Citation: Haitao Jiang, Jiajia Guo, Hongwei Du, Jinzhang Xu, Bensheng Qiu. Transfer learning on T1-weighted images for brain age estimation[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4382-4398. doi: 10.3934/mbe.2019218
[1] | L. Pini, M. Pievani, M. Bocchetta, et al., Brain atrophy in alzheimers disease and aging, Ageing Res. Rev., 30 (2016), 25–48. |
[2] | A. Hosny, C. Parmar, J. Quackenbush, et al., Artificial intelligence in radiology, Nat. Rev. Cancer, (2018), 1. |
[3] | A. Rios and R. Kavuluru, Ordinal convolutional neural networks for predicting rdoc positive valence psychiatric symptom severity scores, J. Biomed. Inform., 75 (2017), S85–S93. |
[4] | O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in International Conference on Medical image computing and computer-assisted intervention, Springer, 2015, 234–241. |
[5] | B. Harangi, Skin lesion classification with ensembles of deep convolutional neural networks, J. Biomed. Inform., 86 (2018), 25–32. |
[6] | S. Zhang, E. Grave, E. Sklar, et al., Longitudinal analysis of discussion topics in an online breast cancer community using convolutional neural networks, J. Biomed. Inform., 69 (2017), 1–9. |
[7] | J. Xi and A. Li, Discovering recurrent copy number aberrations in complex patterns via non- negative sparse singular value decomposition, IEEE/ACM TCBB, 13 (2016), 656–668. |
[8] | J. Xi, M. Wang and A. Li, Discovering mutated driver genes through a robust and sparse co- regularized matrix factorization framework with prior information from mrna expression patterns and interaction network, BMC Bioinform., 19 (2018), 214. |
[9] | J. Yosinski, J. Clune, Y. Bengio, et al., How transferable are features in deep neural networks?, in Adv. Neural Inf. Process Syst., 2014, 3320–3328. |
[10] | K. He, R. Girshick and P. Dollr, Rethinking imagenet pre-training, arXiv preprint arXiv:1811.08883. |
[11] | P. Lakhani and B. Sundaram, Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks, Radiology, 284 (2017), 574–582. |
[12] | D. S. Kermany, M. Goldbaum, W. Cai, et al., Identifying medical diagnoses and treatable diseases by image-based deep learning, Cell, 172 (2018), 1122–1131. |
[13] | I. Banerjee, A. Crawley, M. Bhethanabotla, et al., Transfer learning on fused multiparametric mr images for classifying histopathological subtypes of rhabdomyosarcoma, Comput. Med. Imag. Grap., 65 (2018), 167–175. |
[14] | G. Huang, Z. Liu, L. Van Der Maaten, et al., Densely connected convolutional networks., in CVPR, vol. 1, 2017, 3. |
[15] | Y. Taki, B. Thyreau, S. Kinomura, et al., Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals, PlOS ONE, 6 (2011), e22734. |
[16] | C. Kondo, K. Ito, K. Wu, et al., An age estimation method using brain local features for t1- weighted images, in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, IEEE, 2015, 666–669. |
[17] | K. Franke, G. Ziegler, S. Klöppel, et al., Estimating the age of healthy subjects from t1-weighted mri scans using kernel methods: exploring the influence of various parameters, Neuroimage, 50 (2010), 883–892. |
[18] | B. Wang and T. D. Pham, Mri-based age prediction using hidden markov models, J. Neurosci. Meth., 199 (2011), 140–145. |
[19] | J. Wang, W. Li, W. Miao, et al., Age estimation using cortical surface pattern combining thickness with curvatures, Med. Biol. Eng. Comput., 52 (2014), 331–341. |
[20] | J. Xi, A. Li and M. Wang, A novel unsupervised learning model for detecting driver genes from pan-cancer data through matrix tri-factorization framework with pairwise similarities constraints, Neurocomputing, 296 (2018), 64–73. |
[21] | J. H. Cole, R. P. Poudel, D. Tsagkrasoulis, et al., Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker, NeuroImage, 163 (2017), 115–124. |
[22] | T.-W. Huang, H.-T. Chen, R. Fujimoto, et al., Age estimation from brain mri images using deep learning, in Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on, IEEE, 2017, 849–852. |
[23] | H. Li, T. D. Satterthwaite and Y. Fan, Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks, in Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE, 2018, 101–104. |
[24] | A. Giorgio, L. Santelli, V. Tomassini, et al., Age-related changes in grey and white matter structure throughout adulthood, Neuroimage, 51 (2010), 943–951. |
[25] | T.T.Brown, J.M.Kuperman, Y.Chung, etal., Neuroanatomical assessment of biological maturity, Current Biol., 22 (2012), 1693–1698. |
[26] | G. Erus, H. Battapady, T. D. Satterthwait, et al., Imaging patterns of brain development and their relationship to cognition, Cerebral Cortex, 25 (2014), 1676–1684. |
[27] | A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification with deep convolutional neural networks, in Adv. Neural Inf. Process Syst., 2012, 1097–1105. |
[28] | S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167. |
[29] | J. Xing, K. Li, W. Hu, et al., Diagnosing deep learning models for high accuracy age estimation from a single image, Patt. Recogn., 66 (2017), 106–116. |
[30] | J. Guo, H. Du, J. Zhu, et al., Relative location prediction in ct scan images using convolutional neural networks, Comput. Meth. Prog. Bio., 160 (2018), 43–49. |
[31] | X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, in Proceedings of the fourteenth international conference on artificial intelligence and statistics, 2011, 315–323. |
[32] | D. B. Larson, M. C. Chen, M. P. Lungren, et al., Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs, Radiology, 287 (2017), 313– 322. |
[33] | J. L. Whitwell, Progression of atrophy in alzheimers disease and related disorders, Neurotox Res., 18 (2010), 339–346. |
[34] | F.Agosta, M.Pievani, S.Sala, etal., White matter damage in alzheimer disease and its relationship to gray matter atrophy, Radiology, 258 (2011), 853–863. |
[35] | G. F. Busatto, G. E. Garrido, O. P. Almeida, et al., A voxel-based morphometry study of temporal lobe gray matter reductions in alzheimers disease, Neurobiol. Aging, 24 (2003), 221–231. |
[36] | Z. Yao, Y. Zhang, L. Lin, et al., Abnormal cortical networks in mild cognitive impairment and alzheimer's disease, Plos Comput. Biol., 6 (2010), e1001006. |