015), 1155-1177. |
[32] | S. Pal, S. Ghorai, M. Banerjee, Effect of Kernels on Spatio-Temporal Patterns of a Non-Local Prey-Predator Model, Math. Biosci., 310 (2019), 96-107. |
[33] | A. Bayliss, V. A. Volpert, Complex predator invasion waves in a Holling-Tanner model with nonlocal prey interaction, Phys. D, 346 (2017), 37-58. |
[34] | B. L. Segal, V. A. Volpert, A. Bayliss, Pattern formation in a model of competing populations with nonlocal interactions, Phys. D, 253 (2013), 12-22. |
[35] | M. C. Tanzy, V. A. Volpert, A. Bayliss, M. E. Nehrkorn, Stability and pattern formation for competing populations with asymmetric nonlocal coupling, Math. Biosci., 246 (2013), 14-26. |
[36] | N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57-66. |
[37] | S. Pal, S. Ghorai, M. Banerjee, Analysis of a prey predator model with nonlocal interaction in the prey population, Bull. Math. Biol., 80 (2018), 906-925. |
[38] | A. D. Bazykin, A. I. Khibnik, B. Krauskopf, Nonlinear Dynamics of Interacting Populations, World Scientific Publishing, Singapore, 1998. |
[39] | A. Mcgehee, N. Schutt, D. A. Vasquez, E. Peacock-Lopez, Bifurcations, and temporal and spatial patterns of a modified Lotka-Volterra model, Int. J. Bif. Chaos, 18 (2008), 2223-2248. |
[40] | J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Nonlinearity, 17 (2004), 313. |
[41] | K. Manna, V. Volpert, M. Banerjee, Dynamics of a Diffusive Two-Prey-One-Predator Model with Nonlocal Intra-Specific Competition for Both the Prey Species, Mathematics, 8 (2020), 101. |
[42] | S. Genieys, N. Bessonov, V. Volpert, Mathematical model of evolutionary branching, Math. Comp. Model., 49 (2009), 2109-2115. |
[43] | N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688. |
[44] | S. A. Gourley, N. F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996), 297-333. |
[45] | M. Sen, M. Banerjee, Rich global dynamics in a prey-predator model with Allee effect and density dependent death rate of predator, Int. J. Bif. Chaos, 25 (2015), 1530007. |
[46] | V. Volterra, Remarques sur la note de M. Regnier er Mlle. Lambin (Etude d'un cas d'antagonisme microbien), C. R. Acad. Sci., 199 (1934), 1684-1686. |
[47] | S. Ruan, Delay differential equations in single species dynamics. In "Delay Differential Equations with Applications', O. Arnio, M. Hbid and E. Ait Dads (Eds.)', NATO Sci. Series II: Maths. Phys. Chem, 205 (2006), 477-517. |
[48] | J. Wei, L. Tian, J. Zhou, Z. Zhen, J. Xu, Existence and asymptotic behavior of traveling wave fronts for a food-limited population model with spatio-temporal delay, Japan J. Indust. Appl. Math., 34 (2017), 305-320. |
[49] | S. Yuan, C. Xu, T. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23 (2013), 033102. |
[50] | S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov type predator-prey systems with discrete delays, Q. Appl. Math., 59 (2001), 159-173. |
[51] | S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay, Math. Model. Nat. Phenom., 24 (2009), 140-188. |
[52] | P. J. Wangersky, W. J. Cunningham, Time lag in prey-predator population models, Ecology, 38 (1957), 136-139. |
[53] | M. Banerjee, S. Ghorai, N. Mukherjee, Study of cross-diffusion induced Turing patterns in a ratio-dependent prey-predator model via amplitude equations, Appl. Math. Model., 55 (2018), 383-399. |
[54] | M. Banerjee, Y. Takeuchi, Maturation delay for the predators can enhance stable coexistence for a class of prey-predator models, J. Theor. Biol., 412 (2017), 154-171. |
[55] | M. C. Cross, P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112. |
[56] | B. S. Han, Y. H. Yang, On a predator-prey reaction-diffusion model with nonlocal effects, Comm. Nonlin. Sci. Num. Simul., 46 (2017), 49-61,. |
[57] | N. Mukherjee, S. Ghorai, M. Banerjee, Detection of Turing patterns in a three species food chain model via amplitude equation, Comm. Nonlin. Sci. Num. Simu., 69 (2019), 219-236,. |
[58] | W. Ni, J. Shi, M. Wang, Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model, J. Diff. Equ., 264 (2018), 6891-6932. |
[59] | S. Pal, S. Ghorai, M. Banerjee, Effects of Boundary Conditions on Pattern Formation in a Nonlocal Prey-Predator Model, Appl. Math. Model., 79 (2020), 809-823. |
[60] | V. Volpert, Pulses and waves for a bistable nonlocal reaction-diffusion equation, Appl. Math. Lett., 44 (2015), 21-25. |