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Abstract: Due to both the hidden nature and the irreversibility of Alzheimers disease (AD), it has
become the killer of the elderly and is thus the focus of much attention in the medical field. Radiologists
compare the predicted brain age with the ground truth in order to provide a preliminary analysis of
AD, which helps doctors diagnose AD as early in its development as possible. In this paper, a transfer
learning-based method of predicting brain age using MR images and dataset of a public brain was
proposed. In order to get the best transfer results, we froze different layers and only fine-tuned the
remaining layers. We used three planes of brain MR images together to predict age for the first time and
experiment results showed that the proposed method performs better than the state-of-the-art method
under mean absolute error metric by 0.6 years. In addition, to explore the relationship between brain
MR images of different planes and predicted age accuracy, we used three different planes of brain
MR images to predict age respectively for the first time and found that sagittal plane MR images
outperformed two other planes in age estimation. Finally, our research identified, the effective regions
that contribute to brain age estimation for cognitively normal individuals and for AD patients with deep
learning. For AD patients, the effective region is mainly concentrated in the frontal lobe of the brain,
verifying the relevant medical conclusions about AD.
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1. Introduction

Various studies have shown that the morphological structure of the brain will change with the age of
a human being. Moreover, some neurodegenerative diseases (e.g., Alzheimers, Parkinsons) are related
to the degree of atrophy in the brain, accelerating the process of aging and brain atrophy [1]. When a
person suffers from AD, his memory will begin to deteriorate, which may lead him to lose his way. As
the disease worsens, memory difficulties become more and more serious, resulting in the person not
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Figure 1. General process for brain age estimation.

being able to recognize his family members nor manage the tasks of daily life without the assistance of
others. If doctors can diagnose a person with AD as early as possible and treat it effectively, it will be
helpful for both the patient and his family. As we know, the brain age of a person suffering from AD
is greater than his true age. If the predicted age is much older than the actual age, radiologists need to
make a further diagnosis of the patient to determine if he or she has AD.

It is challenging for an experienced radiologist to predict brain age using neuroimaging data without
computer technology. Therefore, doctors need to find a tool that helps them analyze medical data
and get results quickly. Recently, developments in artificial intelligence (AI) technology have led it
to be widely used in medical fields, such as medical image segmentation, reconstruction, and so on
[2, 3, 4, 5, 6]. So far, researchers have made some achievements in brain age prediction by combining
AI technology and neuroimaging data. In general, researchers utilize the features extracted from brain
MR images to predict age, as shown in Figure 1.

In traditional machine learning methods, researchers need to manually select features, so how to
choose the useful features is a very challenging task [7, 8]. Besides, they also do not know which
features have a positive effect on the prediction of age. Therefore, traditional machine learning-based
prediction methods do not work well for this task. With the rapid development of deep learning,
and because of its advantages of automatically extracting features from datasets, it has been applied
to brain age prediction with good prediction accuracy. Moreover, with clinical applications using
neuroimaging, it usually takes hours or days to process the medical images, while decisions regarding
treatment often need to be made quickly. By using deep learning, radiologists are able to quickly obtain
a persons age estimation results, making it suitable for clinical applications.

Magnetic resonance imaging (MRI) is one of the most popular techniques in disease detection
due to its high resolution and accurate space positioning and the absence of discomfort to patients.
Various types of images are obtained from the response signal by different weighting methods. The
T1-weighted MR image is one of these weighting methods. In previous studies, T1-weighted images
have often been used in age estimation because they are able to reflect the brains internal structure well.
However, there are few publicly available T1-weighted brain MR datasets for elderly people because
they are expensive to obtain, thereby limiting the development of brain age prediction research.

As for state-of-the-art network models (e.g., VGG, AlexNet, ResNet), they are generally trained on
large-scale datasets. There is less public medical data than with natural images (in order to protect
patients privacy), so it is very difficult for us to train an effective network model from scratch with a
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Table 1. Details of some datasets.

Data sources Paper release time Age (Min-Max) No. Samples
[16] 2015 20-80 1099
[21] 2017 18-90 2001
[22] 2017 20-75 1146
[23] 2018 8-22 983

Our paper 2019 60-90 700

small amount of medical data. Due to the similarities between medical images and natural images,
transfer learning [9, 10] is widely used in the medical field. In transfer learning, a pre-trained network
model is used as a starting point to fine-tune the network for other tasks using only a limited medical
dataset. Recently, some medical researchers have applied transfer learning to the diagnosis of chest
pathology and pediatric pneumonia using X-rays and CT images and have classified histopathological
subtypes of rhabdomyosarcoma using MR images [11, 12, 13]. These methods all perform well, which
shows that transfer learning is able to achieve very good results in medical analysis.

To the best of our knowledge, brain age estimation with transfer learning on T1-weighted MR
images has not yet been explored. Therefore, in this research, we proposed a more accurate method,
applying a pre-trained DenseNet-201 [14] with T1-weighted brain MR images to age estimation. The
key idea of our study was to explore the relationship between images of different planes and predicted
ages and show the effective regions for age estimation of those affected with AD. Finally, this paper
provides three contributions:

(i) Three different plane images were used to predict brain age respectively for the first time, and
we found that the most accurate result is obtained from sagittal plane images.

(ii) Through deep learning, we first found that the frontal lobe area plays an active role in the age
estimation of patients with AD. This area is closely related to the brain’s thinking function, which
verifies the related medical research about AD.

(iii) We verified that transfer learning can also perform well in brain age prediction under Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE).

The rest of this article is arranged as follows: Section 2 introduces relevant work on brain age
prediction and transfer learning in the medical field. Section 3 describes the preprocessing of data and
the network structure of our model. Section 4 gives the results of the age prediction. Discussion about
the experimental results and conclusion are presented in Section 5 and Section 6, respectively.

2. Related work

Some researchers have found that T1-weighted brain images can be segmented into several parts:
gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). According to [15], with an
increase in age, the volume of GM decreases, the volume of WM changes slightly, and the volume
of CSF increases. Based on this, [16] utilized the volume of GM, WM, and CSF areas as features to
predict a persons brain age with a relevance vector machine. In [17, 18, 19], the authors manually
selected some voxels and higher-order features to predict age and were able to achieve good results.

Since 2012, deep learning has achieved great success in computer vision, for it can extract features
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automatically from training data [20]. Moreover, it only takes a little time to finish different regression
tasks. Based on this, [21] first applied deep learning to brain age prediction and obtained good predic-
tion accuracy. In [22, 23], the authors used deep learning for age estimation from end to end, achieving
better accuracy than traditional machine learning methods. Furthermore, compared with GM and WM,
the raw T1-weighted has more noise information, which interferes with age prediction [24]. Therefore,
some researchers have found that prediction accuracy can be enhanced by using only the information
from WM and GM rather than raw images [25, 26].

In [16, 21, 22, 23], there were young people in their datasets, with details of these datasets shown
in Table 1. With young people, there are differences in brain structure at different ages since it is still
developing, making it is easy to predict their brain age. Moreover, the AD is usually associated with
the elderly and rarely occurs in young people. Therefore, it may not be appropriate to train a model
with a dataset containing that of young people. Thus, in our dataset, only the elderly were included.
Although this better matched the true situation, this dataset was more difficult for us to work with.
Furthermore, the number of datasets in their papers was larger than ours, which would be more useful
for predicting age but will take more time to train the model.

3. Materials and method

3.1. Dataset

The dataset1 used in this paper is provided by the Image & Data Archive (IDA), which is a part
of the Laboratory of Neuroimaging (LONI). In addition, all datasets meet the requirements of the
open-sharing policies and are with restricted-sharing policies. In this dataset, all brain MR images
were the T1-weighted type and were obtained by 1.5T MR modalities over the past 10 years. The
subjects of all MR images are among 60 to 90 years old and the ground truth of each MR images
was determined by experienced radiologists. Age estimation is a challenging task with a wide range
age distribution dataset. Furthermore, the number of subjects in this dataset between the ages of 70
and 80 was the largest, accounting for about 49%, and the ratio of male to female was about 53:47.
Finally, T1-weighted brain MR images of 700 subjects with the format of NiFTI were selected to brain
age estimation in our experiment. For these 700 subjects, we randomly upset their order and further
divided them into three parts: training(60%), validation(20%) and test(20%). Each part of the dataset
is independent of each other, thus avoiding the training dataset is applied to the process of testing.

3.2. Preprocessing

In previous work, these authors performed some preprocessing on the raw data to accelerate network
convergence and improve accuracy. Therefore, this section describes the preprocessing in our study,
which consists of three parts: segmentation, building input datasets, and data augmentation. Details
are as follows. Besides, the operation of segmentation and building input datasets in preprocessing are
both applied in the training set and test set, which is a necessary part. We only added data augmentation
to the training set to achieve better performance.

1https://ida.loni.usc.edu/login.jsp?project=ADNI
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(a) (b) (c)

(d) (e) (f)

Figure 2. Images of samples in this paper: (a)-(c) represent the axial plane, coronal plane,
sagittal plane of GM, respectively; (d)-(f) represent the axial plane, coronal plane, sagittal
plane of WM, respectively.

3.2.1. Raw brain MR images segmentation

As mentioned above, raw T1-weighted brain MR images can be further segmented into WM and
GM regions. Researchers have obtained more accurate estimation results with the information of WM
and GM than with raw MR images. At this time, we also implemented the operation of segmentation
for better accuracy, which was conducted with Statistical Parametric Mapping 2 (SPM2) and MATLAB
2014a. In comparing SPM2 with newer versions of SPM such as SPM5 and SPM8, the authors in [16]
confirmed that SPM2 performed better. Thus, SPM2 was applied in this study. Finally, for each slice
of segmented GM and WM images, we obtained its three different axial planes, which were recorded
as slices in the order of axial plane, coronal plane, and sagittal plane, respectively, as shown in Figure
2.

3.2.2. Building input datasets

As mentioned in abstract, to explore the relationship between age estimation accuracy and different
planes of brain MR images, we used three different planes images to predict age respectively for the
first time. Besides, we also need to use the combination of three planes brain MR images to predict age.
Therefore, in this section, we construct brain MR images datasets of three different planes respectively.
However, some slices contained only a small amount of brain information and had little predictive
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Figure 3. Network architecture.

value in determining brain age. For this reason, 15 slices which contained most of the brain tissue in
each plane were selected as input for one subject to reduce the calculations needed in this paper. The
subsequent steps were as follows:

(i) We obtained the total number of brain MR slices in the current plane. T a
i , T c

i , and T s
i represent the

total number of brain MR slices in the axial plane, coronal plane, and sagittal plane of the ith subject,
respectively;

(ii) We got the bT a
i

2 cth brain slice in the axial plane of ith subject;

(iii) The slice number of these: bT a
i

2 c + 4 × k, where k ∈ {−7,−6, ..., 7} were selected for input data;

(iv) Slice operation were performed in the three planes for each subject’s GM and WM, respectively;

(v) Each selected slice was resized to 224 × 224.

Thus, we obtained an input dataset for each subject, which included three planes slices of GM and
three planes slice of WM.
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3.2.3. Data augmentation

With data augmentation, we could acquire more medical data based on the limited existing data,
which not only improved the accuracy of brain age predictions but also reduced overfitting [27]. The
details of the data augmentation methods implemented in this study are as follows:

(i) Rotating the slice between 10 degrees randomly;
(ii) Shifting the slice between 15 pixels randomly.
Each slice of the network input needed to be carried out using the same rotating/shifting operation

in one augmentation.

3.3. Network architecture

DenseNet has two compelling advantages in that it encourages feature reuse and it substantially
reduces the number of parameters [14], which not only lowers the requirements on the hardware device
but also has the benefit of good feature extraction. Moreover, there is a similarity in edges and blobs
found in both natural images and medical images, so these two types of images share some low-level
features [13]. Based on this, the fine-tuning of a pre-trained DenseNet-201 was conducted to extract
features for age estimation. Our architecture is illustrated in Figure 3. There were 1024, 512, and
1 neurons in three full connection layers, respectively, and the adjacent two full connection layers
included a batch normalization layer [28]. In particular, the output of the last fully connected layer
was a discrete number, which represented the predicted value of age. In addition, the process of max
pooling was carried out with a 3 × 3 kernel and a stride of 2 × 2. There was a convolution layer with
1 × 1 kernel and average pooling layer with a 2 × 2 kernel and a stride of 2 in the transition layer. The
value of d represents the depth of our network, which was 6 in this study. To regularize and accelerate
the convergence of the model, we added the batch normalization layer. For a mini-batch of size n, a
sample xi can be normalized into yi after batch normalizing transform, which is presented in Table 2.
Moreover, in this transform, ε is a constant to ensure the stability of xi .

Table 2. Batch normalizing transfrom.

Input: xi is the i-th sample of a mini-batch: i ∈ {1, 2, ..., n};
Parameters to be learned in the training: γ, β

Output: yi = BN(xi)

(1) µ← 1
n

∑n
i=1 xi //mean for a mini-batch

(2) σ← 1
n

∑n
i=1(xi − µ)2 //variance for a mini-batch

(3) xi ←
xi−µ
√
σ+ε

//normalize

(4) yi ← γxi + β output

3.4. Loss function

Loss function plays an important role in the process of training the model. MAE loss and Mean
Square Error (MSE) loss, as two different types of loss functions, are widely used to solve regression
problems, age prediction being one of them. Compared with MSE, MAE can better reflect the actual
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situation of prediction error. MAE also performs better than MSE in related age prediction problems
[29, 30]. Therefore, MAE was selected as the loss function to predict brain age in this study, which is
defined as follow:

LMAE =
1
N

N∑
i=1

|yi − yi|, (3.1)

where N is the number of the training samples, yi is the predicted value of the i-th sample, and yi is the
ground truth.

Regularization is an important method of reducing the risk of overfitting and improving the gener-
alization ability of a model in deep learning. In terms of L2 regularization, it is easy to carry out and
differentiable everywhere, and is thus widely used. Based on this, L2 regularization was added to the
loss function in the process of training for our model.

L2 =

m∑
i=1

‖wi‖
2
2 , (3.2)

where m is the number of the all weights and wi is the i-th weight of our model.

4. Experiment and Results

4.1. Implementation environment

All experiments described in this paper were implemented in PyTorch2. The operating system of
our computer is based on Linux and the specific version is Ubuntu 16.04. All codes were run on the
Nvidia GTX 1080-Ti graphics card with 11GB GDDR5X and Intel Xeon E5-2630 v4 @ 2.20GHz.

4.2. Details of training

In our experiments, transfer learning was implemented by freezing the shallowest i layers, and the
remaining d− i layers were fine-tuned. To update the parameters of the network, the Adam update rule
was adopted and a rectified linear unit (ReLU) [31] was also used as a non-linearity activation function
with a mini-batch of 32. We employed batch normalization in each mini-batch to normalize the output
of each layer and also to speed up convergence. To avoid overfitting, a dropout rate of 0.5 was applied
to the fine-tuning of our network. The learning rate refers to the magnitude of the parameter update
in the original model after each epoch. The learning rate decay reduces the magnitude of parameter
updates during the training process. Thus, it was also implemented in our paper. Our model was fine-
tuned with a starting learning rate value of 0.0001 and learning rate decay by 0.8 every 20 epochs.
Finally, a 5-fold cross-validation was used in our experiments to take full advantage of our existing
medical datasets.

4.3. Evaluation metrics

Evaluation metrics are applied to determine whether a trained model can solve the problem well,
an indispensable step in deep learning. Different deep learning tasks have different evaluation metrics.

2https://pytorch.org/
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MAE, MSE, and RMSE are widely used as evaluation metrics in solving the problem of regression.
Age estimation is one type of regression task. For MAE, it can intuitively reflect the error between the
predicted value and the ground truth, which is widely used as a basic metric for age estimation [29, 30].
In [21, 32], RMSE was chosen as an additional metric to evaluate age prediction results. Because of
this, MAE and RMSE were both selected as evaluation metrics to evaluate the prediction accuracy
from different aspects and avoid the contingency of results in this study, which are defined as follows.

MAE =
1
N

N∑
i=1

|yi − yi|, (4.1)

RMS E =

√√
1
N

N∑
i=1

(yi − yi)2. (4.2)

4.4. Experimental Results

In this section, we first show the various age prediction results obtained by freezing a part of the
layers and fine-tuning the remaining layers. We then give the prediction error with fine-tuning all
layers for different types of input datasets. Moreover, to verify that our method was more effective, it
is compared to other proposed methods. Finally, some visual brain areas that have a positive effect on
age estimation of cognitively normal individuals and those with AD are shown.
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Figure 4. Transfer learning with freezing different layers.

4.4.1. Results with freezing different layers

For a pre-trained network, its parameters were learned well on a large amount of dataset. We
only needed to fine-tune the pre-trained network with a specific dataset when it was applied to other
tasks. However, it was not known whether the best age estimation result could be obtained by fine-
tuning all the layers or a portion of the layers and the remaining layers frozen. To make the best
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Figure 5. The process of fine-tuning all layers.

use of the advantages of transfer learning and obtain the best prediction result, therefore, we tried to
freeze different layers and fine-tuned the remaining layers with all input datasets. Although freezing
zero layers took more computational cost than all layers, we could obtain better prediction accuracy,
making it worthwhile for clinical applications. Detailed fine-tuning results can be seen in Figure 4.
From this figure, we can see that regardless of the type of datasets inputted, the best estimation results
could always be obtained by fine-tuning all layers. In Figure 5, we provide the process of fine-tuning
all layers with the input data of the sagittal plane for GM. From the process of fine-tuning, we know
that our model basically converged within 300 epoch, and it did not take long to train the model.

4.4.2. Results of predicted age error

In Section 4.4.1, we determined that the best performance of age estimation could be obtained
by fine-tuning all layers. Thus, in this section, the method of fine-tuning all layers was chosen to
obtain our age prediction accuracy. We used both MAE and RMS E to evaluate the results with all
types of input data. The detailed error between predicted brain age and ground truth for our network
is summarized in Table 3. From the experimental results, we can know that the GM of sagittal plane
performs best in age estimation under two representative evaluation metrics.

Furthermore, some comparative experiments were performed to test the effectiveness of our ap-
proach, and comparative algorithms were implemented with our dataset to ensure the fairness of the
experiment. In the comparative experiments, if all types of input datasets were involved, the workload
would be unnecessarily large. As shown in Table 3, the best prediction accuracy could be obtained with
the together of three planes; thus, we chose the GM and WM of the combination of three planes for use
in the comparison experiments. As shown in Figure 6, GM MAE indicated that the input dataset was
the GM of three planes together and the evaluation metric was MAE; the remainder could also be done
in the same manner. Experimental results showed that our method performs better than other related
methods under two representative metrics. Moreover, our error under MAE is about 0.6 years smaller
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than the proposed state-of-the-art technology.

Table 3. Error of fine-tuned DenseNet-201.

Input data MAE (years) RMSE
Three planes togethter for GM 3.25 4.30
Three planes togethter for WM 3.62 4.81

Sagittal plane for GM 3.57 4.73
Sagittal plane for WM 4.18 5.23
Coronal plane for GM 4.02 4.99
Coronal plane for WM 4.46 5.29

Axial plane for GM 4.28 5.43
Axial plane for WM 4.80 6.19

4.4.3. Effective regions for age estimation

As previously mentioned, deep learning has achieved great success in the field of computer vision,
and some researchers have applied it to age estimation with good results. One reason is that features can
be extracted automatically by deep learning from training datasets. Features extracted by deep learning
are more suitable for predicting age than features selected manually by researchers. Furthermore, brain
age will change with the atrophy of brain. Therefore, specific to this research, the features extracted
by the network during the training process are closely related to the morphological structure in some
areas of the brain. In other words, there are some brain regions that have a very great contribution to
age estimation. Questions for further analysis include the following:

(i) Which area of the brain plays a positive role in predicting brain age for a cognitively normal
person?

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4382–4398
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(ii) What are the differences in areas actively involved in age prediction between cognitively normal
person and AD patients?

With the help of visualization tools3, we obtained the heatmap of the model output. The red regions
in the heatmap are displayed in a highlighted form in Figure 7 from three different planes, visualized
with the BrainBrowser Surface Viewert4. From the figure, we can see that for a cognitively normal
person, the highlighted area is mainly concentrated in the primary motor cortex area, while for a person
suffering from the AD, the area is mainly concentrated in the frontal lobe area. The experimental
results show that the frontal lobe region has little contribution to age estimation for the cognitively
normal person, while it has a positive impact on a person with AD.

(a) (b) (c)

(d) (e) (f)

Figure 7. Effective regions for age estimation: (a)-(c) represent axial plane, coronal plane,
sagittal plane of cognitively normal person, respectively; (d)-(f) represent axial plane, coronal
plane, sagittal plane of AD patients, respectively.

5. Discussion

A phenomenon is found from our experimental results: we were able to get a smaller prediction
error using GM as the input of our network than by using WM. This shows that in the process of age
estimation, the contribution of GM is greater than that of WM. As we know, GM and WM are both
important parts of the central nervous system, but they play different roles. More concretely, GM is a
nervous tissue and a concentrated part of cell bodies in nerve cells and plays a positive role in the entire
information-processing and decision-making process. It processes various kinds of information such
as exercise, language, and emotion, and controls the body in responding accordingly. In general, if a

3https://github.com/utkuozbulak/pytorch-cnn-visualizations
4https://brainbrowser.cbrain.mcgill.ca/
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(a) (b) (c)

Figure 8. Two-dimensional feature distribution: (a)-(c) represent axial plane, coronal plane
and sagittal plane respectively.

persons brain becomes older, they usually tend to move more slowly, and their memory will be more
attenuated, which is closely related to GM. WM is a concentrated part of nerve cells and is responsible
for delivering all kinds of information to its destination. Therefore, WM is mainly involved in the
transmission of information and is less involved in processing information and making decisions. In
summary, GM is more closely related to the decision-making process and movement than WM, which
explains why it is more suitable for predicting brain age. Besides, we found that the sagittal plane
MR images outperformed two other planes in age estimation. As shown in Figure 8, this is the two-
dimensional feature distribution of three different planes that is displayed by the visualization tool in
Section 4.4.3. The highlighted area in this figure is the feature area. Due to the different plane of
the observed brain vision is not the same, therefore, the observed feature area will also be different.
From the figure, we can see that the highlighted area in the frontal lobe of the sagittal plane distributed
higher than other planes. In the medical field, researchers have discovered that the frontal lobe is
associated with human thinking and movement. Furthermore, thinking and movement are closely
related to human physiological age, which may be the reason for using the sagittal plane images can
get the best prediction accuracy. From the experimental results, we also learned that the combination
of three planes MR images can get the best accuracy. As mentioned before, the observed fields of view
are not the same for each plane, resulting in the difference in features extraction. Compared with using
one plane, the network can observe a wider field of view at the same time with combining three planes,
so that more features can be extracted. Thus, this may explain the best performance can be obtained
with three planes together.

In [33], the authors state there is a relationship between AD patients and frontal lobe atrophy. They
cited researchers who developed a dynamic model of atrophic disease and then found that for AD
patients, atrophy of the brain begins in the temporal lobe and eventually extends to the frontal lobe.
Agosta et al. [34] demonstrated that the brain of AD patients undergoes atrophy from the temporal lobe
to the frontal lobe using the VBM method in their experimental results. This also shows that atrophy
of the frontal lobe is a manifestation of AD disease. Furthermore, the authors of both [35] and [36]
have mentioned that for AD patients, the gray matter volume in the frontal lobe region is significantly
reduced. In the above studies, researchers used some traditional machining methods to verify the close
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relationship between AD and the atrophy of the frontal lobe. However, no researchers have verified
that there is a connection between the AD and frontal lobe atrophy through the use of deep learning.

As discussed in Section 4.4.3, we show the effective regions for age estimation with deep learning.
The frontal lobe area is rarely marked as a highlighted area in the visualized images for the cognitively
normal person, while for AD patients, this area is generally highlighted. This result essentially verifies
two medical phenomena: (1) there is indeed a certain correlation between AD and atrophy of the
frontal lobe; (2) the degree of atrophy of the brains frontal lobe is aggravated during the process of
transforming from cognitively healthy to AD. For the cognitively normal person, the frontal lobe area
of the brain is less atrophic, while AD patients have a large degree of atrophy. Therefore, we verified
the work of predecessors regarding AD using deep learning.

6. Conclusion

In this study, a pre-trained network (DenseNet-201) was applied to brain age estimation. To explore
the relationship between images of different planes and predicted ages, we first used three planes of
brain images as the input of our network. The final experimental results show that the sagittal plane
for GM gets the best result. Compared with other proposed methods, our method achieves better
results under two different evaluation metrics, which verifies that transfer learning is effective in age
prediction. We also show the effective regions in age estimation for cognitively normal individuals and
those with AD. We find there is a difference between them in these effective regions. For a person
with AD, the effective regions are closely related to the brains thinking activity, which confirms some
medical analysis about AD. It will be very promising to extend AI to medical image analysis, which
combines medical science with AI from the existing literature. If AI is well applied in the medical
field, it can not only improve the efficiency of medical diagnosis but also play an inestimable role in
promoting the development of medicine in the future.

7. Future work

In Section 3.2, SPM2 is used to segment the raw T1-weighted brain MR images. Then, the gray
matter and white matter images obtained by segmentation are applied to brain age estimation for bet-
ter prediction accuracy. Therefore, the part of segmentation is necessary for us. However, raw T1-
weighted segmentation will cost a long time. Specifically, in this paper, it took about 5 minutes for a
subject in the operation of segmentation. If we can shorten the split time to less than 1 minute, I think
it will be a very meaningful job. Thus, we will focus on how to reduce time in segmentation with deep
learning in our future work.
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