
Citation: Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula. Global stability of an age-structured epidemic model with general Lyapunov functional[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
[1] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[2] | Andrei Korobeinikov, Philip K. Maini . A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 2004, 1(1): 57-60. doi: 10.3934/mbe.2004.1.57 |
[3] | Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297 |
[4] | Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369 |
[5] | Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227 |
[6] | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347 |
[7] | Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155 |
[8] | C. Connell McCluskey . Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences and Engineering, 2010, 7(4): 837-850. doi: 10.3934/mbe.2010.7.837 |
[9] | Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372 |
[10] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304 |
Mathematical models for the spread of epidemic infectious diseases in populations have been studied for a long time [1]. One of the most classical epidemic models is the SIR epidemic model in which the total population is divided into three classes called susceptible, infected and removed [2]. Some types of SIR epidemic models without age structure are nonlinear systems of ordinary differential equations, and it is relatively easy to show that the long time behavior of its solution is completely determined by a threshold value
Some types of SIR epidemic models with age structure are nonlinear systems of partial differential equations, and the mathematical analysis for them is generally more difficult than that for the models without age structure. The most classical SIR epidemic model studied by Kermack and McKendrick [2] has the structure of infection age (time elapsed since the infection), and the complete global stability analysis for an infection age-structured SIR epidemic model was recently done by Magal et al, [5]. That is, they showed that the disease-free equilibrium in their model is globally asymptotically stable if
In basic epidemic models, the incidence rate is often assumed to take the bilinear form such as
In [27], Bentout and Touaoula established an infection age-structured SIR epidemic model with a general incidence rate. They proved for their model that if
The organization of this paper is as follows. In Section 2, we establish our main model. In Section 3, we define the basic reproduction number
Let
{dS(t)dt=A−μS(t)−f(S(t),J(t)),∂i(t,a)∂t+∂i(t,a)∂a=−(μ+θ(a))i(t,a),a>0,i(t,0)=f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δR(t),dR(t)dt=(1−k)∫+∞0θ(a)i(t,a)da−(μ+δ)R(t), | (2.1) |
where
J(t)=∫+∞0β(a)i(t,a)da,t>0. |
The system (2.1) is completed by the following boundary and initial conditions,
{i(0,⋅)=i0(⋅)∈L1(R+,R+),S(0)=S0∈R+andR(0)=r0∈R+. | (2.2) |
For instance, diseases with relapse such as herpes simplex virus type 2 (HSV-2) [28] can be modeled by system (2.1). Throughout this paper, we make the following hypotheses on
● The function
● The parameters
The boundedness of
● (H0) The function
● (H1) For all
● (H2) The function
● (H3) The function
|f(S2,J2)−f(S1,J1)|≤L(|S2−S1|+|J2−J1|), | (2.3) |
whenever
Now, let us define the functional space
‖(S,i,R)‖X=|S|+∫+∞0|i(a)|da+|R|,S,R∈R,i∈L1(R+). |
We put
Theorem 2.1. Let consider an initial condition belonging to
We omit the proof of Theorem 2.1 as it is similar to the proof of [27,Theorem 2.2] except for a simple modification. We set,
N′(t)=A−μN(t). |
So, for
N(t)≤max{N(0),Aμ}, |
with
limt→+∞N(t)=Aμ. | (2.4) |
On the other hand, we can check that (
lim inft→+∞S(t)≥Aμ+L. |
In this section, we show the local and the global stability of the disease-free equilibrium. First, we begin by studying the local stability. We denote by
π(a)=e−∫a0(μ+θ(s))ds,a≥0. | (3.1) |
We can estimate the basic reproduction number by renewal process, which is the spectral radius of the next generation matrix. For more details, we refer the reader to [3]. The basic reproduction number
R0=∂f∂J(Aμ,0)∫+∞0β(a)π(a)da+((1−k)δμ+δ+k)∫+∞0θ(a)π(a)da. |
For the system (2.1), it is easy to see that the disease-free steady state always exists and it is given by
{dS(t)dt=−μS(t)−S(t)∂f∂S(Aμ,0)−J(t)∂f∂J(Aμ,0),∂i(t,a)∂t+∂i(t,a)∂a=−(μ+θ(a))i(t,a),a>0,i(t,0)=S(t)∂f∂S(Aμ,0)+J(t)∂f∂J(Aμ,0)+k∫+∞0θ(a)i(t,a)da+δR(t),dR(t)dt=(1−k)∫+∞0θ(a)i(t,a)da−(μ+δ)R(t). | (3.2) |
Next, the characteristic equation of (3.2) at
|λ+μ+∂f∂S(Aμ,0)P(λ)0−∂f∂S(Aμ,0)Q(λ)−δ0G(λ)λ+μ+δ|=0, |
where
P(λ):=∂f∂J(Aμ,0)∫+∞0β(a)π(a)e−λada, |
Q(λ):=1−∂f∂J(Aμ,0)∫+∞0β(a)π(a)e−λada−k∫+∞0θ(a)π(a)e−λada, |
and
G(λ):=−(1−k)∫+∞0θ(a)π(a)e−λada. |
We have the following theorem.
Theorem 3.1. If
Proof. The characteristic equation of the disease free equilibrium
(λ+μ)H(λ)=0, | (3.3) |
where
H(λ)=(λ+μ+δ)(1−∂f∂J(Aμ,0)∫+∞0β(a)π(a)e−λada−k∫+∞0θ(a)π(a)e−λada)−δ(1−k)∫+∞0θ(a)π(a)e−λada. |
Obviously, we can see that
|λ0+μ+δ|=|δ(1−k)∫+∞0θ(a)π(a)e−λ0ada1−∫+∞0β(a)π(a)e−λ0ada∂f∂J(Aμ,0)−k∫+∞0θ(a)π(a)e−λ0ada|. |
Since
μ+δ≤|δ(1−k)∫+∞0θ(a)π(a)e−λ0ada||1−∫+∞0β(a)π(a)e−λ0ada∂f∂J(Aμ,0)−k∫+∞0θ(a)π(a)e−λ0ada|. |
Then,
δ(1−k)μ+δ|∫+∞0θ(a)π(a)e−λ0ada|≥1−|∫+∞0β(a)π(a)e−λ0ada∂f∂J(Aμ,0)−k∫+∞0θ(a)π(a)e−λ0ada|,≥1−|∫+∞0β(a)π(a)e−λ0ada∂f∂J(Aμ,0)|−k|∫+∞0θ(a)π(a)e−λ0ada|. |
Therefore,
R0≥|∫+∞0β(a)π(a)e−λ0ada∂f∂J(Aμ,0)|+(k+δ(1−k)μ+δ)|∫+∞0θ(a)π(a)e−λ0ada|≥1. |
We obtain that
H(0)=(μ+δ)(1−R0)<0andlimλ→+∞H(λ)=+∞. |
This ensures to the existence of a positive real root of (3.3). Hence,
Now, we focus on the global stability of
dˆi(h)dh=−[μ+ˆθ(h)]ˆi(h). |
Hence,
i(t+h,a+h)=i(t,a)e−∫h0(μ+θ(a+s))ds. |
Considering two cases
i(t,a)={i(t−a,0)e−∫a0(μ+θ(s))ds,a<t,i(0,a−t)e−∫t0(μ+θ(a−t+s))ds,a≥t. |
Hence, we obtain
i(t,a)={π(a)B(t−a),a<t,π(a)π(a−t)i0(a−t),a≥t, | (3.4) |
with
B(t)=f(S(t),J(t))+k∫t0θ(a)π(a)B(t−a)da+∫∞tθ(a)π(a)π(a−t)i0(a−t)da+δR(t), | (3.5) |
J(t)=∫t0β(a)π(a)B(t−a)da+∫∞tβ(a)π(a)π(a−t)i0(a−t)da, | (3.6) |
and
R′(t)=(1−k)∫t0θ(a)π(a)B(t−a)da+(1−k)∫∞tθ(a)π(a)π(a−t)i0(a−t)da−(μ+δ)R(t). | (3.7) |
We prove the following theorem.
Theorem 3.2. The disease-free equilibrium
Proof. It suffices to prove the global attractivity of
lim supt→+∞(S(t),B(t),R(t))=(S∞,B∞,R∞)andlim supt→+∞J(t)=J∞. |
By using the fluctuation lemma (see [37], Lemma A.14), there exist
R∞≤(1−k)∫+∞0θ(a)π(a)daμ+δB∞. | (3.8) |
Similarly using (3.5), (3.6) and the hypothesis (H0), we obtain
{B∞≤f(S∞,J∞)+kB∞∫+∞0θ(a)π(a)da+δR∞,J∞≤B∞∫+∞0β(a)π(a)da. | (3.9) |
Now, combining (3.8), (3.9) and the fact that
B∞≤f(S∞,J∞)+kB∞∫+∞0θ(a)π(a)da+δ(1−k)∫+∞0θ(a)π(a)daμ+δB∞. |
Since
B∞≤f(Aμ,J∞)+kB∞∫+∞0θ(a)π(a)da+δ(1−k)∫+∞0θ(a)π(a)daμ+δB∞. | (3.10) |
Next, from (H1), we easily obtain
f(Aμ,J∞)≤J∞∂f∂J(Aμ,0). | (3.11) |
By combining (3.10) with (3.11) and the second equation of (3.9), we get
B∞≤R0B∞. |
Since
In this section, we prove the existence of a compact attractor of all bounded subset of
Φ(t,(S0,i0(⋅),r0))=(S(t),i(t,⋅),R(t)),(S0,i0(⋅),r0)∈X+, | (4.1) |
which is generated by the unique solution of system (2.1). So, it is not difficult to show that this semiflow is continuous.
Theorem 4.1. The semiflow
Proof. Following Theorem 2.33 in [37], we need to check some properties of the semiflow
Ψ1(t,(S0,i0(⋅),r0))=(0,u(t,⋅),0) and Ψ2(t,(S0,i0(⋅),r0))=(S(t),v(t,⋅),R(t)), |
where
u(t,a)={0,a<t,π(a)π(a−t)i0(a−t),a>t, |
and
v(t,a)={π(a)B(t−a),a<t,0,a>t. |
Let
M1:=sup{S0+‖i0‖L1+r0,(S0,i0,r0)∈C} and M2:=max{M1,Aμ}. | (4.2) |
Using the same arguments as in Theorem 2.1 in [18], we have
∫+∞0|v(t,a+h)−v(t,a)|da=∫t−h0|π(a+h)B(t−a−h)−π(a)B(t−a)|da+∫tt−h|π(a)B(t−a)|da. | (4.3) |
Notice that, for
|B(t)|≤f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δR(t),≤f(M2,‖β‖∞M2)+k‖θ‖∞M2+δM2, | (4.4) |
for all initial data in
Ih(t):=∫t−h0|π(a+h)B(t−a−h)−π(a)B(t−a)|da,≤∫t−h0|π(a)(B(t−a−h)−B(t−a))|da+∫t−h0|B(t−a−h)(π(a+h)−π(a)|da. | (4.5) |
From the system (2.1) and (4.2), we have, for
|S′(t)|≤A+μM2+f(M2,‖β‖∞M2), | (4.6) |
and
|R′(t)|≤(1−k)‖θ‖∞M2+(μ+δ)M2. | (4.7) |
Now, let us define
Ah(t,a):=|B(t−a−h)−B(t−a)|≤|f(S(t−a−h),J(t−a−h))−f(S(t−a),J(t−a))|+k|∫+∞0θ(σ)i(t−a−h,σ)dσ−∫+∞0θ(σ)i(t−a,σ)dσ|+δ|R(t−a−h)−R(t−a)|. |
Using the fact that the function
Ah≤L|S(t−a−h)−S(t−a)|+L|J(t−a−h)−J(t−a))|+k|∫+∞0θ(σ)i(t−a−h,σ)dσ−∫+∞0θ(σ)i(t−a,σ)dσ|+δ|R(t−a−h)−R(t−a)|. |
By (4.6) and (4.7), we can easily show that the first and the last term of
A1h(t,a):=L|J(t−a−h)−J(t−a)|+k|∫+∞0θ(σ)i(t−a−h,σ)dσ−∫+∞0θ(σ)i(t−a,σ)dσ|. | (4.8) |
For
J1(t)=∫t0β(a)π(a)f(S(t−a),J(t−a))daandJ2(t)=∫+∞0β(a+t)π(a+t)π(a)i0(a)da. | (4.9) |
Thus, for
|J(s+h)−J(s)|≤|J1(s+h)−J1(s)|+|J2(s+h)−J2(s)|. |
After a change of variable in (4.9), we obtain
J1(t)=∫t0β(t−σ)π(t−σ)f(S(σ),J(σ))dσ. |
Therefore, for
|J1(s+h)−J1(s)|≤∫s+hsβ(s+h−σ)π(s+h−σ)f(S(σ),J(σ))dσ+∫s0|β(s+h−σ)π(s+h−σ)−β(s−σ)π(s−σ)|f(S(σ),J(σ))dσ,≤‖β‖∞f(M2,‖β‖∞M2)h+f(M2,‖β‖∞M2)∫s0|β(s+h−σ)π(s+h−σ)−β(s−σ)π(s−σ)|dσ. |
Consequently, we can readily checked that these last terms tend to
|J2(s+h)−J2(s)|≤|∫+∞0β(a+s+h)π(a+s+h)π(a)i0(a)da−∫+∞0β(a+s)π(a+s)π(a)i0(a)da|,≤∫+∞0|β(a+s+h)−β(a+s)|π(a+s)π(a)i0(a)da+∫+∞0β(a+s+h)i0(a)|π(a+s+h)π(a)−π(a+s)π(a)|da. |
Using the fact that
|∫+∞0θ(σ)i(t−a−h,σ)dσ−∫+∞0θ(σ)i(t−a,σ)dσ|→0, |
as
Next, we describe the total trajectories of system (2.1). Let
{S′(t)=A−μS−f(S(t),J(t)),i(t,a)=π(a)B(t−a),B(t)=f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δR(t),R′(t)=(1−k)∫+∞0θ(a)i(t,a)da−(μ+δ)R(t),J(t)=∫+∞0β(a)π(a)B(t−a)da. | (4.10) |
The following lemma gives some estimates on the total trajectories.
Lemma 4.2. For all
S(t)>Aμ+L,S(t)+∫+∞0i(t,a)da+R(t)≤Aμandi(t,a)≤ξπ(a),a≥0. |
with
Proof. We set,
I(t):=∫+∞0i(t,a)da=∫+∞0π(a)B(t−a)da. |
After a change of variable, for
I(t)=∫t−∞π(t−a)B(a)da. |
By differentiating
I′(t)=B(t)−∫+∞0(μ+θ(a))π(a)B(t−a)da. |
Combining this equation with the system (4.10), we obtain,
S′(t)+I′(t)+R′(t)≤A−μ(S(t)+I(t)+R(t)), |
Thus, for
S(t)+I(t)+R(t)≤Aμ. | (4.11) |
Moreover, from the equation of
S′(t)≥A−μS−LS(t), |
so,
S(t)≥Aμ+L,t∈R. |
On the other hand, using the fact that
i(t,a)=π(a)(f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δR(t)),≤π(a)(LJ(t)+k‖θ‖∞I(t)+δR(t)), |
According to (4.11), we conclude that
i(t,a)≤ξπ(a),a>0, |
where
The main purpose of this section is to study the global asymptotic stability of the endemic equilibrium. We first need to prove the strong uniform persistence of the solution of problem (4.10).
We begin by the following lemma which concern the existence of a positive equilibria.
Lemma 5.1. Assume that
limJ→0+f(A/μ,J)f(S,J)>1,forS∈[0,A/μ). |
If
Proof. Let
Φ(t,(S∗,i∗(.),R∗))=(S∗,i∗(.),R∗), for t≥0. |
From (4.1) and (3.4), we have
i∗(a)={π(a)i∗(0),0<a<t,π(a)π(a−t)i∗(a−t),a>t, | (5.1) |
and
{A=μS∗+f(S∗,J∗),J∗=∫+∞0β(a)i∗(a)da. | (5.2) |
Remark that if we consider
i∗(a−t)=π(a−t)i∗(0),=π(a−t)π(a)i∗(a), |
and thus
i∗(a)=π(a)π(a−t)i∗(a−t),=π(a)π(a−t)π(a−t)i∗(0),=π(a)i∗(0). |
We can proceed by iteration in order to prove the result. Therefore,
i∗(a)=π(a)i∗(0),for alla≥0. | (5.3) |
Combining (5.2) and (5.3), we get
i∗(0)=1Df(S∗,J∗), |
with
D=1−(k+δ(1−k)μ+δ)∫+∞0θ(a)π(a)da, | (5.4) |
thus,
i∗(a)=1Df(S∗,J∗)π(a),∀a≥0. | (5.5) |
Moreover, from (5.2) and (5.5), we obtain
{A=μS∗+f(S∗,J∗),J∗=MDf(S∗,J∗), | (5.6) |
where
Lemma 5.2. Under (H0) and (H1), we have following assertions,
f(.,J)Jis a nonincreasing function with respect toJ, | (5.7) |
and
{xJ∗<f(S,x)f(S,J∗)<1,for0<x<J∗,1<f(S,x)f(S,J∗)<xJ∗,forx>J∗. | (5.8) |
Now we focus on the uniform persistence of the solution of problem (4.10). We define,
ˉθ(a):=∫+∞0θ(a+t)π(a+t)π(a)dt, |
and
ˉβ(a):=∫+∞0β(a+t)π(a+t)π(a)dt. |
We set
X0={(S0,i0(⋅),r0)∈X+|r0+∫∞0i0(a)ˉθ(a)da+∫∞0i0(a)ˉβ(a)da>0}. |
Lemma 5.3. If
Proof. Recall that
B(t)=f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δR(t). |
The third equation of system (2.1) implies that, for
R(t)=r0e−(μ+δ)t+(1−k)∫t0e−(μ+δ)(s−t)∫+∞0θ(σ)i(s,σ)dσds. |
We can rewrite
B(t)=f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δr0e−(μ+δ)t+(1−k)δ∫t0e−(μ+δ)(s−t)∫+∞0θ(σ)i(s,σ)dσds. |
So, from (3.4),
B(t)=f(S(t),J(t))+k∫t0θ(a)π(a)B(t−a)da+k∫+∞tθ(a)π(a)π(a−t)i0(a−t)da+δr0e−(μ+δ)t+(1−k)δ∫t0e−(μ+δ)(s−t)(∫s0θ(σ)π(σ)B(s−σ)dσ+∫+∞sθ(σ)π(σ)π(σ−s)i0(σ−s)dσ)ds. | (5.9) |
If
I0(t):=∫+∞tθ(a)π(a)π(a−t)i0(a−t)da=∫+∞0θ(a+t)π(a+t)π(a)i0(a)da. | (5.10) |
By integrating
∫+∞0I0(t)dt=∫+∞0i0(a)∫+∞0θ(a+t)π(a+t)π(a)dtda=∫+∞0i0(a)ˉθ(a)da. |
In the following, we will use translations of solutions: for
Br(t)≥k∫t0θ(a)π(a)Br(t−a)da+kI0r(t). |
Since
Now, if
B(t)=f(S(t),J(t))+k∫t0θ(a)π(a)B(t−a)da+k∫+∞tθ(a)π(a)π(a−t)i0(a−t)da+(1−k)δ∫t0e−(μ+δ)(s−t)(∫s0θ(σ)π(σ)B(s−σ)dσ+∫+∞sθ(σ)π(σ)π(σ−s)i0(σ−s)dσ)ds. | (5.11) |
From the definition of the space
B(t)≤L∫t0β(a)π(a)B(t−a)da+k∫t0θ(a)π(a)B(t−a)da+(1−k)δ∫t0e−(μ+δ)(s−t)∫s0θ(σ)π(σ)B(s−σ)dσds. |
We can apply the Fubini's Theorem to the last term and using the assumptions on
B(t)≤(L‖β‖∞+(k+(1−k)δμ+δ)‖θ‖∞)∫t0B(a)da. |
By Gronwall's inequality, we obtain
We define the persistence function
ρ(S0,i0(⋅),r0)=f(S0,J0)+∫+∞0θ(a)i0(a)da+r0. |
By definition, we have,
ρ(Φ(t,(S0,i0(⋅),r0)))=B(t), |
Lemma 5.4. Assume that (5.7) holds. If
lim supt→+∞ρ(Φ(t,x))>ϵ, |
for all solutions of (2.1) provided that
Proof. We suppose that the function
lim supt→+∞ρ(Φ(t,x))<ϵ. |
By Theorem 2.1, we have
lim supt→+∞J(t)<ϵ0. |
Let
0≥A−μS∞−ϵ. |
Therefore,
S∞≥Aμ−ψ(ϵ), |
with
h(ϵ1)=f(Aμ−ψ(ϵ1),ϵ1)ϵ1∫+∞0β(a)π(a)da+(k+(1−k)δϵ1+μ+δ)∫+∞0θ(a)π(a)da>1. | (5.12) |
From system (2.1), we have, for all
R′(t)=(1−k)∫+∞0θ(a)i(t,a)da−(μ+δ)R(t). |
Therefore, for
R′(t)≥(1−k)∫t0θ(a)π(a)B(t−a)da−(μ+δ)R(t). |
Next, we introduce the Laplace transform to this inequality, which is given by, for
λˆR(λ)−R(0)≥(1−k)ˆθ(λ)ˆB(λ)−(μ+δ)ˆR(λ), |
Thus, we get
ˆR(λ)≥(1−k)ˆθ(λ)λ+μ+δˆB(λ). | (5.13) |
where
ˆB(λ)=∫+∞0B(a)e−λadaandˆθ(λ)=∫+∞0θ(a)π(a)e−λada. |
Moreover, since there exists
f(S,J)J≥f(Aμ−ψ(ϵ0),J)J≥f(Aμ−ψ(ϵ0),ϵ0)ϵ0. |
Then, for
B(t)≥f(S(t),J(t))J(t)J(t)+k∫t0θ(a)π(a)B(t−a)da+δR(t), |
so, for
B(t)≥f(Aμ−ψ(ϵ0),ϵ0)ϵ0∫t0β(a)π(a)B(t−a)da+k∫t0θ(a)π(a)B(t−a)da+δR(t). |
Similarly, we apply the Laplace transform to the last inequality, we get, for
ˆB(λ)≥ˆβ(λ)ˆB(λ)f(Aμ−ψ(ϵ0),ϵ0)ϵ0+kˆθ(λ)ˆB(λ)+δˆR(λ), |
where
ˆβ(λ)=∫+∞0β(a)π(a)e−λada. |
By using (5.13), we obtain
ˆB(λ)≥ˆβ(λ)ˆB(λ)f(Aμ−ψ(ϵ0),ϵ0)ϵ0+(k+δ(1−k)λ+μ+δ)ˆθ(λ)ˆB(λ). |
Since,
1≥ˆβ(λ)f(Aμ−ψ(ϵ0),ϵ0)ϵ0+(k+δ(1−k)λ+μ+δ)ˆθ(λ). |
We can choose
1≥h(ϵ0). |
which contradicts (5.12). This completes the proof.
To prove the uniform strong
Lemma 5.5. If
Proof. Assume that
B(t)≤L∫+∞0β(a)i(t,a)da+k∫+∞0θ(a)i(t,a)da+δ∫t0e(μ+δ)(s−t)∫+∞0θ(σ)π(σ)B(s−σ)dσds, |
thus since
B(t)≤L‖β‖∞∫t0B(a)da+k‖θ‖∫t0B(a)da+δ∫t0e(μ+δ)(s−t)∫s0θ(s−σ)π(s−σ)B(σ)dσds. |
So,
B(t)≤L‖β‖∞∫t0B(a)da+k‖θ‖∫t0B(a)da+δ∫t0θ(s−σ)π(s−σ)B(σ)e(μ+δ)(σ−t)dσ. |
Finally, according to Fubini's Theorem,
B(t)≤(L‖β‖∞+k‖θ‖∞+δ‖θ‖∞μ+δ)∫t0B(a)da. |
Applying the Gronwall's inequality, we get
B(t)=0,t>0. |
Lemma 5.6. The following alternative holds: either
Proof. From Lemma 5.5, we can deduce that for each
Bn(t)≥k∫∞0θ(a)π(a)Bn(t−a)da. |
After a change of variable,
Bn(t)≥k∫t−∞θ(t−s)π(t−s)Bn(s)ds, |
where
0=Bn(ϵ)≥k∫ϵ−∞θ(ϵ−s)π(ϵ−s)Bn(s)ds. |
Then,
Now we are ready to prove the strong uniform persistence of the disease.
Theorem 5.7. Assume that
Proof. By Lemmas 5.4, 5.5 and 5.6, we can apply Theorem 5.2 in [37] to conclude that uniform weak
From Theorem 5.7 in [37], we have the following result.
Theorem 5.8. There exists a compact attractor
ρ(Φ(t,(S0,i0(⋅),r0))≥Γ, for all (S0,i0(.),r0)∈A1. | (5.14) |
We will need the following estimates later.
Lemma 5.9. For all
i(t,a)i∗(a)>Γ0,a>0,t∈RandR(t)>η2,t∈R, |
with
Proof. Recall that the compact attractor of bounded set is the union of bounded total trajectories, see Proposition 2.34 in [37]. Thus, there exists a total trajectory
i(t,a)i∗(a)=π(a)B(t−a)π(a)f(S∗,J∗)D>ΓDf(S∗,J∗). |
In addition, from the equation of
R′(t)≥(1−k)Γ∫+∞0θ(a)π(a)da−(μ+δ)R(t). |
Finally, by a straightforward computation, we find
R(t)≥η2,t∈R, |
with
Now, we are ready to prove the global asymptotic stability of the unique positive endemic equilibrium.
Theorem 5.10. Suppose that
Proof. Let
ϕ(a)=∫+∞a[(δR∗∫+∞0θ(a)i∗(a)da+k)θ(σ)+β(σ)J∗f(S∗,J∗)]i∗(σ)dσ, | (5.15) |
and, for
H(y)=y−ln(y)−1. |
Then, for
V1(Ψ(t))=S(t)−S∗−∫S(t)S∗f(S∗,J∗)f(η,J∗)dη, |
V2(Ψ(t))=∫+∞0H(i(t,a)i∗(a))ϕ(a)da, |
and
V3(Ψ(t))=ΩH(R(t)R∗),withΩ:=δR∗2(1−k)∫+∞0θ(a)i∗(a)da. |
First, using the equation of
ddtV1(Ψ(t))=(1−f(S∗,J∗)f(S(t),J∗))(A−f(S(t),J(t))−μS(t)),=μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+(1−f(S∗,J∗)f(S(t),J∗))(f(S∗,J∗)−f(S(t),J(t))). |
By using the same arguments as in the proof of Lemma 9.18 in [37], we find
ddtV2(Ψ(t))=H(i(t,0)i∗(0))ϕ(0)+∫+∞0H(i(t,a)i∗(0))ϕ′(a)da,=H(Δ1f(S(t),J(t))f(S∗,J∗)+Δ2∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da+Δ3R(t)R∗)ϕ(0)+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da, |
where
Δ1:=f(S∗,J∗)i∗(0),Δ2:=k∫+∞0θ(a)i∗(a)dai∗(0)andΔ3:=δR∗i∗(0). |
In view of the third equation of (4.10), by
i∗(0)=f(S∗,J∗)+k∫+∞0θ(a)i∗(a)da+δR∗, |
we have
ddtV2(Ψ(t))≤[Δ1H(f(S(t),J(t))f(S∗,J∗))+Δ2H(∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da)+Δ3H(R(t)R∗)]ϕ(0)+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da. |
By adding
(V1+V2)′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))−f(S,J)+f(S∗,J∗)f(S,J)f(S,J∗)+f(S∗,J∗)(1−f(S∗,J∗)f(S,J∗))+f(S∗,J∗)(f(S,J)f(S∗,J∗)−lnf(S,J)f(S∗,J∗)−1)+Δ2i∗(0)H(∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da)+Δ3i∗(0)H(R(t)R∗)+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da. |
We reorder these terms, and using the fact that
lnf(S,J)f(S∗,J∗)=lnf(S,J)f(S,J∗)+lnf(S,J∗)f(S∗,J∗), |
we obtain
(V1+V2)′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+f(S∗,J∗)(−lnf(S,J∗)f(S∗,J∗)−f(S∗,J∗)f(S,J∗)+1)+f(S∗,J∗)H(f(S,J)f(S,J∗))+Δ2i∗(0)H(∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da)+Δ3i∗(0)H(R(t)R∗)+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da. |
On the other hand,
ddtV3(Ψ(t))=ΩR∗H′(R(t)R∗)((1−k)∫+∞0θ(a)i(t,a)da−(μ+δ)R(t)),=Ω(μ+δ)R∗(1−R∗R)(R∗−R)+Ω(1−k)R∗H′(R(t)R∗)(∫+∞0θ(a)i(t,a)da−∫+∞0θ(a)i∗(a)da). |
By adding and subtracting the same term
Ω(1−k)R∗H′(R(t)R∗)∫+∞0θ(a)i∗(a)daR(t)R∗, |
it yields,
ddtV3(Ψ(t))=Ω(μ+δ)R∗(1−R∗R)(R∗−R)+Ω(1−k)R∗H′(R(t)R∗)∫+∞0θ(a)i∗(a)(i(t,a)i∗(a)−R(t)R∗)da+Ω(1−k)R∗H′(R(t)R∗)(R(t)R∗−1)∫+∞0θ(a)i∗(a)da. |
Next, by summing
V′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+f(S∗,J∗)(−lnf(S,J∗)f(S∗,J∗)−f(S∗,J∗)f(S,J∗)+1)+f(S∗,J∗)H(f(S,J)f(S,J∗))+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da+Δ2i∗(0)H(∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da)+Δ3i∗(0)H(R(t)R∗)+Ω(1−k)R∗H′(R(t)R∗)∫+∞0θ(a)i∗(a)(i(t,a)i∗(a)−R(t)R∗)da+Ω(μ+δ)R∗(1−R∗R)(R∗−R)+Ω(1−k)R∗H′(R(t)R∗)(R(t)R∗−1)∫+∞0θ(a)i∗(a)da. |
Using the fact
H(∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da)=H(∫+∞0θ(a)i∗(a)∫+∞0θ(a)i∗(a)dai(t,a)i∗(a)da),≤∫+∞0θ(a)i∗(a)∫+∞0θ(a)i∗(a)daH(i(t,a)i∗(a))da. |
Thus, by combining this with the fact that
Ω(1−k)R∗=δR∗∫+∞0θ(a)i∗(a)da, |
we obtain
V′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+f(S∗,J∗)(−lnf(S,J∗)f(S∗,J∗)−f(S∗,J∗)f(S,J∗)+1)+f(S∗,J∗)H(f(S,J)f(S,J∗))+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da+Δ2i∗(0)∫+∞0θ(a)i∗(a)∫+∞0θ(a)i∗(a)daH(i(t,a)i∗(a))da+Δ3i∗(0)H(R(t)R∗)+δR∗∫+∞0θ(a)i∗(a)daH′(R(t)R∗)∫+∞0θ(a)i∗(a)(i(t,a)i∗(a)−R(t)R∗)da. |
Now, for the values of
H(f(S,J)f(S,J∗))<H(J(t)J∗),=H(∫+∞0β(a)i∗(a)∫+∞0β(a)i∗(a)dai(t,a)i∗(a)da),≤∫+∞0β(a)i∗(a)∫+∞0β(a)i∗(a)daH(i(t,a)i∗(a))da,=∫+∞0β(a)i∗(a)J∗H(i(t,a)i∗(a))da. |
This implies that
V′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+f(S∗,J∗)(−lnf(S,J∗)f(S∗,J∗)−f(S∗,J∗)f(S,J∗)+1)+∫+∞0H(i(t,a)i∗(a))[ϕ′(a)+f(S∗,J∗)J∗β(a)i∗(a)+kθ(a)i∗(a)]da+δR∗H(R(t)R∗)+δR∗∫+∞0θ(a)i∗(a)daH′(R(t)R∗)∫+∞0θ(a)i∗(a)(i(t,a)i∗(a)−R(t)R∗)da. |
Finally, in view of the expression of
V′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+f(S∗,J∗)(−lnf(S,J∗)f(S∗,J∗)−f(S∗,J∗)f(S,J∗)+1)+∫+∞0[H(R(t)R∗)−H(i(t,a)i∗(a))+H′(R(t)R∗)(i(t,a)i∗(a)−R(t)R∗)]δR∗θ(a)i∗(a)∫+∞0θ(a)i∗(a)dada. |
Since
V′(Ψ(t))≤0. |
By applying the same arguments for the values of
i(t,a)i∗(a)=B(t−a)i∗(0)=R(t)R∗, ∀a≥0, | (5.16) |
this implies that
A−μS∗=f(S∗,J(t)). |
Moreover, from equations of equilibrium we know that
A−μS∗=f(S∗,J∗), |
thus we obtain
Now, since
V(Ψ(t))→V(S∗,i∗(.),R∗), as t→±∞. |
On the other hand, we have
limt→+∞V(Ψ(t))≤V(Ψ(t))≤limt→−∞V(Ψ(t)), |
for all
In this section, the results of the previous sections are illustrated by numerical simulations. We use the following numerical method: we discretize our problem by the upwind method for solving hyperbolic partial differential equation. For instance, the approximation
(∂u∂t)n≃un+1i−uniΔt,(∂u∂a)i≃uni−uni−1Δa. |
The equations of susceptible and recover are solving by explicit Euler method for the ODE. The non-local terms are approximated by one of the composite integration formulas.
Let's consider the Beddington-Deangelis functional response defined by
f(S,J)=SJ1+α1S+α2J. |
We note that this function
R0=Aμ+α1A∫+∞0β(a)π(a)da+((1−k)δμ+δ+k)∫+∞0θ(a)π(a)da. |
We consider the following values of parameters
A=2.10−3,μ=1.10−2andδ=1.10−2, |
with the initial conditions
S0=1.10−3,r0=2.10−4andi0(a)=8.10−4e−0.1a. |
The functions
β(a)={0, if a≤τ1,56.10−3(a−τ1)2e−0.2(a−τ1), if a>τ1, |
and
θ(a)={0, if a≤τ2,3.10−2(a−τ2)2e−0.15(a−τ2); if a>τ2, |
with
In first time, we choose
In second time, we take
In this paper, we proposed and analyzed an infection age-structured SIR epidemic model with a general incidence rate. We showed the basic characters of the solution including existence, uniqueness and positivity. We obtained the basic reproduction number
In this paper, we have not considered the case where
The authors would like to thank the associate editor and the anonymous reviewers for their careful reading and helpful comments. TK was supported by Grant-in-Aid for Young Scientists (B) of Japan Society for the Promotion of Science (Grant No. 15K17585).
All authors declare no conflicts of interest in this paper.
[1] | N. Bacaër, A Short History of Mathematical Population Dynamics, Springer-Verlag, London, UK, 2011. |
[2] | W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics - I, Proc. R. Soc., 115 (1927), 700–721. |
[3] | O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation, Wiley, Chichester, UK, 2000. |
[4] | H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017. |
[5] | P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109–1140. |
[6] | Y. Chen, S. Zou and J. Yang, Global analysis of an SIR epidemic model with infection age and saturated incidence, Nonlinear Anal. RWA, 30 (2016), 16–31. |
[7] | L. Liu, J. Wang and X. Liu, Global stability of an SEIR epidemic model with age-dependent latency and relapse, Nonlinear Anal. RWA, 24 (2015), 18–35. |
[8] | C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819–841. |
[9] | C. Vargas-De-Leon, Global stability properties of age-dependent epidemic models with varying rates of recurrence, Math. Meth. Appl. Sci., 39 (2016), 2057–2064. |
[10] | J. Yang, Y. Chen and T. Kuniya, Threshold dynamics of an age-structured epidemic model with relapse and nonlinear incidence, IMA J. Appl. Math., 82 (2017), 629–655. |
[11] | A. Chekroun and T. Kuniya, Stability and existence results for a time-delayed nonlocal model of hematopoietic stem cells dynamics, J. Math. Anal. Appl., 463 (2018), 1147–1168. |
[12] | K. Hattaf and Y. Yang, Global dynamics of an age-structured viral infection model with general incidence function and absorption, Int. J. Biomath., 11 (2018). 1850065 |
[13] | G. ur Rahman, R. P. Agarwal, L. Liu and A. Khan, Threshold dynamics and optimal control of an age-structured giving up smoking model, Nonlinear Anal. RWA, 43 (2018), 96–120. |
[14] | V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. |
[15] | S. Djilali, T. M. Touaoula and S. E. H. Miri, A heroin epidemic model: very general non linear incidence, treat-age, and global stability, Acta Applicandae Mathematicae, 152 (2017), 171–194. |
[16] | Z. Feng and H. R. Thieme, Endemic models with arbitrarily distributed periods of infection I: fundamental properties of the model, SIAM J. Appl. Math., 61 (2000), 803–833. |
[17] | Z. Feng and H. R. Thieme, Endemic models with arbitrarily distributed periods of infection II: fast disease dynamics and permanent recovery, SIAM J. Appl. Math., 61 (2000), 983–1012. |
[18] | M. N. Frioui, S. E. Miri and T. M. Touaoula, Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response, J. Appl. Math. Comput., 58 (2018), 47–73. |
[19] | K. Hattaf, A. A. Lashari, Y. Louartassi and N. Yousfi, A delayed SIR epidemic model with general incidence rate, Electron. J. Qual. Theo. Diff. Equ., 3 (2013), 1–9. |
[20] | G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol., 63 (2011), 125–139. |
[21] | G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207. |
[22] | A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68 (2006), 615–626. |
[23] | A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886. |
[24] | A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113–128. |
[25] | S. Liu, S.Wang and L.Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal. RWA, 12 (2011), 119–127. |
[26] | J.Wang, J. Pang and X. Liu, Modelling diseases with relapse and nonlinear incidence of infection: a multi-group epidemic model, J. Biol. Dyn., 8 (2014), 99–116. |
[27] | S. Bentout and T. M. Touaoula, Global analysis of an infection age model with a class of nonlinear incidence rates, J. Math. Anal. Appl., 434 (2016), 1211–1239. |
[28] | P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007), 89–103. |
[29] | B. Fang, X. Z. Li, M. Martcheva and L. M. Cai, Global asymptotic properties of a heroin epidemic model with treat-age, Appl. Math. Comput., 263 (2015), 315–331. |
[30] | G. Mulone and B. Straughan, A note on heroin epidemics, Math. Biosci., 218 (2009), 138–141. |
[31] | Y. Muroya, H. Li and T. Kuniya, Complete global analysis of an SIRS epidemic model with grated cure and incomplete recovery rates, J. Math. Anal. Appl., 410 (2014), 719–732. |
[32] | E. White and C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci. 208 (2007), 312–324. |
[33] | I. M. Wangari and L. Stone, Analysis of a heroin epidemic model with saturated treatment function, J. Appl. Math., 2017 (2017), Article ID 1953036. |
[34] | P. Munz, I. Hudea, J. Imad and R. J. Smith, When zombies attack!: mathematical modelling of an outbreak of zombie infection, in Infectious Disease Modelling Research Progress (eds. J.M. Tchuenche and C. Chiyaka), New York, Nova Science Publishers, (2009), 133–150. |
[35] | J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, V. 99, AMS, 1993. |
[36] | B. Balachandran, T. Kalmar-Nagy and D. E. Gilsin, Delay Differential Equations: Recent Advances and New Direction, Springer-verlag, 2009. |
[37] | H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics V. 118, AMS, 2011. |
[38] | H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton 2003. |
[39] | B. Perthame, Transport Equations in Biology, Birkhäuser, Berlin, 2007. |
1. | Boning Wu, Xuesong Zhou, Youjie Ma, Bus Voltage Control of DC Distribution Network Based on Sliding Mode Active Disturbance Rejection Control Strategy, 2020, 13, 1996-1073, 1358, 10.3390/en13061358 | |
2. | Abdennasser Chekroun, Toshikazu Kuniya, V. Vougalter, V. Volpert, An infection age-space-structured SIR epidemic model with Dirichlet boundary condition, 2019, 14, 0973-5348, 505, 10.1051/mmnp/2019048 | |
3. | Xiaowen Xiong, Yanqiu Li, Bingliang Li, Global stability of age-of-infection multiscale HCV model with therapy, 2021, 18, 1551-0018, 2182, 10.3934/mbe.2021110 | |
4. | Soufiane Bentout, Yuming Chen, Salih Djilali, Global Dynamics of an SEIR Model with Two Age Structures and a Nonlinear Incidence, 2021, 171, 0167-8019, 10.1007/s10440-020-00369-z | |
5. | Soufiane Bentout, Salih Djilali, Abdenasser Chekroun, Global threshold dynamics of an age structured alcoholism model, 2021, 14, 1793-5245, 2150013, 10.1142/S1793524521500133 | |
6. | Soufiane Bentout, Salih Djilali, Sunil Kumar, Tarik Mohammed Touaoula, Threshold dynamics of difference equations for SEIR model with nonlinear incidence function and infinite delay, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01466-0 | |
7. | Han Ma, Qimin Zhang, Threshold dynamics and optimal control on an age-structured SIRS epidemic model with vaccination, 2021, 18, 1551-0018, 9474, 10.3934/mbe.2021465 | |
8. | Salih Djilali, Soufiane Bentout, Sunil Kumar, Tarik Mohammed Touaoula, Approximating the asymptomatic infectious cases of the COVID-19 disease in Algeria and India using a mathematical model, 2022, 13, 1793-9623, 10.1142/S1793962322500283 | |
9. | Naveed Shahid, Muhammad Aziz-ur Rehman, Nauman Ahmed, Dumitru Baleanu, Muhammad Sajid Iqbal, Muhammad Rafiq, Numerical investigation for the nonlinear model of hepatitis-B virus with the existence of optimal solution, 2021, 6, 2473-6988, 8294, 10.3934/math.2021480 | |
10. | Zakya Sari, Tarik Mohammed Touaoula, Bedreddine Ainseba, Mathematical analysis of an age structured epidemic model with a quarantine class, 2021, 16, 0973-5348, 57, 10.1051/mmnp/2021049 | |
11. | Yuqiong Lan, Yanqiu Li, Dongmei Zheng, Global dynamics of an age-dependent multiscale hepatitis C virus model, 2022, 85, 0303-6812, 10.1007/s00285-022-01773-9 | |
12. | Mudhafar F. Hama, Rando R.Q. Rasul, Zakia Hammouch, Kawa A.H. Rasul, Jaouad Danane, Analysis of a stochastic SEIS epidemic model with the standard Brownian motion and Lévy jump, 2022, 37, 22113797, 105477, 10.1016/j.rinp.2022.105477 | |
13. | Soufiane Bentout, Abdessamad Tridane, Salih Djilali, Tarik Mohammed Touaoula, Age-Structured Modeling of COVID-19 Epidemic in the USA, UAE and Algeria, 2021, 60, 11100168, 401, 10.1016/j.aej.2020.08.053 | |
14. | Soufiane Bentout, Salih Djilali, Tarik Mohammed Touaoula, Anwar Zeb, Abdon Atangana, Bifurcation analysis for a double age dependence epidemic model with two delays, 2022, 108, 0924-090X, 1821, 10.1007/s11071-022-07234-8 | |
15. | Manoj Kumar, Syed Abbas, Analysis of steady state solutions to an age structured SEQIR model with optimal vaccination, 2022, 45, 0170-4214, 10718, 10.1002/mma.8414 | |
16. | Vladimir Kozlov, Sonja Radosavljevic, Vladimir Tkachev, Uno Wennergren, Global stability of an age-structured population model on several temporally variable patches, 2021, 83, 0303-6812, 10.1007/s00285-021-01701-3 | |
17. | Jin Yang, Zhuo Chen, Yuanshun Tan, Zijian Liu, Robert A. Cheke, Threshold dynamics of an age-structured infectious disease model with limited medical resources, 2023, 214, 03784754, 114, 10.1016/j.matcom.2023.07.003 | |
18. | Lili Liu, Xiaomin Ma, Yazhi Li, Xianning Liu, Mathematical analysis of global dynamics and optimal control of treatment for an age-structured HBV infection model, 2023, 177, 09600779, 114240, 10.1016/j.chaos.2023.114240 | |
19. | Qiuyun Li, Fengna Wang, An Epidemiological Model for Tuberculosis Considering Environmental Transmission and Reinfection, 2023, 11, 2227-7390, 2423, 10.3390/math11112423 | |
20. | Dongxue Yan, Yu Cao, Rich dynamics of a delayed SIRS epidemic model with two-age structure and logistic growth, 2023, 2023, 2731-4235, 10.1186/s13662-023-03794-0 | |
21. | Nicolò Cangiotti, Marco Capolli, Mattia Sensi, Sara Sottile, A survey on Lyapunov functions for epidemic compartmental models, 2024, 17, 1972-6724, 241, 10.1007/s40574-023-00368-6 | |
22. | Mostafa Adimy, Abdennasser Chekroun, Charlotte Dugourd-Camus, Hanene Meghelli, Global Asymptotic Stability of a Hybrid Differential–Difference System Describing SIR and SIS Epidemic Models with a Protection Phase and a Nonlinear Force of Infection, 2024, 23, 1575-5460, 10.1007/s12346-023-00891-z |