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Abstract: Releasing mosquitoes with Wolbachia into the wild mosquito population is becoming the
very promising strategy to control mosquito-borne infections. To investigate the effects of wind and
critical patch size on the Wolbachia establishment in the wild mosquito population, in this paper, we
propose a diffusion-reaction-advection system in a heterogeneous environment. By studying the related
eigenvalue problems, we derive various conditions under which Wolbachia can fully establish in the
entire wild mosquito population. Our findings may provide some useful insights on designing practical
releasing strategies to control the mosquito population.
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1. Introduction

Mosquito-borne diseases such as malaria, dengue fever, West Nile virus, chikungunya, and Zika
virus have been a great threat to public health. For dengue virus alone, it has been estimated that 3.9
billion people, in 128 countries, are at risk of infection [1]. In the year of 2014, more than 43,000
cases with locally acquired denguelike illness were reported in Guangdong province, China [2]. The
human viruses including dengue, Zika, chikungunya and yellow fever are transmitted primarily by
Aedes aegypti mosquitoes. Due to the lack of vaccines and efficient clinical cures [3], the only effec-
tive control strategy seems to be controlling the population of mosquitoes that transmit human viruses.
Since massive spraying of insecticides and elimination of mosquito breeding sites are not sustainable
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to reduce mosquito density and might also lead to serious environmental problems, a promising strat-
egy is the Wolbachia approach: releasing male and female Aedes aegypti mosquitoes with Wolbachia
so that these mosquitoes can breed with the wild mosquito population and pass Wolbachia to the en-
tire mosquito population. On one hand, the ability to transmit viruses to human for mosquitoes with
Wolbachia is greatly reduced [4, 5]. On the other hand, since the Wolbachia infection often induces cy-
toplasmic incompatibility (CI), which leads to early embryonic death when Wolbachia-infected males
mate with uninfected females [6, 7], the Wolbachia approach would greatly reduce the density of the
mosquito population and can thus potentially eliminate the mosquito population and thus eradicate the
mosquito-born infectious diseases.

To understand the Wolbachia infection dynamics, Zheng, Tang and Yu [8] proposed a delay differ-
ential equation model. To be self-contained, we briefly introduce their idea here. We denote by r f and
rm the numbers of released female mosquitoes and released males carrying Wolbachia, respectively.
Due to strong competition between adults, r f and rm satisfy


dr f

dt
= −δ1r f T (t), t > 0,

drm

dt
= −δ1rmT (t), t > 0.

(1.1)

Here T (t) = r f + rm + I f + Im + U f + Um denotes the total population size, with U f , Um, I f and
Im being the numbers of uninfected reproductive females, uninfected reproductive males, and infected
reproductive females and males other than those from releasing, respectively. Let bI (resp. bU) be the
natural birth rate of the infected (resp. uninfected) mosquitos and 0 ≤ δ ≤ 1 be the proportion of
mosquitos born female. Then the proportion of mosquitos born male is 1 − δ. With strong CI and high
maternal transmission, if the average waiting time from parent mating to the emergence of reproductive
progenies for both infected and uninfected mosquitoes is negligible, then we have

dI f

dt
= δbI[I f + r f ] − δ1I f T (t), t > 0,

dIm

dt
= (1 − δ)bI[I f + rm] − δ1ImT (t), t > 0,

dU f

dt
= δbU

[
U f

Um

rm + Im + Um

]
− δ2U f T (t), t > 0,

dUm

dt
= (1 − δ)bU

[
U f

Um

rm + Im + Um

]
− δ2UmT (t), t > 0.

(1.2)

Since both r f and rm approach 0 as t → +∞. Let

u(t) = I f + Im and v(t) = U f + Um. (1.3)

Assuming equal determination case, which means that δ = 1/2, I f = Im and U f = Um, setting
b1 = bI/2 and b2 = bU/2 and considering the spatiotemporal factor, Huang et al. [9] came up with the
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following reaction-diffusion system:

∂u
∂t

= d1∆u + u(b1 − δ1(u + v)), t > 0, x ∈ Ω,

∂v
∂t

= d2∆v + v
(

b2v
u + v

− δ2(u + v)
)
, t > 0, x ∈ Ω,

∂u
∂ν

=
∂v
∂ν

= 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω.

(1.4)

In (1.4), d1 and d2 are the diffusion rates, ∆ denotes the Laplace operator in the spatial variable x,
and ν denotes the unit outward normal vector to the boundary of Ω.

Noticing that the spread of mosquitoes can be greatly affected by the wind speed [10], therefore,
the advection due to wind should be incorporated into modeling. Note also practical experience of
releasing mosquitoes with Wolbachia to the wild suggests that a minimum release area is needed in
order to achieve a stable local establishment and spread in continuous habitats [11]. Motivated by
these two aspects, in this paper, we extend the model considered in [9], i.e., system (1.4), to a reaction-
diffusion-advection model with spatially heterogeneous environment and flexible boundary conditions.
More specifically, our model is described by the following system

∂u
∂t

= duxx − αux + u[b1(x) − δ1(u + v)], t > 0, x ∈ (0, L),

∂v
∂t

= dvxx − αvx + v
[
b2(x)v
u + v

− δ2(u + v)
]
, t > 0, x ∈ (0, L),

dux(0, t) − αu(0, t) = 0, t > 0,

dux(L, t) − αu(L, t) = −βαu(L, t), t > 0,

dvx(0, t) − αv(0, t) = βαv(0, t), t > 0,

dvx(L, t) − αv(L, t) = −βαv(L, t), t > 0,

u(x, 0) = u0(x) ≥,. 0, x ∈ [0, L],
v(x, 0) = v0(x) ≥,. 0, x ∈ [0, L],

(1.5)

where u(x, t) and v(x, t) represent the population densities of infected and uninfected mosquitoes at
location x and time t, respectively. The parameter d denotes the random diffusion rate of u and v. The
functions b1(x) and b2(x) denote the halves of the birth rates of the infected and uninfected mosquitoes,
respectively ([8]). The parameter δ1 (or δ2) denotes the density dependent death rate for the infected
(or uninfected) mosquito species. The advection constant α measures the result of wind transportation.
The parameter β < ∞ measures the relative rate of population loss at the downstream due to wind flow
and replenishment at the upstream.

We suppose that bi(x) satisfies the following hypothesis:

bi(x) ∈ C1+α([0, L])(α ∈ (0, 1)), i = 1, 2 and 0 < b ≤ b1(x), b2(x) ≤ b̄. (1.6)

Here b and b̄ are two positive constants.
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We regard β = +∞ as the Dirichlet boundary case, and system (1.5) becomes



∂u
∂t

= duxx − αux + u[b1(x) − δ1(u + v)], t > 0, x ∈ (0, L),

∂v
∂t

= dvxx − αvx + v
[
b2(x)v
u + v

− δ2(u + v)
]
, t > 0, x ∈ (0, L),

dux(0, t) − αu(0, t) = 0 = u(L, t), t > 0,

v(0, t) = 0 = v(L, t), t > 0,

u(x, 0) = u0(x) ≥,. 0, x ∈ [0, L],
v(x, 0) = v0(x) ≥,. 0, x ∈ [0, L],

(1.7)

Ideally, if the entire mosquito population is replaced by mosquitoes with Wolbachia, then the Wol-
bachia establishment is called successful. This is achieved if the solutions of (1.5) and (1.7) approach
a semi-trivial steady state, (̃u, 0), where ũ satisfies the following equations,


duxx − αux + u[b1(x) − δ1u] = 0, x ∈ (0, L),

dux(0) − αu(0) = 0,

dux(L) − αu(L) = −βαu(L),

(1.8)

for β < ∞ or 
duxx − αux + u[b1(x) − δ1u] = 0, x ∈ (0, L),

dux(0) − αu(0) = 0,

u(L) = 0,

(1.9)

for the case with β = ∞.

We point out that there has been several mathematical models formulated to describe the Wol-
bachia spreading dynamics. These models include differential equations with/without time delays
[8, 12, 13, 14], reaction-diffusion equations [9, 15], and stochastic equations [16]. These models fo-
cused on studying the subtle relation between the threshold releasing level for Wolbachia-infected
mosquitoes and several important parameters including the CI intensity and the fecundity cost of Wol-
bachia infection. We should also point out that besides releasing mosquitoes with Wolbachia, an
alternative control strategy is releasing the sterile mosquitoes to the wild mosquito population [17].

We organize the rest of this paper as follows. In Section 2, we give some useful lemmas to establish
the relation between two related principal eigenvalues and the domain size, the advection rate as well
as the diffusion rate. Our main results are presented in Section 3. To illustrate our results, we also
present some numerical simulations in Section 4. We conclude this paper in the last section.
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2. Useful lemmas

In order to discuss the existence of (̃u, 0), corresponding to systems (1.5) and (1.7), we need to study
the following subsystems:

∂u
∂t

= duxx − αux + u[b1(x) − δ1u], t > 0, x ∈ (0, L),

dux(0, t) − αu(0, t) = 0, t > 0,

dux(L, t) − αu(L, t) = −βαu(L, t), t > 0,

u(x, 0) = u0(x) ≥,. 0, x ∈ [0, L],

(2.1)

and 

∂u
∂t

= duxx − αux + u[b1(x) − δ1u], t > 0, x ∈ (0, L),

dux(0, t) − αu(0, t) = 0, t > 0,

u(L, t) = 0, t > 0,

u(x, 0) = u0(x) ≥,. 0, x ∈ [0, L],

(2.2)

respectively.
This leads to the study of the following linear eigenvalue problem

dφxx − αφx + φb1(x) = σφ, x ∈ (0, L),

dφx(0) − αφ(0) = 0,

dφx(L) − αφ(L) = −βαφ(L).

(2.3)

In the case that β = +∞, the corresponding eigenvalue problem reads as
dφxx − αφx + φb1(x) = σφ, x ∈ (0, L),

dφx(0) − αφ(0) = 0,

φ(L) = 0.

(2.4)

Throughout this paper, we denote the principal eigenvalue of (2.3) or (2.4) by σ1(α, d, L).

2.1. Dependence of σ1(α, d, L) on α, d and L

First, we shall investigate how σ1(α, d, L) depends on α.

Lemma 2.1. Suppose that (1.6) is satisfied, then

(a) When β ∈ (0, 1
2 ), if b′1(x) ≤ 0, then σ1(α, d, L) is a strictly monotone decreasing function of α;

When β ∈ [ 1
2 ,+∞], then σ1(α, d, L) is a strictly monotone decreasing function of α.

(b) 0 < b ≤ limα→0 σ1(α, d, L) ≤ b̄ provided that β < +∞.

(c) limα→+∞ σ1(α, d, L) = −∞.
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Proof. Set ϕ = e−
α
d xφ, then (2.3) becomes

dϕxx + αϕx + b1(x)ϕ = σϕ, x ∈ (0, L),

ϕx(0) = 0,

dϕx(L) = −βαϕ(L),

(2.5)

and (2.4) becomes  dϕxx + αϕx + b1(x)ϕ = σϕ, x ∈ (0, L),

ϕx(0) = 0 = ϕ(L).
(2.6)

Let us denote by ϕα the derivative of ϕ with respect to α. Multiplying the first equation of (2.5) by
e
α
d xϕα, we obtain

d(e
α
d xϕx)xϕα + ϕϕαe

α
d xb1(x) = σϕϕαe

α
d x. (2.7)

Integrating (2.7) over (0, L) yields∫ L

0
d(e

α
d xϕx)xϕα =

∫ L

0
(σ − b1(x))ϕϕαe

α
d x. (2.8)

On the other hand, it follows from (2.5) that
dϕαxx + ϕx + αϕαx + b1(x)ϕα = σαϕ + σϕα,

dϕαx(0) = 0,

dϕαx(L) = −βϕ(L) − βαϕα(L).

(2.9)

Multiplying (2.9) by e
α
d xϕ(x) and integrating it over (0, L), we have∫ L

0
d(e

α
d xϕαx)xϕ +

∫ L

0
e
α
d xϕxϕ =

∫ L

0
(σ − b1(x))ϕϕαe

α
d x + σα

∫ L

0
ϕ2e

α
d x. (2.10)

Using integration by parts and (2.8), we obtain

σα =
−e

α
d Lβϕ2(L) +

∫ L

0
e
α
d xϕxϕ∫ L

0
ϕ2e

α
d x

. (2.11)

If β = +∞, (2.11) becomes

σα =

∫ L

0
e
α
d xϕxϕ∫ L

0
ϕ2e

α
d x
. (2.12)

In general, when β ∈ (0, 1
2 ), σ1(α, d, L) may not be monotone in α. To ensure σα < 0, we need to

show ϕx < 0 in (0, L). To this end, we set W =
φx
φ

, and we can rewrite (2.3) as the following equation{
dWxx + (2dW − ϕ)Wx = −b′1(x),
W(0) = α

d , W(L) = (1 − β)αd .
(2.13)
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Since b′1(x) ≤ 0, then by the maximum principle we have W < α
d , which implies that ϕx < 0 in (0, L)

([18]). This implies that σ1(α, d, L) is a strictly monotone decreasing function of α.

For the case β ∈ [1
2 ,+∞), from (2.11), we have σα =

−e
α
d L
βϕ2(L)+

∫ L
0 e

α
d x
ϕxϕ∫ L

0 ϕ2e
α
d x

=
−e

α
d L
βϕ2(L)+

∫ L
0 e

α
d xd ϕ2

2∫ L
0 ϕ2e

α
d x =

−e
α
d L
βϕ2(L)+e

α
d x ϕ2

2 |
L
0−

α
d

∫ L
0 e

α
d x ϕ2

2∫ L
0 ϕ2e

α
d x =

−(β− 1
2 )e

α
d L
ϕ2(L)− ϕ

2(0)
2 −

α
d

∫ L
0 e

α
d x ϕ2

2∫ L
0 ϕ2e

α
d x .

It is easy to see β ∈ [ 1
2 ,+∞) implies that σα < 0. When β = +∞, Using the same calculation as

above and combining with (2.12), we can obtain that σα < 0.
If α = 0, then the boundary condition of (2.5) is simply a Neumann boundary condition. Further-

more, combining with (1.6), we have

0 < b ≤ lim
α→0

σ1(α, d, L) ≤ b̄.

Especially, limα→0 σ1(α, d, L) = b1, when b1(x) = b1. It follows from Proposition 2.1 of [19] and (1.6)
that

σ1(α, d, L) ≤
(
γ2 − γ

) α2

d
+ b̄,

where 0 < γ < min{1, β}. Consequently, limα→+∞ σ1(α, d, L) = −∞. �

Next we investigate the relationship between σ1(α, d, L) and L.

Lemma 2.2. σ1(α, d, L) is a strictly monotone increasing function of L.

Proof. First we consider system (2.5) by fixing the parameters α and d and varying L. For any 0 <

L1 < L2, we show that σ1(α, d, L1) < σ1(α, d, L2). Let ϕ1 be the positive eigenfunction corresponding
to σ1(α, d, L1), and define

ψ =

{
ϕ1, 0 < x ≤ L1

0, L1 < x < L2.

Since

σ1(α, d, L1)

=
−βαe

α
d L1ϕ2

1(L1) − β1αϕ
2
1(0) − d

∫ L1

0
e
α
d x(ϕ1x)2dx +

∫ L1

0
b1(x)e

α
d xϕ2

1dx∫ L1

0
e
α
d xϕ2

1dx

=
−βαe

α
d L2ψ2(L2) − β1αψ

2(0) − d
∫ L2

0
e
α
d x(ψx)2dx +

∫ L2

0
b1(x)e

α
d xψ2dx∫ L2

0
e
α
d xψ2dx

≤ max
ψ,0,ψ∈W1,2

−βαe
α
d L2ψ2(L2) − β1αψ

2(0) − d
∫ L2

0
e
α
d x(ψx)2dx +

∫ L2

0
b1(x)e

α
d xψ2dx∫ L2

0
e
α
d xψ2dx

= σ1(α, d, L2).

Due to the strict positivity of the eigenfunction corresponding to σ1(α, d, L2) in [0, L2], the above
inequality should be strict, which implies σ1(α, d, L1) < σ1(α, d, L2). The case with β = +∞ can be
dealt with in a similar fashion and we skip the details here. �

Lemma 2.3. Assume (1.6) holds. If β = +∞, then σ1(α, d, L)→ −∞ as L→ 0.
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Proof. We rewrite σ1(α, d, L) as σ1(α, d, L, b1(x)) to emphasize the dependence of σ1(α, d, L) on the
function b1(x). By Corollary 2.2 of [20], one easily sees that σ1(α, d, L, b1(x)) ≤ σ1(α, d, L, b̄).

Next we consider the following boundary value problem (BVP)
dφxx − αφx + φb̄ = σφ, x ∈ (0, L),

dφx(0) − αφ(0) = 0,

φ(L) = 0.

(2.14)

Set ψ = e−
αx
2d φ, then (2.14) yields

dψxx + [b̄ −
α2

4d
− σ]ψ = 0, x ∈ (0, L),

ψx(0) − α
2dψ(0) = 0,

ψ(L) = 0,

(2.15)

From the boundary conditions we find

tan

√
4d(b̄ − σ1) − α2

2d
L +

√
4d(b̄ − σ1) − α2

α
= 0, for 4d(b̄ − σ1) > α2. (2.16)

Since by Lemma 2.2, we have
lim

L→0+
σ1(b̄) = σ∗ ∈ R ∪ {−∞}.

Assume that σ∗ is finite, then from (2.16), we obtain σ∗ = 4db̄−α2

4d , and hence ψ(x) = Ax + B. The
boundary conditions imply that A = B = 0. This is impossible. Thus limL→0+ σ1(b̄) = −∞ and hence
limL→0+ σ1(b1(x)) = −∞. �

Lemma 2.4. If β = +∞ and α = 0, then σ1(α, d, L) is a strictly monotone decreasing function of d.

Proof. Let us denote by ϕd the derivative of ϕ with respect to d. Multiplying the first equation of (2.6)
by e

α
d xϕd, it holds that

d(e
α
d xϕx)xϕd + ϕϕde

α
d xb1(x) = σϕϕde

α
d x. (2.17)

Integrating (2.17) over (0, L), we obtain∫ L

0
d(e

α
d xϕx)xϕd =

∫ L

0
(σ − b1(x))ϕϕde

α
d x. (2.18)

On the other hand, it follows from (2.6) that
ϕxx + dϕdxx + αϕdx + b1(x)ϕd = σdϕ + σϕd,

ϕdx(0) = 0 or ϕd(0) = 0,
ϕd(L) = 0.

(2.19)

Multiplying (2.19) by e
α
d xϕ(x) and integrating it over (0, L), we have∫ L

0
d(e

α
d xϕdx)xϕ +

∫ L

0
e
α
d xϕxxϕ =

∫ L

0
(σ − b1(x))ϕϕde

α
d x + σd

∫ L

0
ϕ2e

α
d x. (2.20)
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Using integration by parts and (2.18), we obtain

σd =
−

∫ L

0
e
α
d x(ϕx)2 − α

d

∫ L

0
e
α
d xϕϕx∫ L

0
ϕ2e

α
d x

. (2.21)

We find σd < 0, when α = 0. �

If β = +∞, we also have the following remark (See Theorem 3.1 of [21]).

Remark 2.5. (i) σ1(0, d, L)→ maxx∈[0,L] b1(x) > 0 as d → 0;

(ii) σ1(0, d, L)→ −∞ as d → +∞.

3. Main results

Our first result is the following theorem.

Theorem 3.1. If system (1.5) admits a semi-trivial steady state (̃u, 0), then the semi-trivial steady state
(̃u, 0) is locally asymptotically stable.

Proof. Linearizing the second equation of system (1.5) at (̃u, 0), we obtain the following eigenvalue
problem 

dφxx − αφx − δ2ũφ = ζφ, in (0, L),
dφx(0) − αφ(0) = βαφ(0),
dφx(L) − αφ(L) = −βαφ(L).

(3.1)

Let φ̃ = e−
α
d xφ, then problem (3.1) becomes

d(e
α
d xφ̃x)x − δ2e

α
d xũφ̃ = ζe

α
d xφ̃, in (0, L),

dφ̃x(0) = βαφ̃(0),
dφ̃x(L) = −βαφ̃(L).

(3.2)

By the variational method, ζ1 can be characterized by

ζ1 =
−βαφ̃1

2
(0) − βαe

αL
d φ̃1

2
(L) − d

∫ L

0
e
α
d x(φ̃1x)2 −

∫ L

0
δ2e

α
d xũ(φ̃1)2∫ L

0
e
α
d x(φ̃1)2

(3.3)

and when β = +∞,

ζ1 =
−d

∫ L

0
e
α
d x(φ̃1x)2 −

∫ L

0
δ2e

α
d xũ(φ̃1)2∫ L

0
e
α
d x(φ̃1)2

, (3.4)

where φ̃1 is the eigenfunction associated with ζ1. Thus ζ1 < 0 and it follows from Proposition 3.1 of
[20] that the semi-trivial steady state (̃u, 0) is locally asymptotically stable. �

Theorem 3.2. If α = 0, or α > 0 and β = 0, then system (1.5) admits a semi-trivial steady state, (̃u, 0),
which is locally asymptotically stable, where ũ is the unique positive steady state of problem (2.1).
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Proof. Under the assumptions, the linear eigenvalue problem (2.3) reads as dφxx + φb1(x) = λφ, x ∈ (0, L),

φx(0) = 0 = φx(L),
(3.5)

and 
dφxx − αφx + φb1(x) = ηφ, x ∈ (0, L),

dφx(0) − αφ(0) = 0,

dφx(L) − αφ(L) = 0,

(3.6)

respectively. For (3.5), a standard eigenvalue analysis gives the principle eigenvalue

λ1 = max
φ∈W1,2(0,L),φ,0

−d
∫ L

0
(φx)2 +

∫ L

0
b1(x)(φ)2∫ L

0
(φ)2

 . (3.7)

Moreover, it is easy to verify that λ1 > 0 by using the test function φ = 1. For (3.6), we multiply the
equations by e−

α
d x to get  d(e−

α
d xφx)x + e−

α
d xφb1(x) = ηe−

α
d xφ, x ∈ (0, L),

(e−
α
d xφ)x(x) = 0, x = 0, L.

(3.8)

Thus the associated principle eigenvalue is

η1 = max
φ∈W1,2(0,L),φ,0

αe−
α
d Lφ2(L) − αφ2(0) − d

∫ L

0
e−

α
d x(φx)2 +

∫ L

0
e−

α
d xb1(x)(φ)2∫ L

0
e−

α
d x(φ)2

 .
Using the test function φ ≡ e

α
d x, we see that η1 > 0. The conclusion then follows from Propositions 3.2

and 3.3 of [20] and Theorem 3.1. �

For the spatially homogeneous case, by Lemmas 2.1 and 2.2, Theorems 2.1 and 2.3 of [19], we have
the following result.

Theorem 3.3. Assume that b1(x) ≡ b1 > 0 is a constant.

(a) If β ∈ (0, 1
2 ) and 0 < α <

√
db1

β(1−β) , then system (1.5) admits a semi-trivial steady state, (̃u, 0), with
ũ being the unique positive steady state of problem (2.1), if and only if L > L∗1, where

L∗1 =


2d arctan

αβ

√
4db1−α

2

2db1−α
2β

√
4db1−α2

, if 0 < α ≤
√

4db1,

d√
α2−4db1

ln 2db1−βα
2+αβ
√
α2−4db1

2db1−βα2−αβ
√
α2−4db1

, if
√

4db1 < α <
√

db1
β(1−β) .

Moreover, if α ≥
√

db1
β(1−β) , then problem (2.1) only has a globally asymptotically stable zero steady

state and system (1.5) does not admit a semi-trivial steady state in the form of (̃u, 0) satisfying
ũ > 0.
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(b) When β = 1
2 . If 0 < α <

√
4db1, then system (1.5) admits a semi-trivial steady state, (̃u, 0), with ũ

being the unique positive steady state of problem (2.1), if and only if L > L∗1 with

L∗1 =
2d arctan α

√
4db1−α2

4db1−α2√
4db1 − α2

.

If α ≥
√

4db1, then system (1.5) does not admit a semi-trivial steady state in the form of (̃u, 0)
satisfying ũ > 0.

(c) Suppose β ∈ (1
2 ,+∞). If 0 < α <

√
4db1, then system (1.5) admits a semi-trivial steady state,

(̃u, 0), with ũ being the unique positive steady state of problem (2.1), if and only if L > L∗1 with

L∗1 =



2d arctan
αβ

√
4db1−α

2

2db1−α
2β

√
4db1−α2

, if 0 < α ≤
√

2db1
β
,

2d
π+arctan

αβ

√
4db1−α

2

2db1−α
2β

√
4db1−α2

, if
√

2db1
β
< α <

√
4db1.

If α ≥
√

4db1, then system (1.5) does not admit a semi-trivial steady state in the form of (̃u, 0)
satisfying ũ > 0.

(d) Suppose that β ∈ (0, 1
2 ). If d > α2β(1−β)

b1
, then system (1.5) admits a semi-trivial steady state, (̃u, 0),

with ũ being the unique positive steady state of problem (2.1), if and only if L > L∗1 with

L∗1 =


2d arctan

αβ

√
4db1−α

2

2db1−α
2β

√
4db1−α2

, if d ≥ α2

4b1
,

d√
α2−4db1

ln 2db1−βα
2+αβ
√
α2−4db1

2db1−βα2−αβ
√
α2−4db1

, if α2β(1−β)
b1

< d < α2

4b1
.

(e) For β = 1
2 , if d > α2

4b1
, then system (1.5) admits a semi-trivial steady state, (̃u, 0), with ũ being the

unique positive steady state of problem (2.1), if and only if L > L∗1 =
2d arctan

αβ

√
4db1−α

2

2db1−α
2β

√
4db1−α2

.

(f) Suppose that β ∈ ( 1
2 ,+∞), when d > α2

4b1
, then system (1.5) admits a semi-trivial steady state,

(̃u, 0), with ũ being the unique positive steady state of problem (2.1), if and only if L > L∗1, where
L∗1 is given by

L∗1 =



2d arctan
αβ

√
4db1−α

2

2db1−α
2β

√
4db1−α2

, d ≥ α2β

2b1
,

2d
π+arctan

αβ

√
4db1−α

2

2db1−α
2β

√
4db1−α2

, α2

4b1
< d < α2β

2b1
.
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(g) For any α > 0, β ∈ (0, 1), if d ≤ d̃, then system (1.5) does not admit a semi-trivial steady state in
the form of (̃u, 0) satisfying ũ > 0, where

d̃ =


α2β(1−β)

b1
, 0 < β < 1

2

α2

4b1
, 1

2 ≤ β < 1.

Similarly, for system (1.7), we have the following result.

Theorem 3.4. Suppose b1(x) ≡ b1 > 0 is a constant. Then we have the following conclusions.

(i) For any d > 0, if 0 < α <
√

4b1d, then there exists a critical number

L̂∗1 =
2d(π + arctan −

√
4db1−α2

α
)√

4db1 − α2

such that for L ≥ L̂∗1, system (1.7) admits a stable semi-trivial steady state (̃u, 0), where ũ > 0
is the unique positive steady state of system (2.2). Moreover, L̂∗1 is an increasing function of the
advection rate α for 0 < α <

√
4b1d.

(ii) For any α, if d > α2

4b1
, then there exists a critical number

L̂∗1 =
2d(π + arctan −

√
4db1−α2

α
)√

4db1 − α2

such that for L ≥ L̂∗1, system (1.7) admits a stable semi-trivial steady state (̃u, 0), where ũ > 0
is the unique positive steady state of system (2.2). Further, L̂∗1 is an decreasing function of the
diffusion rate d, for α2

4b1
< d < α2

2b1
.

(iv) If α ≥
√

4b1d, then system (1.7) does not admit a semi-trivial steady state in the form of (̃u, 0),
where ũ > 0.

If b1(x) is not a constant, we have the following result.

Theorem 3.5. Suppose that (1.6) is satisfied. Then the following conclusions hold.

(I) If α > 0, when β ∈ (0, 1
2 ), b′1(x) ≤ 0, or β ∈ [ 1

2 ,+∞), then there exists α∗ > 0 such that for
0 < α < α∗, system (1.5) admits a semi-trivial steady state, (̃u, 0), which is stable, and ũ is the
unique positive steady state of problem (2.1).

(II) For the case with β = ∞, we have the following conclusions.

(II.1) If α = 0, then there exists d∗ such that for 0 < d < d∗, system (1.7) admits a semi-trivial
steady state (̃u, 0), which is stable and ũ is the unique positive steady state of system (2.2).

(II.2) If L > π
2

√
d
b , then there exists α̃∗ such that for 0 < α < α̃∗, system (1.7) admits a semi-trivial

steady state (̃u, 0), which is stable and ũ is the unique positive steady state of system (2.2).
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(II.3) If 0 < α <
√

4bd, then there exists a L∗ > 0 such that for L > L∗, system (1.7) admits a
semi-trivial steady state (̃u, 0), which is stable and ũ is the unique positive steady state of
system (2.2).

Proof. The case (I) can be proved by (a), (b) and (c) of Lemma 2.1 and the proof of case (II.1) can
be obtained by Lemma 2.4 and Remark 2.5. To prove case (II.2), we just need to verify the following
three facts.

(1) σ1(α, b1(x)) is a strictly monotone decreasing function of α;

(2) limα→0 σ1(α, b1(x)) > 0;

(3) limα→+∞ σ1(α, b1(x)) = −∞.

Note that (1) and (3) follow immediately from Lemma 2.1. Furthermore, (2) follows from noting that
σ1(0, b1(x)) ≥ σ1(0, b) for b1(x) ≥ b and σ1(0, b1(x)) ≥ σ1(0, b) = b − dπ2

4L2 > 0, when β = +∞ and

L > π
2

√
d
b .

Next we prove (II.3). Note that β = ∞, the associated eigenvalue problem is
dφxx − αφx + φb = σ1φ, x ∈ (0, L),

dφx(0) − αφ(0) = 0,

φ(L) = 0,

(3.9)

where φ is corresponding eigenfunction of σ1.
If 0 < α <

√
4bd, then it follows from Theorem 3.4 that σ1(b) > 0, as L → +∞. Hence, it is easy

to know that σ1(b1(x)) > 0, as L → +∞, if 0 < α <
√

4bd. Therefore the proof of case (II.3) follows
directly from Lemma 2.2 and Lemma 2.3. �

4. Numerical simulations

In this section, we use several numerical simulations to illustrate our theoretical results. First we
verify Theorem 3.3. We take parameter values: β = 0.4, b1(x) = 0.1077, b2(x) = 0.1988, δ1 =

δ2 = 8.5034 × 10−6, d = 1.25 × 10−2, α = 1.25 × 10−2. For this set of parameters, we find that

α <
√

db1
β(1−β) ≈ 0.0749 and L∗1 ≈ 0.0472. Theorem 3.3 applies here: if we take L = 0.04 < L∗1, then as

shown in Figure 1 (Left), the solution of (1.5) approaches the trivial steady state (0, 0), while if we take
L = 0.05 > L∗1, as shown in Figure 1 (Right), the solution of (1.5) approaches the semi-trivial steady
state (̃u, 0) implying that all mosquitoes are infected with Wolbachia.
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Figure 1. Numerical solutions of system (1.5). Initial conditions were chosen as: u0 =

0.5, v0 = 1. (Left) L = 0.04; (Right) L = 0.05.
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Now we take parameter values as: d = 1.25 × 10−2, δ1 = δ2 = 8.5034 × 10−6, b1(x) = e−x + 1,
b2(x) = 1.5 + sin(x), β = 0.4, L = 0.1. For this set of parameters, we can numerically find α∗ ≈ 0.261
such that the solutions of (1.5) approach (̃u, 0) if α ∈ [0, α∗), and approach (0, 0) if α ≥ α∗ (See Figure
2).
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Figure 2. Numerical solutions of system (1.7). Initial conditions were chosen as: u0 =

0.5, v0 = 1. (Left) α = 0.25 < α∗; (Right) α = 0.27 > α∗.

Now we take β = ∞, α = 0.1789, d = 1.25 × 10−2, δ1 = δ2 = 0.85034 × 10−6, b1(x) = e−x + 1,
b2(x) = e−x + 1. Then b = 1, α <

√
4db = 0.2236. Numerically we find L̂∗ ≈ 0.21. As shown in

Figure 3, if L > L∗1, then the solutions of (1.5) approach the semi-trivial steady state (̃u, 0) implying a
full establishment Wolbachia is achieved, while the establishment of Wolbachia fails if L < L∗1.

-0.5
600

500

0

0.2400

u
(x
,t
)
a
n
d
v
(x
,t
)

0.5

0.15

t

300

x

0.1

1

200
0.05100

0 0

u(x, t)
v(x, t)

x

0
600

500 0.25

5000

400

u
(x
,t
)
a
n
d
v
(x
,t
)

0.2

t

300 0.15

10000

200 0.1
100 0.05

0 0

u(x, t)
v(x, t)

Figure 3. Numerical solutions of system (1.7). Initial conditions were chosen as: u0 =

0.5, v0 = 1. (Left) L = 0.20 < L∗1; (Right) L = 0.22 > L∗1.

5. Conclusions

In this paper, we have proposed a reaction-diffusion-advection model in one-dimensional spatially
inhomogeneous environment with general boundary conditions. Our results (Theorems 3.2–3.5) show
that in order to fully establish Wolbachia in the wild mosquito population, i.e., all mosquitoes even-
tually carry Wolbachia, the wind related parameter α and the patch size L over which the mosquitoes
with Wolbachia are spreading should satisfy certain requirements. Generally speaking, the wind cannot
be too strong, and the minimum patch size cannot be too small. The critical values of the advection
parameter α and the patch size L for the establishment of Wolbachia depend on the model parameters
including the diffusion rate d, the birth rates b1(x) and b2(x), and the death rates δ1 and δ2. For in-
stance, Theorem 3.3 (a) indicates, if b1(x) = b1 is a positive constant and β ∈ (0, 1/2), then the full

establishment of Wolbachia will not be successful if α is too large such that α ≥
√

db1
β(1−β) (i.e.,the wind

is too strong) or if α is in a proper range (0 < α <
√

db1
β(1−β) ), but the patch size L is too small satisfying
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L < L∗1 (See Figure 1).
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