Research article Special Issues

Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data

  • Received: 31 July 2019 Accepted: 24 November 2019 Published: 02 December 2019
  • The objective of this paper is to analyze the inclusion of one or more random parameters into the deterministic Lighthill-Whitham-Richards traffic flow model and use a semi-intrusive approach to quantify uncertainty propagation. To verify the validity of the method, we test it against real data coming from vehicle embedded GPS systems, provided by Autoroutes Trafic.

    Citation: Enrico Bertino, Régis Duvigneau, Paola Goatin. Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data[J]. Mathematical Biosciences and Engineering, 2020, 17(2): 1511-1533. doi: 10.3934/mbe.2020078

    Related Papers:

  • The objective of this paper is to analyze the inclusion of one or more random parameters into the deterministic Lighthill-Whitham-Richards traffic flow model and use a semi-intrusive approach to quantify uncertainty propagation. To verify the validity of the method, we test it against real data coming from vehicle embedded GPS systems, provided by Autoroutes Trafic.


    加载中


    [1] M. Treiber, A. Kesting. Traffic flow dynamics, Springer, Heidelberg, 2013. Data, models and simulation, Translated by Treiber and Christian Thiemann.
    [2] D. B. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli, A. M. Bayen, A traffic model for velocity data assimilation, Appl. Math. Res. Express. AMRX, 2010 (2010), 1-35.
    [3] M. J. Lighthill, G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads, P. Roy. Soc. Lond. A Mat., 229 (1955), 317-345.
    [4] P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
    [5] R. Boel, L. Mihaylova, A compositional stochastic model for real time freeway traffic simulation, Transport. Res. B-Meth., 40 (2006), 319-334.
    [6] K.-C. Chu, L. Yang, R. Saigal, K. Saitou, Validation of stochastic traffic flow model with microscopic traffic simulation, In 2011 IEEE Int. Conference Autom. Sci. Eng., pages 672-677. IEEE, 2011.
    [7] S. E. Jabari, H. X. Liu, A stochastic model of traffic flow: Theoretical foundations, Transport. Res. B-Meth., 46 (2012), 156-174.
    [8] J. Li, Q.-Y. Chen, H. Wang, D. Ni, Analysis of LWR model with fundamental diagram subject to uncertainties, Transportmetrica, 8 (2012), 387-405.
    [9] V. Schleper, A hybrid model for traffic flow and crowd dynamics with random individual properties, Math. Biosci. Eng., 12 (2015), 393-413.
    [10] A. Sumalee, R. Zhong, T. Pan, W. Szeto, Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment, Transport. Res. B-Meth., 45 (2011), 507-533.
    [11] H. Wang, D. Ni, Q.-Y. Chen, J. Li, Stochastic modeling of the equilibrium speed-density relationship, J. Adv. Transp., 47 (2013), 126-150.
    [12] S. Mishra, N. H. Risebro, C. Schwab, S. Tokareva, Numerical solution of scalar conservation laws with random flux functions, SIAM/ASA J. Uncertain. Quantif., 4 (2016), 552-591.
    [13] S. Mishra, C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comp., 81 (2012), 1979-2018.
    [14] S. Tokareva, Stochastic finite volume methods for computational uncertainty quantification in hyperbolic conservation laws, ETH Zurich, 2013.
    [15] G. Poëtte, B. Després, D. Lucor, Uncertainty quantification for systems of conservation laws, J. Comput. Phys., 228 (2009), 2443-2467.
    [16] R. Abgrall, P. M. Congedo, A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems, J. Comput. Phys., 235 (2013), 828-845.
    [17] Autoroutes Trafic, accessed: 2019-07-28. Available from: http://www.autoroutes-trafic.fr/.
    [18] A. Cabassi, P. Goatin, Validation of traffic flow models on processed GPS data, Research Report RR-8382, INRIA, 2013.
    [19] Escota (VINCI Autoroutes), accessed: 2019-07-28. Available from: https://corporate.vinci-autoroutes.com/fr/presentation/societes-vinci-autoroutes/escota/en-bref.
    [20] C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transport. Res. B-Meth., 28 (1994), 269-287.
    [21] G. F. Newell, A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks, Transport. Res. B-Meth., 27 (1993), 289-303.
    [22] S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47 (1959), 271-306.
    [23] M. Garavello, B. Piccoli, Traffic flow on networks, volume 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. Conservation laws models.
    [24] J.-P. Lebacque, The Godunov scheme and what it means for first order traffic flow models, In Transportation and traffic theory. Proceedings of the 13th international symposium on transportation and traffic theory, Lyon, France, 24-26 JULY 1996, 1996.
    [25] J. K. Wiens, J. M. Stockie, J. F. Williams, Riemann solver for a kinematic wave traffic model with discontinuous flux, J. Comput. Phys., 242 (2013), 1-23.
    [26] J. Tryoen, O. Le Maître, A. Ern, Adaptive anisotropic spectral stochastic methods for uncertain scalar conservation laws, SIAM J. Sci. Comput., 34 (2012), A2459-A2481.
    [27] M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda, On scalar hyperbolic conservation laws with a discontinuous flux, Math. Models Methods Appl. Sci., 21 (2011), 89-113.
    [28] J. a.-P. Dias, M. Figueira, J.-F. Rodrigues. Solutions to a scalar discontinuous conservation law in a limit case of phase transitions, J. Math. Fluid Mech., 7 (2005), 153-163.
    [29] T. Gimse, Conservation laws with discontinuous flux functions, SIAM J. Math. Anal., 24 (1993), 279-289.
    [30] E. Cristiani, C. de Fabritiis, B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data, Commun. Appl. Ind. Math., 1 (2010), 54-71.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3667) PDF downloads(354) Cited by(1)

Article outline

Figures and Tables

Figures(18)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog