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Abstract: This work deals with a reaction-diffusion model for prey-predator interaction with
Bazykin’s reaction kinetics and a nonlocal interaction term in prey growth. The kernel of the inte-
gral characterizes nonlocal consumption of resources and depends on space and time. Linear stability
analysis determines the conditions of the emergence of Turing patterns without and with nonlocal term,
while weakly nonlinear analysis allows the derivation of amplitude equations. The bifurcation analy-
sis and numerical simulation carried out in this work reveal the existence of stationary and dynamic
patterns appearing due to the loss of stability of the coexistence homogeneous steady-state.

Keywords: Bazykin’s model; nonlocal interaction; Hopf bifurcation; Turing instability; spatial
pattern

1. Introduction

Investigation of spatio-temporal pattern formation for interacting populations models is an active
area of research since the pioneering work of Turing [1]. Several ecological experiments and collected
field data confirm the patchy distribution of interacting populations over their habitats [2, 3, 4]. Gause
[5] demonstrated the importance of spatial heterogeneity towards the stabilization and long term sur-
vival of paramecium and didinium in the laboratory experiment. Luckinbill explained the stabilizing
effect of dispersal on coexistence and persistence for interacting populations over a considerably long
time interval [6, 7]. Several theoretical works on spatio-temporal models for interacting populations
have reported a wide variety of spatio-temporal pattern formation [8, 9, 10]. The plankton patchiness
and labyrinthine type pattern formation by semiarid vegetation are explained in [11, 12, 13]. Successful
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invasion of exotic species is another example of pattern formation [14, 15, 16]. Mechanisms behind the
formation of stationary and time varying patches of various plant and animal populations are explained
in [17, 18, 19].

The spatio-temporal models represent an extension of temporal models which describe the interac-
tion between two or more species responsible for the demographic changes in the populations. Tem-
poral models assume that the organisms or individuals of constituent species are homogeneously dis-
tributed over space. In reality, the individuals of interacting populations are distributed within their
habitat heterogeneously. Further, the mobility of the individuals from one location to another has sig-
nificant effect on the evolution of species over the space and time [20, 21, 22]. It is well known that
the spatio-temporal models can capture a wide range of dynamical features which remain unexplored
through the investigation with temporal models [23, 24, 25, 26].

Classical Rosenzweig-MacArthur model can exhibit three different types of dynamics: (i) prey
population can survive at its carrying capacity without predator, (ii) prey and predator coexist at their
steady-state and (iii) prey and predator coexist in an oscillatory mode [21, 27]. Oscillatory coexistence
results are due to the destabilization of stable coexistence steady-state. The amplitude of oscillatory
coexistence is determined by the vital rates of demographic reaction kinetics, for example, killing
rate of prey by the specialist predator, environmental carrying capacity of prey species, death rate
of predators, etc. In the ecological context, large amplitude oscillations emerge for certain range of
parameters but the low population density observed over a significant time interval can lead to the
extinction of one or more species. The temporal model can not capture the heterogeneous distribution
of the species over their habitat nor the localized extinction of one or more species [28]. A wide range
of Gause type models with a prey-dependant functional response and the linear death rate for specialist
predators fail to produce any stationary Turing patterns in the case of only self-diffusion terms [29].

The spatio-temporal Rosenzweig-MacArthur model, with self-diffusion terms, can manifest an in-
teresting dynamical behaviour namely, travelling waves, periodic travelling waves, waves of invasion,
and spatio-temporal chaos [10, 17, 18]. Temporal model can exhibit stable and oscillatory coexistence,
but the associated spatio-temporal model can capture coexistence scenario only through non-stationary
patterns. However, one can not find stationary heterogeneous distribution of prey and predator pop-
ulation over the habitat [29, 30]. The concerned spatio-temporal model fails to satisfy the Turing
instability criteria. Recently, we have shown that the modification of spatio-temporal Rosenzweig-
MacArthur model can lead to stationary Turing pattern for certain range of parameter values. The
modified model includes a nonlocal interaction term in the intra-specific competition of the prey in
order to capture the short range dispersal of prey individuals to the nearby location to have access to
favourable resources. The derivation of Turing instability condition and the validation of analytical
results through numerical simulation was the main objective of our work in [29]. We also explored
the existence of travelling waves, modulated travelling waves, and spatio-temporal chaos for different
values of parameters and depending upon the range of nonlocal interaction. The existence of travel-
ling wave demonstrating the successful invasion of predators for three different types of kernel function
was investigated by Marchent and Nagata [31]. However, the question about the existence of stationary
pattern through Turing instability for the model with nonlocal interaction and involving kernels with
infinite support remains open. In a recent work, we have discussed the existence of Turing patterns
for a modified Rosenzweig-MacArthur model with nonlocal consumption of resources by the prey and
different kernel functions with finite support [32].
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Standard reaction-diffusion models of interacting populations assume that the individuals of one
species located at some spatial point interacts with the individuals of other species present at the same
point [22, 29, 30]. However, in reality, the individuals can move from one location to another location
to have favourable resources over a short time period. This type of short range nonlocal interactions
are modelled with the help of integro-differential equations [33, 34, 35]. The integral term, with a
suitable kernel, represents the weighted average of the available resources at the nearby locations. The
possibility of interaction with the individuals at another location depends upon the distance between
the two locations. Hence, the kernel functions are mostly dependent upon the distance between two
locations. The intensity or probability of interaction between the individuals at two different locations
depends upon the functional form of the kernel function. There is a considerable number of literature
where finite and infinite kernel functions are used to describe intra-specific and inter-specific nonlo-
cal competition, nonlocal consumption of favourable resource, nonlocal consumption of prey by the
predator, and many others [31, 36, 37].

The Bazykin’s model of prey-predator interaction is a modification of Rosenzweig-MacArthur
model, where the intra-specific competition term in predator’s growth equation is incorporated [38].
Bazykin’s model can produce different types of stationary patterns as a result of Turing instability [39].
In [30], we have considered spatio-temporal Bazykin’s model with nonlocal consumption of prey by
their specialist predator and with the nonlocal interaction in the predator’s growth. The resulting model
represents a reaction-diffusion system of two equations involving two integral terms. Linear stability
analysis and numerical simulations revealed the existence of multiple stationary patterns, monotone,
periodic and modulated travelling waves, and spatio-temporal chaotic pattern. Coexistence of differ-
ent regimes and transitions between the patterns were explained through global bifurcation diagrams.
Obtained results and reported patterns are quite different in comparison with conventional local model.

Most of the studies of interacting populations involving nonlocal interaction term(s) consider one-
dimensional space [35, 40, 41]. There are only few works devoted to 2D problems [42]. Our present
work follows the previous studied [36, 43, 44], where the nonlocal interaction term depends upon space
and time with modified Bazykin’s type reaction kinetics. Here we study the spatio-temporal Bazykin’s
model with self-diffusion terms and nonlocal interaction in the intra-specific competition term of prey
growth, where the kernel function depends upon both space and time. We consider a two-dimensional
spatial domain with the no-flux boundary condition and derive the analytical condition for the Turing
instability. With the help of weakly nonlinear analysis we have obtained the amplitude equations and
the analytical condition for stability of various bifurcating solutions from the stable homogeneous
steady-state. Exhaustive numerical simulations reveal that the model under consideration satisfies the
Turing instability condition. With the help of dispersion relation, we can explain the existence of
stationary Turing patterns and of non-stationary patterns depending on the initial conditions. For some
parameter values, the stationary Turing patterns are suppressed due the strong destabilizing effect of
Poincare- Andronov-Hopf (PAH) instability.

The paper is organized as follows. In Section 2 we introduce the basic model and explain the
terminology. Section 3 deals with the derivation of Turing instability condition around the coexistence
homogeneous steady-state and Section 4 with weakly nonlinear analysis and amplitude equations. We
also explore two different types of spatio-temporal patterns produced by the model and validate the
analytical findings with a numerical example in Section 5. This work is concluded with discussion in
Section 6.
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2. Mathematical model

Classical Bazykin’s model describing the interaction between prey and their specialist predator is
governed by the following two nonlinear coupled ordinary differential equations

du
dt

= u(1 − u) −
αuv

u + β
, (2.1a)

dv
dt

=
αuv

u + β
− νv − ηv2 (2.1b)

subjected to non-negative initial conditions. Here u and v denote the prey and predator population
densities at time t, and all the parameters of the model are positive constants. All the variables and
parameters are dimensionless, α denotes the consumption rate of prey by the specialist predators, β
is the half-saturation constant, ν is the death rate of predators, and η is the strength of intra-specific
competition among predators [45].

There exist a trivial equilibrium point E0 = (0, 0), predator free equilibrium E1 = (1, 0), and E∗ =

(u∗, v∗) denotes an interior equilibrium point, where u∗ is a positive root of the cubic algebraic equation

ηu3
∗ + η(2β − 1)u2

∗ + (η(β2 − 2β) + α(α − ν))u∗ − β(ηβ + αν) = 0, (2.2)

and
v∗ =

1
η

(
αu∗

u∗ + β
− ν

)
. (2.3)

Depending upon the number of positive roots of the cubic equation (2.2) and positivity of v∗, the
number of coexistence equilibrium points varies from zero to three. For simplicity, we restrict ourselves
to the case of unique equilibrium point. In order to achieve this, we choose parameter values in such
a way that there is only one sign change for the coefficients of the cubic equation (2.2), and αu∗

u∗+β
> ην.

From the geometry of non-trivial nullclines one can verify that the existence of at least one coexistence
equilibrium point is ensured if α > ν(1 + β).

Extinction equilibrium point E0 is always a saddle-point, predator free equilibrium E1 is stable for
α < ν(1 + β). The Jacobian matrix for the system (2.1) at E∗ is given by the expression

A ≡
[

a11 a12

a21 a22

]
=

 −u∗ + αu∗v∗
(β+u∗)2 −

αu∗
β+u∗

αβv∗
(β+u∗)2 −ηv∗

 . (2.4)

Using Routh-Hurwitz criteria we can say that the coexistence equilibrium point is stable if the condi-
tions a11 + a22 < 0 and a11a22 > a12a21 are satisfied simultaneously. Coexistence equilibrium point E∗
loses its stability through a PAH-bifurcation if the following conditions are satisfied

a11 + a22 < 0, a11a22 − a12a21 > 0,
d

dα
(a11 + a22) , 0

at the PAH-bifurcation threshold α = αH, where αH is a positive root of the equation a11 + a22 = 0.
We will illustrate the stability of the stationary point E∗ and its instability leading to a PAH bifurcation
due to the variation of the parameter α through a numerical example.
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Spatio-temporal Bazykin’s model with self-diffusion terms is given by the system of equations

ut = ∆u + u(1 − u) −
αuv

u + β
, (2.5a)

vt = d∆v +
αuv

u + β
− νv − ηv2, (2.5b)

subjected to non-negative initial condition and no-flux boundary condition. Here, ∆ denotes the Lapla-
cian in R2 and d is the ratio of the diffusion coefficients. The equilibrium points of the model (2.1) are
the homogeneous steady-states for the spatio-temporal model (2.5). Now and onward we are interested
in the dynamical analysis around the coexistence steady-state only.

Considering small amplitude space-dependent perturbations around the coexistence homogeneous
steady-state E∗ and following the standard procedure, we find the characteristic equation for the spatio-
temporal model (2.5) as

λ2
k − (a11 + a22 − (1 + d)k2)λk + (a11 − k2)(a22 − dk2) − a12a21 = 0 (2.6)

(see the references [20, 21, 22, 30]). The inequality

da11 + a22 > 2
√

d
√

a11a22 − a11a22, (2.7)

determines the Turing instability region, under the assumption that the conditions a11+a22 < 0, a11a22−

a12a21 > 0 are satisfied. Replacing the inequality in (2.7) by the equality we find the Turing instability
boundary:

da11 + a22 = 2
√

d
√

a11a22 − a11a22. (2.8)

Next, we modify the spatio-temporal model (2.5) by introducing a nonlocal interaction term to
describe the consumption of resources at the nearby location by the prey species [29, 30]. Spatio-
temporal Bazykin’s model with nonlocal consumption of resources in the intra-specific competition
term is given by the system of equations

ut = ∆u + u(1 − ϕ ∗ u) −
αuv

u + β
, (2.9a)

vt = d∆v +
αuv

u + β
− νv − ηv2, (2.9b)

where
(ϕ ∗ u)(x) =

∫
R2
ϕ(x − y)u(y, t)dy,

and ϕ is a non-negative function with a compact support in R2. The model studied in [29] involves
one-dimensional space and a kernel function with a finite support.

Furthermore, the intra-specific competition also depends on the population density at earlier time.
First, Volterra [46] used distributed time delay in the logistic equation to examine a cumulative effect
in the death rate of a species, depending on the population at all past times from the beginning of
the experiment [47]. Here, we use a similar approach for the nonlocal consumption of resources in
system (2.9). The consumption of resources depends not only on the population density at the present
time, but also on a weighted average at all the previous times. Hence, we incorporate the space-time
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dependent kernel function, to describe the nonlocal consumption of resources by the prey. We obtain
the following nonlocal reaction-diffusion model

ut = ∆u + u(1 − Ψ ∗ ∗u) −
αuv

u + β
, (2.10a)

vt = d∆v +
αuv

u + β
− νv − ηv2, (2.10b)

where the nonlocal term is denoted by Ψ ∗ ∗u. It is defined by the expression

(Ψ ∗ ∗u)(x, t) =

∫
R2

∫ t

−∞

Ψ(x − y, t − s)u(y, s)dsdy. (2.11)

Here we assume that the following conditions on the kernel function Ψ(x, t) are satisfied [44]:

(H1) Ψ ∈ L1(R2 × (0,∞)) and also tΨ ∈ L1(R2 × (0,∞)),
(H2) Ψ satisfies the normalization condition, i.e.,∫

R2

∫ ∞

0
Ψ(x, t)dtdx = 1.

This implies that the homogeneous steady solutions for the nonlocal and local models are the
same,

(H3) Ψ = Ψ(|x|, t). The kernel Ψ quantifies the effect that u(x, s) has on u(x, t)(s ≤ t) and the nonlocal
effect depends only on the distance, and not the direction, of y from x,

(H4) Ψ is non-negative.

With the help of Dirac delta-function, the double convolution Ψ ∗ ∗u can be reduced to a model in-
volving purely temporal kernel by taking Ψ(x, t) = δ(x)Ψ̃(t). In this case the convolution term becomes

(Ψ ∗ ∗u)(x, t) =

∫ t

−∞

Ψ̃(t − s)u(x, s)ds.

For Ψ(x, t) = δ(t)Ψ̃(x), the double convolution is reduced to a purely spatial convolution,

(Ψ ∗ ∗u)(x, t) =

∫
R2

Ψ̃(x − y)u(y, t)dy.

These degenerate kernels do not satisfy the hypothesis (H1). In this work, we are interested to study
the dynamics of the nonlocal model in the presence of both convolutions, since the effect of population
density at location x will not affect the population at another location y instantly. Different types of
kernel functions satisfying hypotheses (H1)-(H4) are considered in [36, 43, 44]. Here, we set

Ψ(x, t) =
1

4πt
e−

|x|2
4t θ(t), (2.12)

where θ(t) = 1
τ
e−

t
τ . The function θ(t) is called weak generic kernel, and it depends on the ratio t/τ.

Schematic plot of the kernel Ψ(x, t) for a fixed t > 0 is shown in Figure 1. The variations in height and
width of the kernel function with the variation of t and τ keeping one of them fixed are presented in
Figure 1(b-c).
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(a) (b) (c)

Figure 1. Schematic plot of the kernel function Ψ(x, y, t) defined in (2.12): (a) color plot of
Ψ(x, y, t) for t = 3 and τ = 3, (b) cross sections of Ψ(x, y, t) at y = 0 for t = 3 and (c) cross
sections of Ψ(x, y, t) at y = 0 for τ = 3.

3. Turing instability

We convert the system (2.10) into a spatio-temporal model of three dependent variables. Let us set,
w(x, t) = (Ψ ∗ ∗u)(x, t), where the kernel function Ψ(x, t) is defined in (2.12). Then the system (2.10)
transforms into the system of three equations,

ut = ∆u + u(1 − w) −
αuv

u + β
≡ ∆u + f (u, v,w), (3.1a)

vt = d∆v +
αuv

u + β
− νv − ηv2 ≡ d∆v + g(u, v,w), (3.1b)

wt = ∆w +
1
τ

(u − w) ≡ ∆w + h(u, v,w). (3.1c)

Obviously, (3.1) is not a delay differential system [31, 40, 43, 48]. The delay parameter τ in the original
system (2.10) becomes a temporal parameter for the system (3.1). Thus, we mainly concentrate on the
analysis of the model (3.1).

The steady-states of the system (3.1) can be easily obtained from the steady states of (2.5). The
system (3.1) has three steady-states E0 = (0, 0, 0), E1 = (1, 0, 1) and E∗ = (u∗, v∗,w∗), where u∗, v∗
are defined in (2.2), and w∗ = u∗. Note that the existence condition for E∗ remains the same as in the
previous section.

To derive the instability condition of the coexistence homogeneous steady-state, expanding the
system (3.1) around E∗, we obtain

ũt = ∆ũ + a11ũ + a12̃v + a13w̃, (3.2a)
ṽt = d∆̃v + a21ũ + a22̃v + a23w̃, (3.2b)
w̃t = ∆w̃ + a31ũ + a32̃v + a33w̃, (3.2c)

where a11 = −u∗ + αu∗v∗
(u∗+β)2 , a12 = − αu∗

u∗+β
, a13 = −u∗, a21 =

αβv∗
(u∗+β)2 , a22 = −ηv∗, a23 = 0, a31 = 1

τ
, a32 = 0 and

a33 = −1
τ
. Here, ũ is a small perturbation of u around u∗. A similar notation is used for v and w. For
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the sake of simplicity, in what follows we omit the tildes. The system of equations (3.2) can be written
in the vector form

Ut = D∆U + AU, (3.3)

where

U = (u, v,w)T , D =


1 0 0
0 d 0
0 0 1

 , and A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
Now, we consider the solution of the equation (3.3) in the form

U =
∑

k

Ckeλt+ik·r, (3.4)

where λ is the growth rate of the perturbation in time t, |k| = k denotes the wave number, i and r(≡ x)
are the imaginary unit and the spatial vector in the two-dimensional space, respectively.

After substituting (3.4) into (3.2), we obtain the following matrix equation

(A − k2D − λI)U = 0. (3.5)

For the existence of a non-trivial solution of (3.5), we suppose that det(A − k2D − λI) = 0. Hence,

λ3 + P(k2)λ2 + Q(k2)λ + R(k2) = 0, (3.6)

where

P(k2) = (2 + d)k2 − (a11 + a22 + a33),
Q(k2) = (2d + 1)k4 − ((d + 1)(a11 + a33) + 2a22)k2 + a11a22 + a11a33 + a22a33 − a12a21

−a13a31 − a23a32,

R(k2) = dk6 − (d(a11 + a33) + a22)k4 + (a11a22 − a12a21 + d(a11a33 − a13a31)
+a22a33 − a23a32)k2 − det(A).

From the Routh-Hurwitz criteria [21], all the roots of the equation (3.6) satisfy the condition Re(λ) <
0 if

P(k2) > 0,R(k2) > 0 and P(k2)Q(k2) − R(k2) > 0. (3.7)

Then the homogeneous steady-state is stable.
The Turing instability occurs if one of the eigenvalues of (3.6) passes through the origin, while the

other two eigenvalues still have negative real parts. Suppose that λ1, λ2 and λ3 are the solutions of the
characteristic equation (3.6). Then we get

λ1 + λ2 + λ3 = −P(k2), (3.8a)
λ1λ2 + λ2λ3 + λ1λ3 = Q(k2), (3.8b)

λ1λ2λ3 = −R(k2). (3.8c)

Also, we have
− (λ1 + λ2)(λ2 + λ3)(λ1 + λ3) = P(k2)Q(k2) − R(k2). (3.9)

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4801–4824.
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At Turing bifurcation threshold k = kT , one of the roots of the equation (3.6) is equal to zero.
Without any loss of generality, at k = kT , we assume that

λ1 = 0, Re(λ2) < 0 and Re(λ3) < 0. (3.10)

Therefore, at the critical wavenumber k = kT , we obtain R(k2
T ) = 0. Further, from (3.10) it can be

shown that P(k2
T ) > 0, Q(k2

T ) > 0 and P(k2
T )Q(k2

T ) − R(k2
T ) = P(k2

T )Q(k2
T ) > 0. Thus, the system

becomes Turing unstable if the inequality R(k2) < 0 holds for at least one value k (see [41] and the
references cited therein). Also, beyond the Turing bifurcation threshold, the inequality R(k2) < 0 holds
for a range of values of k. We rewrite the expression of R(k2) as

R(k2) = R3(k2)3 + R2(k2)2 + R1k2 + R0, (3.11)

where

R3 = d,

R2 = −(d(a11 + a33) + a22),
R1 = a11a22 − a12a21 + d(a11a33 − a13a31) + a22a33 − a23a32,

R0 = −det(A).

The minimum of R(k2) occurs at k = kT , where

k2
T =
−R2 +

√
R2

2 − 3R1R3

3R3
, (3.12)

as we have dR(k2)
d(k2) = 0 and d2R(k2)

d(k2)2 > 0 at k = kT . Now, k2
T is positive if R1 < 0 or R2 < 0, and R2

2 > 3R1R3.
Thus, the Turing bifurcation boundary is given by the equality

2R3
2 − 9R1R2R3 − 2(R2

2 − 3R1R3)3/2 + 27R0R2
3 = 0. (3.13)

This expression does not depend on k. It can be considered as an equation with respect to d for all
other parameters fixed. Solving the equation (3.13) numerically, we can find the critical value of the
diffusion coefficient dT .

4. Weakly nonlinear analysis

The dynamics of the system changes slowly if the parameter values are close to the Turing bifur-
cation threshold. In this case, we study pattern formation with the help of the amplitude equations
[19, 49, 53, 55, 56, 57]. We consider three active resonant pairs of modes (k j,−k j) ( j = 1, 2, 3) making
angles of 2π

3 with |k j| = kT . After linearizing the model up to the third-order approximation around the
homogeneous steady-state, we obtain

∂

∂t


u
v
w

 = L


u
v
w

 +
1
2


f200u2 + 2 f110uv + 2 f101uw + f020v2

g200u2 + 2g110uv + g020v2

0


Mathematical Biosciences and Engineering Volume 17, Issue 5, 4801–4824.
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+
1
6


f300u3 + 3 f210u2v + 3 f120uv2 + f030v3

g300u3 + 3g210u2v + 3g120uv2 + g030v3

0

 , (4.1)

where L =


f100 + ∆ f010 f001

g100 g010 + d∆ 0
h100 0 h001 + ∆

 .
At the onset of Turing instability d = dT , the solution of the system (3.1) can be written as

U = U∗ +

3∑
j=1

U0[A j exp(ik j · r) + A j exp(−ik j · r)], (4.2)

where U∗ = (u∗, v∗,w∗), and U0 represents the eigenvector of the linearized operator L. Here, U0

defines the direction of the eigenmodes, A j and A j are the amplitudes associated with the eigenmodes
k j and −k j, respectively. We use the following expansions with respect to a small parameter ε:

d = dT + εd(1) + ε2d(2) + · · · , (4.3a)
u = εu1 + ε2u2 + ε3u3 + · · · , (4.3b)
v = εv1 + ε2v2 + ε3v3 + · · · , (4.3c)
w = εw1 + ε2w2 + ε3w3 + · · · , (4.3d)
t = t0 + εt1 + ε2t2 + · · · . (4.3e)

Close to the bifurcation threshold, the amplitude A j( j = 1, 2, 3) of the spatial pattern evolves on a
slow temporal scale. The derivative ∂

∂t0
is with respect to fast time, and it does not have an effect on A j.

Therefore, we separate the fast and slow time scales as follows:

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
+ o(ε3). (4.4)

We substitute (4.3) and (4.4) into (4.1) and equate the coefficients of ε, ε2 and ε3. Comparing the
coefficients of ε, we obtain

LT


u1

v1

w1

 = 0, where LT =


f100 + ∆ f010 f001

g100 g010 + dT ∆ 0
h100 0 h001 + ∆

 . (4.5)

The solution of the system (4.5) has the form
u1

v1

w1

 =


f1

f2

1

 ( 3∑
j=1

W jexp(ik j · r)
)

+ c.c., (4.6)

where

f1 =
k2

T − h001

h100
, f2 =

g100(k2
T − h001)

h100(dT k2
T − g010)

,
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and |k j| = kT , j = 1, 2, 3. Here, W j is the modulus of the first order disturbance term, and c.c. denotes
the complex conjugate.

Now, collecting the coefficients of ε2, we get

LT


u2

v2

w2

 =
∂

∂t1


u1

v1

w1

 −

0 0 0
0 d(1)∆ 0
0 0 0



u1

v1

w1


−

1
2


f200u2

1 + 2 f110u1v1 + 2 f101u1w1 + f020v2
1

g200u2
1 + 2g110u1v1 + g020v2

1
0

 =


Fu

Fv

Fw

 . (4.7)

To ensure the existence of a nontrivial solution of the non-homogeneous problem (4.7), the right-
hand side of this equation must be orthogonal to the zero eigenvectors of the operator L+

T (the adjoint
operator of the operator LT ). This is known as Fredholm solvability condition. The zero eigenvectors
of the operator LT are 

1
g1

g2

 exp(−ik j · r) + c.c., (4.8)

where g1 =
f010

dT k2
T−g010

and g2 =
f001

k2
T−h001

. From the orthogonality condition, we have

(1, g1, g2)


F j

u

F j
v

F j
w

 = 0, ( j = 1, 2, 3), (4.9)

where F j
u, F j

v and F j
w are the coefficients of exp(ik j · r) in Fu, Fv, and Fw, respectively. Taking j = 1 in

(4.8) leads to 
F1

u

F1
v

F1
w

 =


f1

f2

1

 ∂W1

∂t1
+


0

f2d(1)k2
T

0

 W1 −


F1

G1

0

 W2W3, (4.10)

where F1 = f200 f 2
1 + 2 f110 f1 f2 + 2 f101 f1 + f020 f 2

2 and G1 = g200 f 2
1 + 2g110 f1 f2 + g020 f 2

2 . Therefore, from
the solvability condition, we get

( f1 + f2g1 + g2)
∂W1

∂t1
= − f2g1d(1)k2

T W1 + (F1 + g1G1)W2W3. (4.11)

Similarly, for j = 2 and 3, we obtain the following results:

( f1 + f2g1 + g2)
∂W2

∂t1
= − f2g1d(1)k2

T W2 + (F1 + g1G1)W1W3, (4.12)

( f1 + f2g1 + g2)
∂W3

∂t1
= − f2g1d(1)k2

T W3 + (F1 + g1G1)W1W2. (4.13)

Substituting (4.6) into (4.7) and solving this equation, we obtain the solution of the system (4.7) as
follows: 

u2

v2

w2

 =


X0

Y0

Z0

 +

3∑
j=1


X j

Y j

Z j

 exp(ik j · r) +

3∑
j=1


X j j

Y j j

Z j j

 exp(i2k j · r)
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+


X12

Y12

Z12

 exp(i(k1 − k2) · r) +


X23

Y23

Z23

 exp(i(k2 − k3) · r)

+


X13

Y13

Z13

 exp(i(k1 − k3) · r) + c.c. (4.14)

Substituting (4.14) into (4.7) and collecting the coefficients of exp(0), exp(ik j · r), exp(i2k j · r) and
exp(i(k j − km) · r), we find

X0

Y0

Z0

 = −


f100 f010 f001

g100 g010 0
h100 0 h001


−1 

F1

G1

0

 (|W1|
2 + |W2|

2 + |W3|
2)

=


ξu0

ξv0

ξw0

 (|W1|
2 + |W2|

2 + |W3|
2), (4.15a)


X j

Y j

Z j

 = Z j


f1

f2

1

 , (4.15b)


X j j

Y j j

Z j j

 = −
1
2


f100 − 4k2

T f010 f001

g100 g010 − 4dT k2
T 0

h100 0 h001 − 4k2
T


−1 

F1

G1

0

 |W j|
2

=


ξu1

ξv1

ξw1

 |W j|
2, (4.15c)


X jm

Y jm

Z jm

 = −


f100 − 3k2

T f010 f001

g100 g010 − 3dT k2
T 0

h100 0 h001 − 3k2
T


−1 

F1

G1

0

 W jWm

=


ξu2

ξv2

ξw2

 W jWm. (4.15d)

Now, comparing the coefficients of ε3, we obtain

LT


u3

v3

w3

 =


Gu

Gv

Gw

 , (4.16)

where 
Gu

Gv

Gw

 =


∂u2
∂t1

+ ∂u1
∂t2

∂v2
∂t1

+ ∂v1
∂t2

∂w2
∂t1

+ ∂w1
∂t2

 −

0 0 0
0 d(2)∆ 0
0 0 0



u1

v1

w1

 −

0 0 0
0 d(1)∆ 0
0 0 0



u2

v2

w2


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−


f200u1u2 + f110(u1v2 + u2v1) + f101(u1w2 + u2w1) + f020v1v2

g200u1u2 + g110(u1v2 + u2v1) + g020v1v2

0


−

1
6


f300u3

1 + 3 f210u2
1v1 + 3 f120u1v2

1 + f030v3
1

g300u3
1 + 3g210u2

1v1 + 3g120u1v2
1 + g030v3

1
0

 . (4.17)

From the Fredholm solvability condition, applied for system (4.16) we obtain:

( f1 + f2g1 + g2)
(
∂W1

∂t2
+
∂Y1

∂t1

)
= − k2

T f2g1(d(2)W1 + d(1)Y1) + (F1 + g1G1)(W2Y3 + W3Y2)

+ (F2 + g1G2)|W1|
2W1 + (F3 + g1G3)(|W2|

2 + |W3|
2)W1, (4.18a)

( f1 + f2g1 + g2)
(
∂W2

∂t2
+
∂Y2

∂t1

)
= − k2

T f2g1(d(2)W2 + d(1)Y2) + (F1 + g1G1)(W1Y3 + W3Y1)

+ (F2 + g1G2)|W2|
2W2 + (F3 + g1G3)(|W1|

2 + |W3|
2)W2, (4.18b)

( f1 + f2g1 + g2)
(
∂W3

∂t2
+
∂Y3

∂t1

)
= − k2

T f2g1(d(2)W3 + d(1)Y3) + (F1 + g1G1)(W1Y2 + W2Y1)

+ (F2 + g1G2)|W3|
2W3 + (F3 + g1G3)(|W1|

2 + |W2|
2)W3, (4.18c)

where

F2 = f200 f1(ξu0 + ξu1) + f110( f1(ξv0 + ξv1) + f2(ξu0 + ξu1))
+ f101( f1(ξw0 + ξw1) + (ξu0 + ξu1)) + f020 f2(ξv0 + ξv1)

+
1
2

( f 3
1 f300 + 3 f 2

1 f2 f210 + 3 f1 f 2
2 f120 + f 3

2 f030),

G2 = g200 f1(ξu0 + ξu1) + g110( f1(ξv0 + ξv1) + f2(ξu0 + ξu1)) + g020 f2(ξv0 + ξv1)

+
1
2

( f 3
1 g300 + 3 f 2

1 f2g210 + 3 f1 f 2
2 g120 + f 3

2 g030),

F3 = f200 f1(ξu0 + ξu2) + f110( f1(ξv0 + ξv2) + f2(ξu0 + ξu2))
+ f101( f1(ξw0 + ξw2) + (ξu0 + ξu2)) + f020 f2(ξv0 + ξv2)
+ ( f 3

1 f300 + 3 f 2
1 f2 f210 + 3 f1 f 2

2 f120 + f 3
2 f030),

G3 = g200 f1(ξu0 + ξu2) + g110( f1(ξv0 + ξv2) + f2(ξu0 + ξu2)) + g020 f2(ξv0 + ξv2)
+ ( f 3

1 g300 + 3 f 2
1 f2g210 + 3 f1 f 2

2 g120 + f 3
2 g030).

Combining (4.14) and (4.18), we obtain the relationship for the amplitudes A j( j = 1, 2, 3) as

A j = εW j + ε2Y j + o(ε3). (4.19)

For the order of ε2 and ε3, we obtain the following amplitude equations:

τ0
∂A1

∂t
= µA1 + hA2A3 − (m1|A1|

2 + m2(|A2|
2 + |A3|

2))A1 (4.20a)

τ0
∂A2

∂t
= µA2 + hA1A3 − (m1|A2|

2 + m2(|A1|
2 + |A3|

2))A2 (4.20b)
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τ0
∂A3

∂t
= µA3 + hA1A2 − (m1|A3|

2 + m2(|A1|
2 + |A2|

2))A3, (4.20c)

where µ = d−dc
dc

is a normalized distance to onset, τ0 =
f1+ f2g1+g2

−dT k2
T f2g1

is a typical relaxation time, h =

F1+g1G1

−dT k2
T f2g1

, m1 =
F2+g1G2

dT k2
T f2g1

, and m2 =
F3+g1G3

dT k2
T f2g1

.
Now, each amplitude in equation (4.20) can be decomposed into the mode ρ j = |A j|( j = 1, 2, 3) and

a corresponding phase φ j. Substituting A j = ρ jexp(iφ j) into equations of (4.20) an separating the real
and imaginary parts, we obtain the following differential equations in real variables:

τ0
∂Φ

∂t
= −h

ρ2
1ρ

2
2 + ρ2

2ρ
2
3 + ρ2

3ρ
2
1

ρ1ρ2ρ3
sin Φ, (4.21a)

τ0
∂ρ1

∂t
= µρ1 + hρ2ρ3 cos Φ − m1ρ

3
1 − m2(ρ2

2 + ρ2
3)ρ1, (4.21b)

τ0
∂ρ2

∂t
= µρ2 + hρ1ρ3 cos Φ − m1ρ

3
2 − m2(ρ2

1 + ρ2
3)ρ2, (4.21c)

τ0
∂ρ3

∂t
= µρ3 + hρ1ρ1 cos Φ − m1ρ

3
3 − m2(ρ2

1 + ρ2
2)ρ3, (4.21d)

where Φ = ρ1 + ρ2 + ρ3.
We find the equilibrium points of the system (4.21) and determine their stability. Suppose that

τ0 > 0. Then the solution corresponding to Φ = 0, i.e., H0 pattern is stable if h > 0, and the solution
corresponding to Φ = π, i.e., Hπ pattern is stable if h < 0. If we consider only stable solutions of the
equation (4.21a), then we can write the mode equations as

τ0
∂ρ1

∂t
= µρ1 + |h|ρ2ρ3 − m1ρ

3
1 − m2(ρ2

2 + ρ2
3)ρ1, (4.22a)

τ0
∂ρ2

∂t
= µρ2 + |h|ρ1ρ3 − m1ρ

3
2 − m2(ρ2

1 + ρ2
3)ρ2, (4.22b)

τ0
∂ρ3

∂t
= µρ3 + |h|ρ1ρ1 − m1ρ

3
3 − m2(ρ2

1 + ρ2
2)ρ3. (4.22c)

This system of ordinary differential equations has four equilibrium points. We determine their stability
by linear stability analysis:

(SP1) The stationary state is given by the equalities

ρ1 = ρ2 = ρ3 = 0.

It is stable for µ < µ2 = 0 and unstable for µ > µ2.
(SP2) Stripe pattern given by

ρ1 =

√
µ

m1
, 0, ρ2 = ρ3 = 0.

It is stable for µ > µ3 = h2m1
(m2−m1)2 and unstable for µ < µ3.

(SP3) Hexagonal pattern is given by

ρ1 = ρ2 = ρ3 =
|h| ±

√
h2 + 4(m1 + 2m2)µ
2(m1 + 2m2)

,
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with Φ = 0 or π, and it exists if µ > µ1 = −h2

4(m1+2m2) . The solution ρ+ =
|h|+
√

h2+4(m1+2m2)µ
2(m1+2m2) is stable

for µ < µ4 = 2m1+m2
(m2−m1)2 h2, and ρ− =

|h|−
√

h2+4(m1+2m2)µ
2(m1+2m2) is always unstable.

(SP4) The mixed states correspond to the case

ρ1 =
|h|

m2 − m1
, ρ2 = ρ3 =

√
µ − m1ρ

2
1

m1 + m2
,

with m2 > m1, µ > m1ρ
2
1, and they are always unstable.

It is important to mention here that the condition for the existence of hexagonal pattern in (SP3)
corresponds to two values of ρ (ρ+ and ρ−). Theoretically, we derive the condition of existence of
hexagonal pattern through amplitude equation but it corresponds to spot pattern obtained through nu-
merical simulation of the complete nonlinear model [20, 53, 57]. Existence of two positive values of ρ
leads to cold spot and hot spot patterns but the model considered here is capable to produce cold spot
pattern only (see the next section).

Figure 2. Patterns for the local model (2.5) for the parameter values as mentioned in (5.1) and
α ∈ [0.75, 0.8], d ∈ [5, 25]. Two curves represent Turing bifurcation curve ( ) and temporal
PAH-bifurcation curve ( ). Homogeneous steady states are stable below the Turing curve
and on the left PAH-bifurcation curve (in the region D4). Cold spot pattern exists in pure
Turing domain (D1) and in part of the Turing-Hopf domain (D2). Non-stationary patterns are
observed in pure PAH domain (D3) and a broad part of the Turing-Hopf domain (D2).

5. Numerical results

In this section, we present some numerical results for the spatio-temporal model (2.10) with the
kernel function defined in (2.12). We consider such values of parameters that the temporal model (2.1)
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possesses only one coexisting equilibrium point and undergoes PAH bifurcation due to the variation of
α. We fix the parameter values

β = 0.1, ν = 0.4, η = 0.5, (5.1)

and consider α as a bifurcation parameter. The temporal model (2.1) has a unique coexistence equi-
librium point for 0.75 ≤ α ≤ 0.8. The unique coexistence equilibrium point is stable for α < αH and
unstable otherwise, where αH = 0.7668 is the super-critical PAH-bifurcation threshold.

Numerical simulations of the models (2.5) and (3.1) are performed in a square domain [−150, 150]×
[−150, 150] with ∆t = 0.001 and ∆x = ∆y = 1 and with the no-flux boundary condition. The accuracy
of the simulations is checked by decreasing the space and time steps. The temporal part is integrated
with the help of Euler method and the five point difference scheme is used for the Laplacian term. We
used small amplitude heterogeneous perturbation around the homogeneous steady-state as initial con-
dition. We find the resulting patterns produced by the nonlocal model (2.10) by solving the transformed
model (3.1). Here we have presented the spatio-temporal patterns after the initial transients to describe
the actual patterns produced by the models. Only the spatio-temporal patterns produced by the prey
species are presented here since the predator population exhibits a similar distribution. A consolidated
pattern diagram is presented in Figure 2 for a range of values of α and d. Temporal PAH-bifurcation
curve ( ) and Turing bifurcation curve ( ) divide the entire domain into four parts. The pure Turing
domain (D1) is bounded by the Turing curve from below and by PAH curve on the right. The domain
lying above the Turing curve and on the right of PAH curve is the Turing-Hopf domain (D2). We find
stationary spot patterns and dynamic patterns in D2. For parameter values in domain D2 but close of
PAH bifurcation curve the stationary pattern dominates. For parameter values from the domain D2 but
significantly away from the PAH bifurcation curve, temporal instability dominates. In this case we
observe dynamic patterns which are homogeneous in space and oscillatory in time. The dominance
of Turing and PAH instability is further illustrated through dispersion relation in the next paragraph.
In the region D3, the oscillatory solutions are homogeneous in space and oscillatory in time. Finally,
homogeneous stationary solution exists in the region D4.

(a) (b) (c)

Figure 3. Dispersion relations are shown for (a) α = 0.76, d = 20; (b) α = 0.775, d = 10
and (c) α = 0.775, d = 7. Positive imaginary part (red) and largest real part (blue) of the
eigenvalues are plotted. Complex conjugate eigenvalues exist up to k = k∗.

Next, we consider two different sets of parameter values, one from the pure Turing domain and
another one from the Turing-Hopf domain. For α = 0.76, d = 20, we find a stationary Turing pattern,
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as shown in Figure 4(a), and the corresponding dispersion relation is shown in Figure 3(a). The
largest real part of the eigenvalues of the characteristic equation (2.6) is positive for a range of wave
numbers (k2, k3). Eigenvalues of (2.6) are complex conjugate for 0 ≤ k ≤ k∗ and are real for k > k∗.
Next, we choose parameter values from the Turing-Hopf domain. The dispersion relations (see Figures
3(b) and (c)) indicate that the largest real part of the eigenvalues are positive for two disjoint range of
wavenumbers (0, k1) and (k2, k3) such that k1 < k∗ < k2 < k3. The range of wavenumber (0, k1)
corresponds to the PAH instability, and (k2, k3) corresponds to the Turing instability. For α = 0.775,
we have considered two different values of the diffusion coefficient, d = 10 and d = 7. We find
stationary Turing pattern for d = 10 but unable to capture any stationary heterogeneous pattern for
d = 7. Interestingly, for both values of d we observe a time-dependent pattern if the initial condition
is a small amplitude periodic perturbation around the homogeneous steady-state. A snap-shot of such
pattern is shown in Figure 4(c). For two different combination of the parameter values α = 0.76,
d = 20 and α = 0.775, d = 10, we find stationary Turing patterns but the size of the cold spots and
variation of population densities are different [see Figure 4(a-b)]. This is due to the difference in
wavelengths corresponding to the most unstable eigenmode within the range of wavenumbers (k2, k3).

Next, we consider the spatio-temporal patterns produced by the nonlocal model (3.1) for the same
set of parameter values in order to understand the effect of nonlocal interaction on the resulting patterns.
The only parameter involved in the nonlocal interaction is τ. The consolidated pattern diagrams for
τ = 0.1 and τ = 0.1 are presented in Figure 5 for the fixed parameter set (5.1). Turing bifurcation curve
and temporal PAH-bifurcation curves are shown in the diagrams. The range of parameters for which
stationary Turing patterns are observed change significantly with the increase of τ. This is evident due
to the shift of the Turing bifurcation curve towards the left, while the PAH-bifurcation curve remains
fixed.

(a) (b) (c)

Figure 4. Spatio-temporal patterns produced by the local model for (a) α = 0.76, d = 20,
(b) α = 0.775, d = 10 and (c) α = 0.775, d = 7. (a-b) Cold spot pattern, (c) a snap shot of
non-stationary pattern.

The effect of increasing τ on the resulting pattern can be understood from the change in the disper-
sion relation. In Figure 6(a-b), the change in the dispersion graph is presented for two different values
of τ along with the dispersion curve for the model without nonlocal term, as a reference. For α = 0.76
and d = 20, the largest real part of the eigenvalue is negative at k = 0 for the model (2.5) but it is close
to zero at k = 0 for the model (3.1) if τ = 0.5. Further increase in τ will result in the positivity of the

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4801–4824.



4818

largest real part of the eigenvalue for a range of wavenumber [0, k1), while the eigenvalues are complex
conjugate, and ultimately PAH-instability dominates over Turing instability. We find two disjoint range
of wavenumbers [0, k1) and (k2, k3) for which the largest real part of the eigenvalues are positive for the
model (2.5) if α = 0.775 and d = 10. Both these ranges increase with the increase of τ. The value of
the largest real part of the eigenvalues also increases with the increase of τ.

In Figure 7 we present the stationary Turing patterns for τ = 0.1 and τ = 0.5. Apparently, there is
no drastic change in the pattern with the variation of τ. However, a closer look reveals that the size of
cold spots decreases while their number increases. We have explored the resulting patterns for other
parameter values and did not observe any significant change in the nature of patterns with increasing
τ. Disappearance of Turing pattern and its replacement by the dynamic pattern is evident from the
absence of spot pattern in the vicinity of Turing-Hopf point and inside the pure Turing domain, see
Figure 5(b). The stationary Turing patterns presented in Figure 7 will disappear and we find dynamic
pattern analogous to the pattern presented in Figure 4(c).

(a) (b)

Figure 5. Patterns for the nonlocal model with varying α and d for (a) τ = 0.1 and (b)
τ = 0.5. Interpretation of patterns are same as in Figure 2.

For the nonlocal model, we can now verify the analytical results obtained by the weakly nonlinear
analysis with a numerical example. First, we fix α = 0.76 and τ = 0.1, and other parameter values
are the same as in (5.1). After solving the equation (3.13), we find the Turing bifurcation threshold
dT = 12.216 and the corresponding critical wave number kT = 0.262. Now, we calculate all the relevant
terms in equation (4.22) and find τ0 = 13.388, h = −17.574, m1 = −46.792, and m2 = −201.813. These
values correspond to the stationary Turing patterns since µ1 = 0.171, µ3 = −0.601, and µ4 = −3.796.
Now, d < dT implies µ < 0. Hence, the stationary state is stable, and no spatial patterns emerge in
this case. The opposite inequality, d > dT implies µ > 0. In this case the stationary state is unstable,
so we may get some stationary patterns. This result is in accordance with the numerical simulations
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showing the existence of stationary Turing pattern for d > dT . Stripe pattern can not exist for d > dT ,
as m1 < 0 and µ > 0 [see (SP2)]. Here m1 and m2 are negative, so we can not find the positive solution
ρ+ [see (SP3)]. Therefore, the stationary state ρ1 = ρ2 = ρ3 > 0 does not exists for µ > 0 (or d > dT ).
Similarly, the stationary state ρ1 > 0, ρ2 = ρ3 > 0 does not exists for µ > 0, as m1 + m2 < 0 and
µ > m1ρ

2
1 [see (SP4)]. Finally, as τ0 > 0 and h < 0, we obtain only spot pattern Hπ for d > dT .

(a) (b)

Figure 6. Dispersion relations for the nonlocal model for (a) α = 0.76, d = 20; (b) α = 0.775,
d = 10 for three different values of τ. Other parameters are indicated in (5.1).

(a) (b)

Figure 7. Stationary patterns produced by the nonlocal model (3.1) for α = 0.76, d = 20, (a)
τ = 0.1, (b) τ = 0.5. Other parameters are the same as in (5.1).

6. Conclusion

In this paper we have considered a modified spatio-temporal Bazykin’s model with nonlocal con-
sumption of resources by the prey. The nonlocal consumption of resources affect the strength of the
intra-specific competition for the prey species. In our earlier work [30], we have shown that Bazykin’s
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model with nonlocal consumption of prey by their specialist predator and its contribution to preda-
tor growth can produce a wide range of stationary and non-stationary patterns. The major difference
between our earlier work [30] and the present one is the significant difference between the kernel
functions. In [30], we have shown that the range of nonlocal interaction plays a crucial role in the
spatio-temporal dynamics as the kernel function had a finite support. Its length, that is the admissible
range of nonlocal interaction was a key parameter for the bifurcation analysis. Here we have consid-
ered the spatio-temporal model over two-dimensional space and a kernel function with infinite support.
Moreover, it depends on both space and time. Strength of intra-specific competition between the prey
individuals located at two different location is regulated by the distance between two locations and time
scaled with τ. We have demonstrated the effect of space and time on the shape of the kernel function
in Figure 1.

We have obtained the conditions of Turing instability for the spatio-temporal models without and
with nonlocal interaction term. Both models admit stationary Turing patterns due to the instability of
the homogeneous coexistence steady-state. Stationary patterns exist for parameter values belonging to
the pure Turing domain and to a part of the Turing-Hopf domain. Here we have chosen the parameter
values in such a way that the model admits only one coexistence steady-state and the spatio-temporal
model admits only two types of patterns. There is no labyrinthine and mixture of spot-stripe patterns.
This claim is validated through the verification of analytical results obtained by the weakly nonlinear
analysis with supportive numerical example. The homogeneous steady-state is stable below the Tur-
ing boundary and on the left of PAH-bifurcation curve. Instability of the homogeneous steady-state
implies the existence of stationary heterogeneous spot pattern for parameter values close to the Turing
bifurcation curve and within the pure Turing domain. Existence of a stationary spot pattern and non-
stationary pattern, obtained through the numerical simulations with two different type of perturbation
to the homogeneous steady-state, can not be explained through the analytical results as such transi-
tions take place away from the Turing bifurcation curve. The results obtained by the weakly nonlinear
analysis and amplitude equation are valid in the vicinity of the Turing bifurcation boundary.

Introduction of nonlocal interaction terms has a stabilizing effect on the dynamics of prey-predator
interaction if the range of nonlocal interaction is finite [29, 30, 37, 41]. To the best of our knowledge,
there is no such work with kernel functions having infinite support, and we will explore this question
in the subsequent work. The present work reveals that the parameter τ has a destabilizing effect on the
resulting pattern as the maximum real part of the eigenvalues increases with the increasing the value of
τ. As a result, the stationary population patches are destabilized, and we find time dependent dynamic
patterns. It is well-known that the discrete time delay has a destabilizing effect on the dynamics of
temporal model by inducing small and large amplitude oscillations [50, 51, 52, 54]. Here we have
shown that the parameter τ can destabilize the stationary Turing pattern. Existence of dynamic patterns
implies that the prey and predator species can not stay in a particular location for a longer period of
time but they need to change their location on a regular basis. Detailed description of the ecological
interpretation of dynamic patterns can be found in [30, 32, 59].

The presence of nonlocal interaction in the intra-specific competition term can lead to the generation
of stationary patches for single species population model with logistic growth [60]. In the absence of
nonlocal term one can find only travelling waves [26]. For Rosenzweig-MacArthur type prey-predator
model with specialist predator, the dynamics is solely influenced by the prey density as the predator
species survives on prey only. Once the prey species is capable to produce stationary patch with
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adequate number of prey individuals, then the reasonable rate of prey consumption can not destabilize
the dynamics. As a result, we find stationary prey and predator patches for Rosenzweig-MacArthur
model in the presence of nonlocal interaction term at prey growth [29]. Bazykin type prey predator
model is the extension of Rosenzweig-MacArthur model with additional intra-specific competition
term in predator growth [39]. As the nonlocal interaction term has a stabilizing effect on the prey
dynamics in the absence of predator, such stabilization remains unaltered in the presence of predator
also, if the consumption of the prey by their predator is moderate. Higher rate of predation or lower
prey density at stationary patch can lead to destabilization. Here we have shown that the space and time
dependent nonlocal consumption of resources by prey favours the formation of stationary prey patches.
It leads to stationary coexistence patches for both the prey and predator species if the consumption rate
and the strength of intra-specific competition among the predators are moderate.

Finally, we would like to remark that this work suggests interesting questions for future research.
Among them, whether Turing patterns can be produced by other spatio-temporal models of prey-
predator interaction with nonlocal interaction term involving the kernel functions with infinite support
and only space-dependent. We will explore this question in the future works for the case of two-
dimensional Laplace and Gaussian kernels [31, 34]. Furthermore, more detailed bifurcation analysis
of the homogeneous steady-state will be carried out in order to reveal other possible patterns.
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