Citation: Yunfeng Liu, Guowei Sun, Lin Wang, Zhiming Guo. Establishing Wolbachia in the wild mosquito population: The effects of wind and critical patch size[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4399-4414. doi: 10.3934/mbe.2019219
[1] | O. J. Brady, P. W. Gething, S. Bhatt, et al., Refining the global spatial limits of dengue virus trans-mission by evidence-based consensus, PLoS Negl. Trop. Dis., 6 (2012), e1760. |
[2] | Dengue Situation Update 453, World Health Organization, (2014), Available from: http://www.wpro.who.int/ emerging diseases/denguebiweekly 02dec2014.pdf. |
[3] | L. M. Schwartz, M. E. Halloran, A. P. Durbin, et al., The dengue vaccine pipeline: Implications for the future of dengue control, Vaccine, 33 (2015), 3293–3298. |
[4] | G. Bian, Y. Xu, P. Lu, et al., The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog., 6 (2010), e1000833. |
[5] | H. Dutra, M. Rocha, F. Dias, et al., Wolbachia blocks currently circulating Zika virus isolates Aedes aegypti mosquitoes, Cell Host & Microbe, 19 (2016), 771–774. |
[6] | M. Turelli and A. A. Hoffmann, Rapid spread of an inherited incompatibility factor in California Drosophila, Nature, 353 (1991), 440–442. |
[7] | Z. Xi, C. C. Khoo and S. I. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 310 (2005), 326–328. |
[8] | B. Zheng, M. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74 (2014), 743–770. |
[9] | M. Huang, M. Tang and J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58 (2015), 77–96. |
[10] | L. T. Takahashi, N. A. Maidana, W. C. Ferreira, et al., Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind, Bull. Math. Biol., 67 (2005), 509–528. |
[11] | T. L. Schmidt, N. H. Barton, G. Rašić, et al., Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti, PLoS Biol., 15 (2017), e2001894. |
[12] | M. Huang, J. Luo, L. Hu, et al., Assessing the efficiency of Wolbachia driven aedes mosquito suppression by delay differential equations, J. Theoret. Biol., 440 (2018), 1–11. |
[13] | J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187. |
[14] | B. Zheng, M. Tang, J. Yu, et al., Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235–263. |
[15] | M. Huang, J. Yu, L. Hu, et al., Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249–1266. |
[16] | L. Hu, M. Huang, M. Tang, et al., Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 106 (2015), 32–44. |
[17] | L. Cai, S. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74 (2014), 1786–1809. |
[18] | P. Zhou and X. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differ. Equations, 264 (2018), 4176–4198. |
[19] | Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differ. Equations, 259 (2015), 141–171. |
[20] | R. Cantrell and C. Cosner, Spatial Ecology via Reaction-diffusion Equations, John Wiley & Sons, (2003). |
[21] | P. Zhou and D. Xiao, The diffusive logistic model with a free boundary in heterogeneous environ-ment, J. Differ. Equations, 256 (2014), 1927–1954. |