Research article Special Issues

Wavelet-based Benjamini-Hochberg procedures for multiple testing under dependence

  • Received: 28 January 2019 Accepted: 30 May 2019 Published: 24 September 2019
  • Multiple comparisons methodology has experienced a resurgence of interest due to the increase in high-dimensional datasets generated from various biological, medical and scientific fields. An outstanding problem in this area is how to perform testing in the presence of dependence between the p-values. We propose a novel approach to this problem based on a spacings-based representation of the Benjamini-Hochberg procedure. The representation leads to a new application of the wavelet transform to effectively decorrelate p-values. Theoretical justification for the procedure is shown. The power gains of the proposed methodology relative to existing procedures is demonstrated using both simulated and real datasets.

    Citation: Debashis Ghosh. Wavelet-based Benjamini-Hochberg procedures for multiple testing under dependence[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 56-72. doi: 10.3934/mbe.2020003

    Related Papers:

  • Multiple comparisons methodology has experienced a resurgence of interest due to the increase in high-dimensional datasets generated from various biological, medical and scientific fields. An outstanding problem in this area is how to perform testing in the presence of dependence between the p-values. We propose a novel approach to this problem based on a spacings-based representation of the Benjamini-Hochberg procedure. The representation leads to a new application of the wavelet transform to effectively decorrelate p-values. Theoretical justification for the procedure is shown. The power gains of the proposed methodology relative to existing procedures is demonstrated using both simulated and real datasets.


    加载中


    [1] Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, R. Stat. Soc. B, 57 (1995), 289-300.
    [2] Y. Benjamini and D. Yekutieli, The control of the false discovery rate in multiple testing under dependency, Ann. Stat., 29 (2001), 1165-1188.
    [3] S. K. Sarkar, Some results on false discovery rates in stepwise multiple testing procedures, Ann. Stat., 30 (2002), 239-257.
    [4] S. K. Sarkar, False discovery and false nondiscovery rates in single-step multiple testing procedures, Ann. Stat., 34 (2006), 394-415.
    [5] G. Blanchard and E. Roquain, Two simple sufficient conditions for FDR control, Electron. J. Statist., 2 (2008), 963-992.
    [6] C. R. Genovese and L. Wasserman, A stochastic process approach to false discovery control, Ann. Stat., (2004), 1035-1061.
    [7] J. D. Storey, J. E. Taylor and D. Siegmund, Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach, J. R. Stat. Soc. B, 66 (2004), 187-205.
    [8] M. P. Pacifico, C. Genovese, I. Verdinelli, et al., False discovery control for random fields, J. Am. Stat. Assoc., 99 (2004), 1002-1014.
    [9] W. Sun and T. Cai, Large-scale multiple testing under dependency, J. R. Stat. Soc. B, 71 (2009), 393-424.
    [10] B. Efron, Correlation and large-scale simultaneous significance testing, J. Am. Stat. Assoc., 102 (2007), 93-103.
    [11] B. Efron, Correlated z-values and the accuracy of large-scale statistical estimates, J. Am. Stat. Assoc., 105 (2010), 1042-1055.
    [12] J. T. Leek and J. D. Storey, Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis, PLoS Genet., 3 (2007), e161.
    [13] A. Schwartzman and X. Lin, The effect of correlation on false discovery rate estimation, Biometrika, 98 (2011), 199-214.
    [14] R. Pyke, Spacings (with discussion), J. R. Stat. Soc. B, 27 (1965), 395-436.
    [15] D. Ghosh, Incorporating the empirical null hypothesis into the Benjamini-Hochberg procedure, Stat. Appl. Genet. Mol. Biol., 11 (2012).
    [16] S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11 (1989), 674-693.
    [17] I. Daubechies, Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.
    [18] F. Abramovich and Y. Benjamini, Adaptive thresholding of wavelet coefficients, Comput. Stat. Data Anal., 22 (1996), 351-361.
    [19] X. Shen, H. C. Huang and N. Cressie, Nonparametric hypothesis testing for a spatial signal, J. Am. Stat. Assoc., 97 (2002), 1122-1140.
    [20] M. Langaas, B. H. Lindqvist and E. Ferkingstad, Estimating the portion of true null hypotheses, with application to DNA microarray data, J. R. Stat. Soc. B, 67 (2005), 555-572.
    [21] Y. Benjamini, A. M. Krieger and D. Yekutieli, Adaptive linear step-up procedures that control the false discovery rate, Biometrika, 93 (2006), 491-507.
    [22] H. Finner, T. Dickhaus and M. Roters, On the false discovery rate and an asymptotically optimal rejection curve, Ann. Stat., 37 (2008), 596-618.
    [23] J. A. Ferreira and A. H. Zwinderman, On the Benjamini-Hochberg method, Ann. Stat., 34 (2006), 1827-1849.
    [24] W. B. Wu, On false discovery control under dependence, Ann. Stat., 36 (2008), 364-380.
    [25] J. Fan, X. Han and W. Gu, Estimating false discovery proportion under arbitrary covariance dependence (with discussion), J. Am. Stat. Assoc., 107 (2012), 1019-1048.
    [26] K. H. Desai and J. D. Storey, Cross-Dimensional Inference of Dependent High-Dimensional Data, J. Am. Stat. Assoc., 107 (2012), 135-151.
    [27] R. J. Adler and J. E. Taylor, Random Fields and Geometry, New York: Springer, 2007.
    [28] J. T. Leek and J. D. Storey, Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis, PLoS Genet., 3 (2007), e161.
    [29] D. B. Percival and A. T. Walden, Wavelet methods for time series analysis, Cambridge: Cambridge University Press, 2000.
    [30] I. M. Johnstone and B. W. Silverman, Wavelet threshold estimators for data with correlated noise, J. R. Stat. Soc. B, 59 (1997), 319-351.
    [31] I. Hedenfalk, D.Duggan, Y. Chen, et al., Gene-expression profiles in hereditary breast cancer, New England J. Med., 344 (2001), 539-548.
    [32] T. R. Golub, D. K. Slonim, P. Tamayo, et al., Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 286 (1999), 531-537.
    [33] M. S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheorie verw. Geb., 31 (1975), 287-302.
    [34] A. Cohen, I. Daubechies and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Commun. Pur. Appl. Math., 45 (1992), 485-560.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3854) PDF downloads(474) Cited by(20)

Article outline

Figures and Tables

Figures(2)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog