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Abstract: In this paper, we focus on the study of the dynamics of a certain age structured epidemic
model. Our aim is to investigate the proposed model, which is based on the classical SIR epidemic
model, with a general class of nonlinear incidence rate with some other generalization. We are
interested to the asymptotic behavior of the system. For this, we have introduced the basic reproduction
number R0 of model and we prove that this threshold shows completely the stability of each steady
state. Our approach is the use of general constructed Lyapunov functional with some results on the
persistence theory. The conclusion is that the system has a trivial disease-free equilibrium which is
globally asymptotically stable for R0 < 1 and that the system has only a unique positive endemic
equilibrium which is globally asymptotically stable whenever R0 > 1. Several numerical simulations
are given to illustrate our results.
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1. Introduction

Mathematical models for the spread of epidemic infectious diseases in populations have been
studied for a long time [1]. One of the most classical epidemic models is the SIR epidemic model in
which the total population is divided into three classes called susceptible, infected and removed [2].
Some types of SIR epidemic models without age structure are nonlinear systems of ordinary
differential equations, and it is relatively easy to show that the long time behavior of its solution is
completely determined by a threshold value R0: if R0 < 1, then the trivial equilibrium in which there
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is no infected individual (the disease-free equilibrium) is globally asymptotically stable, whereas if
R0 > 1, then the nontrivial equilibrium in which the infected individuals persist (the endemic
equilibrium) is globally asymptotically stable [3, 4]. The threshold value R0 is called the basic
reproduction number and it plays an important role as an indicator of the intensity of diseases since it
implies the expected number of secondary cases produced by a typical infected individual during its
entire period of infectiousness in a fully susceptible population [3, 4].

Some types of SIR epidemic models with age structure are nonlinear systems of partial differential
equations, and the mathematical analysis for them is generally more difficult than that for the models
without age structure. The most classical SIR epidemic model studied by Kermack and McKendrick [2]
has the structure of infection age (time elapsed since the infection), and the complete global stability
analysis for an infection age-structured SIR epidemic model was recently done by Magal et al, [5].
That is, they showed that the disease-free equilibrium in their model is globally asymptotically stable
if R0 ≤ 1, whereas the endemic equilibrium is so if R0 > 1. Their method of constructing a suitable
Lyapunov function in a compact global attractor has been applied for the analysis of various epidemic
models with age structure [6–10]. Recently, the global behavior of various kinds of age-structured
models in biology has been studied [11–13].

In basic epidemic models, the incidence rate is often assumed to take the bilinear form such as βS I,
where β > 0 is the disease-transmission coefficient and S and I are the populations of susceptible and
infected individuals, respectively. As a generalization, Capasso and Serio [14] studied the incidence
rate with the form S g(I), where g(·) is a continuous bounded function that takes into account either
the saturation phenomenon or the psychological effects. After their work, epidemic models with more
general incidence rates such as f (S )g(I) and f (S , I) have been studied by many authors [15–26].

In [27], Bentout and Touaoula established an infection age-structured SIR epidemic model with a
general incidence rate. They proved for their model that if R0 ≤ 1, then the disease-free equilibrium is
globally asymptotically stable, whereas if R0 > 1, then the endemic equilibrium is globally
asymptotically stable. The purpose of this study is to generalize their results for a new epidemic
model. Specifically, we assume for our model that the removed individuals do not stay permanently in
the removed class and can return to the infected class. This kind of assumption can be seen in models
for diseases with relapse [7, 10, 25, 26, 28], drug epidemics [15, 29–33] and (although it is a fiction)
zombie epidemics [34]. Because of the complexity in the model structure, we need more advanced
techniques for the mathematical analysis of our model. In this paper, we obtain the basic reproduction
number R0 for our model and show that the disease-free equilibrium is globally asymptotically stable
if R0 < 1, whereas the endemic equilibrium uniquely exists and it is globally asymptotically stable if
R0 > 1.

The organization of this paper is as follows. In Section 2, we establish our main model. In Section
3, we define the basic reproduction number R0 and show that the disease-free equilibrium is globally
asymptotically stable if R0 < 1. In Section 4, we define the semiflow generated by the solution of our
model and show the existence of a compact attractor. In Section 5, we prove the existence and
uniqueness of the endemic equilibrium, uniform persistence of the system and global asymptotic
stability of the endemic equilibrium for R0 > 1. In Section 6, we perform numerical simulations that
illustrate our theoretical results. Finally, Section 7 is devoted to the summary.
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2. The model

Let S (t), i(t, a) and R(t) denote the population of susceptible, infected with infection age a and
removed individuals at time t, respectively. The function θ(a) is the age-dependent per-capita removal
rate of infected individuals with age a. The parameters µ, δ and k are respectively the natural death rate,
the relapse rate and the fraction at which removed individuals directly return to the infected class. The
parameter A represents the entering flux into the class S . The main model of this paper is formulated
as the following system with infection age and with a general class class of nonlinear incidence rate,
for t > 0, 

dS (t)
dt

= A − µS (t) − f (S (t), J(t)),

∂i(t, a)
∂t

+
∂i(t, a)
∂a

= −(µ + θ(a))i(t, a), a > 0,

i(t, 0) = f (S (t), J(t)) + k
∫ +∞

0
θ(a)i(t, a)da + δR(t),

dR(t)
dt

= (1 − k)
∫ +∞

0
θ(a)i(t, a)da − (µ + δ)R(t),

(2.1)

where J is the contact function given by,

J(t) =

∫ +∞

0
β(a)i(t, a)da, t > 0.

The system (2.1) is completed by the following boundary and initial conditions, i(0, ·) = i0(·) ∈ L1(R+,R+),

S (0) = S 0 ∈ R
+ and R(0) = r0 ∈ R

+.
(2.2)

For instance, diseases with relapse such as herpes simplex virus type 2 (HSV-2) [28] can be modeled
by system (2.1). Throughout this paper, we make the following hypotheses on β and θ.

• The function β ∈ CBU(R+,R+) (where CBU(R+,R+) is the set of all bounded and uniformly
continuous function from R+ to R+) and the function θ ∈ L∞+ (R+) (where L∞+ (R+) is the set of all
essentially bounded functions from R+ to R+).
• The parameters A and µ are positive and k ∈ [0, 1).

The boundedness of β implies that there is a maximum of infectivity of infected individuals. The
uniform continuity of β is sufficient for the practical application since any continuous functions with a
closed bounded support is uniformly continuous (see Section 6). For the above system, we make also
the following assumptions on the infection response function f .

• (H0) The function f (·, J) is increasing for J > 0 and f (S , ·) is increasing for S > 0 with f (0, J) =

f (S , 0) = 0 for all S , J ≥ 0.
• (H1) For all S > 0 the function f (S , J) is concave with respect to J.
• (H2) The function ∂ f (·, 0)/∂J is continuous positive on every compact set K ⊂ R+.
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• (H3) The function f is locally Lipschitz continuous in S and J, that is, for every C > 0 there
exists some L := LC > 0 such that

| f (S 2, J2) − f (S 1, J1)| ≤ L(|S 2 − S 1| + |J2 − J1|), (2.3)

whenever 0 ≤ S 2, S 1, J2, J1 ≤ C.

Now, let us define the functional space X := R × L1(R+) × R equipped with the norm

‖(S , i,R)‖X = |S | +
∫ +∞

0
|i(a)|da + |R|, S ,R ∈ R, i ∈ L1(R+).

We put X+ = R+ × L1
+(R+) × R+, which denotes the positive cone of X. The problem of existence,

positivity and uniqueness of the solution is classical and can be treated by using the Banach-Picard
fixed point theorem in an appropriate Banach space on X (see, for instance, [27], [39]). Then, we have
the following theorem.

Theorem 2.1. Let consider an initial condition belonging to X+. Then, the system (2.1) and (2.2) has
a unique nonnegative solution (S , i,R) ∈ C1(R+) ×C(R+, L1(R+)) ×C1(R+).

We omit the proof of Theorem 2.1 as it is similar to the proof of [27, Theorem 2.2] except for a
simple modification. We set, N(t) = S (t) +

∫ +∞

0
i(t, a)da + R(t). Then, from the system (2.1), we have,

for t > 0,
N′(t) = A − µN(t).

So, for t > 0, we obtain

N(t) ≤ max
{

N(0),
A
µ

}
,

with N(0) = S 0 +
∫ +∞

0
i0(a)da + r0, and

lim
t→+∞

N(t) =
A
µ
. (2.4)

On the other hand, we can check that (L is the Lipschitz constant defined in (2.3)),

lim inf
t→+∞

S (t) ≥
A

µ + L
.

3. Global stability of the disease-free equilibrium

In this section, we show the local and the global stability of the disease-free equilibrium. First, we
begin by studying the local stability. We denote by

π(a) = e−
∫ a

0 (µ+θ(s))ds, a ≥ 0. (3.1)

We can estimate the basic reproduction number by renewal process, which is the spectral radius of
the next generation matrix. For more details, we refer the reader to [3]. The basic reproduction number
R0 for our model (2.1) is given by

R0 =
∂ f
∂J

(
A
µ
, 0

) ∫ +∞

0
β(a)π(a)da +

(
(1 − k)δ
µ + δ

+ k
) ∫ +∞

0
θ(a)π(a)da.
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For the system (2.1), it is easy to see that the disease-free steady state always exists and it is given by
E0 = (A/µ, 0, 0) ∈ X+. The linearization of system (2.1) near the equilibrium E0 = (A/µ, 0, 0) is given
by, for t > 0, 

dS (t)
dt

= −µS (t) − S (t)
∂ f
∂S

(
A
µ
, 0

)
− J(t)

∂ f
∂J

(
A
µ
, 0

)
,

∂i(t, a)
∂t

+
∂i(t, a)
∂a

= −(µ + θ(a))i(t, a), a > 0,

i(t, 0) = S (t)
∂ f
∂S

(
A
µ
, 0

)
+ J(t)

∂ f
∂J

(
A
µ
, 0

)
+ k

∫ +∞

0
θ(a)i(t, a)da + δR(t),

dR(t)
dt

= (1 − k)
∫ +∞

0
θ(a)i(t, a)da − (µ + δ)R(t).

(3.2)

Next, the characteristic equation of (3.2) at E0 is given by the following equation,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + µ +
∂ f
∂S

(
A
µ
, 0

)
P(λ) 0

−
∂ f
∂S

(
A
µ
, 0

)
Q(λ) −δ

0 G(λ) λ + µ + δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where

P(λ) :=
∂ f
∂J

(
A
µ
, 0

) ∫ +∞

0
β(a)π(a)e−λada,

Q(λ) := 1 −
∂ f
∂J

(
A
µ
, 0

) ∫ +∞

0
β(a)π(a)e−λada − k

∫ +∞

0
θ(a)π(a)e−λada,

and

G(λ) := −(1 − k)
∫ +∞

0
θ(a)π(a)e−λada.

We have the following theorem.

Theorem 3.1. If R0 < 1, then the disease-free equilibrium E0 = (A/µ, 0, 0) is locally asymptotically
stable and unstable for R0 > 1.

Proof. The characteristic equation of the disease free equilibrium E0 is given by

(λ + µ)H(λ) = 0, (3.3)

where

H(λ) = (λ + µ + δ)
(
1 −

∂ f
∂J

(
A
µ
, 0

) ∫ +∞

0
β(a)π(a)e−λada − k

∫ +∞

0
θ(a)π(a)e−λada

)
−δ(1 − k)

∫ +∞

0
θ(a)π(a)e−λada.
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Obviously, we can see that −µ is a negative real root of (3.3) and all other roots are obtained from
H(λ) = 0. We assume first that R0 < 1. We claim that H(λ) = 0 has no root with nonnegative real part.
By contradiction, we suppose that there exists λ0 ∈ C with Re(λ0) ≥ 0 such that H(λ0) = 0, then,

|λ0 + µ + δ| =

∣∣∣∣∣∣∣∣∣∣∣∣
δ(1 − k)

∫ +∞

0
θ(a)π(a)e−λ0ada

1 −
∫ +∞

0
β(a)π(a)e−λ0ada

∂ f
∂J

(
A
µ
, 0

)
− k

∫ +∞

0
θ(a)π(a)e−λ0ada

∣∣∣∣∣∣∣∣∣∣∣∣ .
Since Re(λ0) ≥ 0 and R0 < 1, so

µ + δ ≤

∣∣∣∣∣∣δ(1 − k)
∫ +∞

0
θ(a)π(a)e−λ0ada

∣∣∣∣∣∣∣∣∣∣∣∣1 −
∫ +∞

0
β(a)π(a)e−λ0ada

∂ f
∂J

(
A
µ
, 0

)
− k

∫ +∞

0
θ(a)π(a)e−λ0ada

∣∣∣∣∣∣
.

Then,

δ(1 − k)
µ + δ

∣∣∣∣∣∣
∫ +∞

0
θ(a)π(a)e−λ0ada

∣∣∣∣∣∣
≥ 1 −

∣∣∣∣∣∣
∫ +∞

0
β(a)π(a)e−λ0ada

∂ f
∂J

(
A
µ
, 0

)
− k

∫ +∞

0
θ(a)π(a)e−λ0ada

∣∣∣∣∣∣ ,
≥ 1 −

∣∣∣∣∣∣
∫ +∞

0
β(a)π(a)e−λ0ada

∂ f
∂J

(
A
µ
, 0

)∣∣∣∣∣∣ − k

∣∣∣∣∣∣
∫ +∞

0
θ(a)π(a)e−λ0ada

∣∣∣∣∣∣ .
Therefore,

R0 ≥

∣∣∣∣∣∣
∫ +∞

0
β(a)π(a)e−λ0ada

∂ f
∂J

(
A
µ
, 0

)∣∣∣∣∣∣ +

(
k +

δ(1 − k)
µ + δ

) ∣∣∣∣∣∣
∫ +∞

0
θ(a)π(a)e−λ0ada

∣∣∣∣∣∣ ≥ 1.

We obtain that R0 ≥ 1 and which is a contradiction with the hypothesis. Consequently, the disease-free
equilibrium E0 is locally asymptotically stable for R0 < 1. Next, we suppose that R0 > 1. Then, for
λ ∈ R, we have

H(0) = (µ + δ)(1 − R0) < 0 and lim
λ→+∞

H(λ) = +∞.

This ensures to the existence of a positive real root of (3.3). Hence, E0 is unstable if R0 > 1.
�

Now, we focus on the global stability of E0. Let î(h) := i(t + h, a + h) and θ̂(h) := θ(a + h). By the
second equation of (2.1), we have

dî(h)
dh

= −
[
µ + θ̂(h)

]
î(h).

Hence, î(h) = î(0)e−
∫ h

0 (µ+θ̂(s))ds and thus,

i(t + h, a + h) = i(t, a)e−
∫ h

0 (µ+θ(a+s))ds.
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Considering two cases a < t and a ≥ t, we have

i(t, a) =

 i(t − a, 0)e−
∫ a

0 (µ+θ(s))ds, a < t,
i(0, a − t)e−

∫ t
0 (µ+θ(a−t+s))ds, a ≥ t.

Hence, we obtain

i(t, a) =


π(a)B(t − a), a < t,

π(a)
π(a − t)

i0(a − t), a ≥ t,
(3.4)

with B(t) := i(t, 0). Using (3.4), we obtain

B(t) = f (S (t), J(t)) + k
∫ t

0
θ(a)π(a)B(t − a)da +

∫ ∞

t
θ(a)

π(a)
π(a − t)

i0(a − t)da + δR(t), (3.5)

J(t) =

∫ t

0
β(a)π(a)B(t − a)da +

∫ ∞

t
β(a)

π(a)
π(a − t)

i0(a − t)da, (3.6)

and

R′(t) = (1 − k)
∫ t

0
θ(a)π(a)B(t − a)da + (1 − k)

∫ ∞

t
θ(a)

π(a)
π(a − t)

i0(a − t)da − (µ + δ)R(t). (3.7)

We prove the following theorem.

Theorem 3.2. The disease-free equilibrium E0 is globally asymptotically stable whenever R0 < 1.

Proof. It suffices to prove the global attractivity of E0 because of the local stability of this disease-free
equilibrium. We set

lim sup
t→+∞

(S (t), B(t),R(t)) = (S∞, B∞,R∞) and lim sup
t→+∞

J(t) = J∞.

By using the fluctuation lemma (see [37], Lemma A.14), there exist tn, sn, rn tend to infinity as n tends
to infinity such that S (tn) → S∞, S ′(tn) → 0, B(sn) → B∞ and R(rn) → R∞ and R′(rn) → 0. Next
substituting rn in (3.7), and letting n tends to infinity we find,

R∞ ≤
(1 − k)

∫ +∞

0
θ(a)π(a)da

µ + δ
B∞. (3.8)

Similarly using (3.5), (3.6) and the hypothesis (H0), we obtain
B∞ ≤ f (S∞, J∞) + kB∞

∫ +∞

0
θ(a)π(a)da + δR∞,

J∞ ≤ B∞
∫ +∞

0
β(a)π(a)da.

(3.9)

Now, combining (3.8), (3.9) and the fact that f (S∞, J) ≤ f (A/µ, J), we get

B∞ ≤ f (S∞, J∞) + kB∞
∫ +∞

0
θ(a)π(a)da +

δ(1 − k)
∫ +∞

0
θ(a)π(a)da

µ + δ
B∞.
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Since S∞ ≤ A/µ and f is an increasing function with respect to S , then

B∞ ≤ f
(

A
µ
, J∞

)
+ kB∞

∫ +∞

0
θ(a)π(a)da +

δ(1 − k)
∫ +∞

0
θ(a)π(a)da

µ + δ
B∞. (3.10)

Next, from (H1), we easily obtain

f
(

A
µ
, J∞

)
≤ J∞

∂ f
∂J

(
A
µ
, 0

)
. (3.11)

By combining (3.10) with (3.11) and the second equation of (3.9), we get

B∞ ≤ R0B∞.

Since R0 < 1, then necessarily B∞ = 0. This implies that J∞ = R∞ = 0. Hence, f (S (t), J(t)) → 0 as
t → +∞ and the asymptotic behavior of S obyes the equation dS (t)/dt = A − µS (t). This implies that
S (t)→ A/µ as t → +∞. The theorem is proved. �

4. The semiflow and global attractor

In this section, we prove the existence of a compact attractor of all bounded subset of X+. First, we
define the semiflow Φ : R+ × X+ → X+ such that

Φ(t, (S 0, i0(·), r0)) = (S (t), i(t, ·),R(t)), (S 0, i0(·), r0) ∈ X+, (4.1)

which is generated by the unique solution of system (2.1). So, it is not difficult to show that this
semiflow is continuous.

Theorem 4.1. The semiflow Φ has a compact attractor A of bounded subsets of X+.

Proof. Following Theorem 2.33 in [37], we need to check some properties of the semiflow Φ, namely,
the point-dissipativity, eventually bounded on bounded sets on X and asymptotically smoothness
properties. By theorem 2.1, we can show that the first two properties are satisfied. Now, we apply
Theorem 2.46 of [37] to show the asymptotic smoothness. For this, we define

Ψ1(t, (S 0, i0(·), r0)) = (0, u(t, ·), 0) and Ψ2(t, (S 0, i0(·), r0)) = (S (t), v(t, ·),R(t)),

where

u(t, a) =


0, a < t,

π(a)
π(a − t)

i0(a − t), a > t,

and

v(t, a) =

 π(a)B(t − a), a < t,

0, a > t.

Let C be a bounded closed subset of initial data in X+, that is forward invariant under Φ. We set

M1 := sup{S 0 + ‖i0‖L1 + r0, (S 0, i0, r0) ∈ C} and M2 := max
{

M1,
A
µ

}
. (4.2)
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Using the same arguments as in Theorem 2.1 in [18], we have Ψ1 → 0 as t → +∞ uniformly for all
initial data in C. Next, we have to prove that Ψ2 has a compact closure. We need only to check the
condition (iii) of Theorem B.2 in [37] or Theorem 3.1 in [27] because the other conditions are readily
checked. Thus,∫ +∞

0
|v(t, a + h) − v(t, a)|da =

∫ t−h

0
|π(a + h)B(t − a − h) − π(a)B(t − a)|da

+

∫ t

t−h
|π(a)B(t − a)|da.

(4.3)

Notice that, for t ≥ 0, we have

|B(t)| ≤ f (S (t), J(t)) + k
∫ +∞

0
θ(a)i(t, a)da + δR(t),

≤ f (M2, ‖β‖∞M2) + k‖θ‖∞M2 + δM2,

(4.4)

for all initial data in C. Then, the second term of (4.3) tends to 0 when h→ 0 uniformly in C. We set

Ih(t) :=
∫ t−h

0
|π(a + h)B(t − a − h) − π(a)B(t − a)|da,

≤

∫ t−h

0
|π(a)(B(t − a − h) − B(t − a))|da +

∫ t−h

0
|B(t − a − h)(π(a + h) − π(a)|da.

(4.5)

From the system (2.1) and (4.2), we have, for t ≥ 0,

|S ′(t)| ≤ A + µM2 + f (M2, ‖β‖∞M2), (4.6)

and
|R′(t)| ≤ (1 − k)‖θ‖∞M2 + (µ + δ)M2. (4.7)

Now, let us define Ah for h > 0 as

Ah(t, a) := |B(t − a − h) − B(t − a)| ≤ | f (S (t − a − h), J(t − a − h)) − f (S (t − a), J(t − a))|

+k

∣∣∣∣∣∣
∫ +∞

0
θ(σ)i(t − a − h, σ)dσ −

∫ +∞

0
θ(σ)i(t − a, σ)dσ

∣∣∣∣∣∣
+δ|R(t − a − h) − R(t − a)|.

Using the fact that the function f is Lipschitz, we get

Ah ≤ L|S (t − a − h) − S (t − a)| + L|J(t − a − h) − J(t − a))|

+k

∣∣∣∣∣∣
∫ +∞

0
θ(σ)i(t − a − h, σ)dσ −

∫ +∞

0
θ(σ)i(t − a, σ)dσ

∣∣∣∣∣∣
+δ|R(t − a − h) − R(t − a)|.

By (4.6) and (4.7), we can easily show that the first and the last term of Ah tend to 0 as h tends to 0+

uniformly for all initial data in C. Now we focus on the second term of Ah. Denote by,

A1
h(t, a) := L|J(t − a − h) − J(t − a)| + k|

∫ +∞

0
θ(σ)i(t − a − h, σ)dσ −

∫ +∞

0
θ(σ)i(t − a, σ)dσ|. (4.8)
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For t ≥ 0, we set J(t) = J1(t) + J2(t), where

J1(t) =

∫ t

0
β(a)π(a) f (S (t − a), J(t − a))da and J2(t) =

∫ +∞

0
β(a + t)

π(a + t)
π(a)

i0(a)da. (4.9)

Thus, for s, h ≥ 0,

|J(s + h) − J(s)| ≤ |J1(s + h) − J1(s)| + |J2(s + h) − J2(s)|.

After a change of variable in (4.9), we obtain

J1(t) =

∫ t

0
β(t − σ)π(t − σ) f (S (σ), J(σ))dσ.

Therefore, for s, h ≥ 0,

|J1(s + h) − J1(s)| ≤
∫ s+h

s
β(s + h − σ)π(s + h − σ) f (S (σ), J(σ))dσ

+

∫ s

0
|β(s + h − σ)π(s + h − σ) − β(s − σ)π(s − σ)| f (S (σ), J(σ))dσ,

≤ ‖β‖∞ f (M2, ‖β‖∞M2)h

+ f (M2, ‖β‖∞M2)
∫ s

0
|β(s + h − σ)π(s + h − σ) − β(s − σ)π(s − σ)|dσ.

Consequently, we can readily checked that these last terms tend to 0 as h→ 0+ uniformly for all s ≥ 0
and for all initial data in C. Using the definition of J2 in (4.9), we get

|J2(s + h) − J2(s)| ≤

∣∣∣∣∣∣
∫ +∞

0
β(a + s + h)

π(a + s + h)
π(a)

i0(a)da −
∫ +∞

0
β(a + s)

π(a + s)
π(a)

i0(a)da

∣∣∣∣∣∣ ,
≤

∫ +∞

0
|β(a + s + h) − β(a + s)|

π(a + s)
π(a)

i0(a)da

+

∫ +∞

0
β(a + s + h)i0(a)

∣∣∣∣∣π(a + s + h)
π(a)

−
π(a + s)
π(a)

∣∣∣∣∣ da.

Using the fact that β is uniformly continuous and using (4.2), we can see that all above terms go to 0
as h→ 0+ uniformly for all s ≥ 0 and for all initial data on C. Finally, employing the same arguments
as above, we show that,∣∣∣∣∣∣

∫ +∞

0
θ(σ)i(t − a − h, σ)dσ −

∫ +∞

0
θ(σ)i(t − a, σ)dσ

∣∣∣∣∣∣→ 0,

as h→ 0+ uniformly for all initial data in C. The theorem is established. �

Next, we describe the total trajectories of system (2.1). Let φ : R → X+ be the total Φ-trajectories,
φ(t) = (S (t), i(t, ·),R(t)). Then, φ(t + r) = Φ(t, φ(r)), t ≥ 0, r ∈ R. By using the same arguments as

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1525–1553.



1535

in [37], we have, for all t ∈ R,

S ′(t) = A − µS − f (S (t), J(t)),

i(t, a) = π(a)B(t − a),

B(t) = f (S (t), J(t)) + k
∫ +∞

0
θ(a)i(t, a)da + δR(t),

R′(t) = (1 − k)
∫ +∞

0
θ(a)i(t, a)da − (µ + δ)R(t),

J(t) =

∫ +∞

0
β(a)π(a)B(t − a)da.

(4.10)

The following lemma gives some estimates on the total trajectories.

Lemma 4.2. For all (S 0, i0(·), r0) ∈ A, we have the following estimates, for all t ∈ R

S (t) >
A

µ + L
, S (t) +

∫ +∞

0
i(t, a)da + R(t) ≤

A
µ

and i(t, a) ≤ ξπ(a), a ≥ 0.

with ξ := (L‖β‖∞ + k‖θ‖∞ + δ)(A/µ) and L is Lipschitz constant of f defined in (2.3).

Proof. We set,

I(t) :=
∫ +∞

0
i(t, a)da =

∫ +∞

0
π(a)B(t − a)da.

After a change of variable, for t ∈ R,

I(t) =

∫ t

−∞

π(t − a)B(a)da.

By differentiating I, we get

I′(t) = B(t) −
∫ +∞

0
(µ + θ(a))π(a)B(t − a)da.

Combining this equation with the system (4.10), we obtain,

S ′(t) + I′(t) + R′(t) ≤ A − µ(S (t) + I(t) + R(t)),

Thus, for t ∈ R

S (t) + I(t) + R(t) ≤
A
µ
. (4.11)

Moreover, from the equation of S in (4.10) and the hypothesis (H3), we have

S ′(t) ≥ A − µS − LS (t),

so,

S (t) ≥
A

µ + L
, t ∈ R.
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On the other hand, using the fact that f (S , 0) = 0 and (H3), we find

i(t, a) = π(a)
(
f (S (t), J(t)) + k

∫ +∞

0
θ(a)i(t, a)da + δR(t)

)
,

≤ π(a)
(
LJ(t) + k‖θ‖∞I(t) + δR(t)

)
,

According to (4.11), we conclude that

i(t, a) ≤ ξπ(a), a > 0,

where ξ := (L‖β‖∞ + k‖θ‖∞ + δ)(A/µ). �

5. Global stability of the endemic equilibrium

The main purpose of this section is to study the global asymptotic stability of the endemic
equilibrium. We first need to prove the strong uniform persistence of the solution of problem (4.10).

We begin by the following lemma which concern the existence of a positive equilibria.

Lemma 5.1. Assume that

lim
J→0+

f (A/µ, J)
f (S , J)

> 1, for S ∈ [0, A/µ).

If R0 > 1, then the system (2.1) has a positive steady state.

Proof. Let E∗ := (S ∗, i∗(.),R∗) be a positive fixed point of the semiflow Φ. Then,

Φ(t, (S ∗, i∗(.),R∗)) = (S ∗, i∗(.),R∗), for t ≥ 0.

From (4.1) and (3.4), we have

i∗(a) =


π(a)i∗(0), 0 < a < t,

π(a)
π(a − t)

i∗(a − t), a > t,
(5.1)

and 
A = µS ∗ + f (S ∗, J∗),

J∗ =

∫ +∞

0
β(a)i∗(a)da.

(5.2)

Remark that if we consider i∗(a) from the first expression of (5.1), it satisfies also the second one of
(5.1). Indeed, for t < a < 2t, we have

i∗(a − t) = π(a − t)i∗(0),

=
π(a − t)
π(a)

i∗(a),
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and thus
i∗(a) =

π(a)
π(a − t)

i∗(a − t),

=
π(a)

π(a − t)
π(a − t)i∗(0),

= π(a)i∗(0).

We can proceed by iteration in order to prove the result. Therefore,

i∗(a) = π(a)i∗(0), for all a ≥ 0. (5.3)

Combining (5.2) and (5.3), we get

i∗(0) =
1
D

f (S ∗, J∗),

with

D = 1 −
(
k +

δ(1 − k)
µ + δ

) ∫ +∞

0
θ(a)π(a)da, (5.4)

thus,

i∗(a) =
1
D

f (S ∗, J∗)π(a), ∀a ≥ 0. (5.5)

Moreover, from (5.2) and (5.5), we obtain
A = µS ∗ + f (S ∗, J∗),

J∗ =
M
D

f (S ∗, J∗),
(5.6)

where M :=
∫ +∞

0
β(a)π(a)da and D is defined in (5.4). Following the same arguments as in [22]

and [23], we prove the existence of positive steady state. �

The following lemma is readily to prove it

Lemma 5.2. Under (H0) and (H1), we have following assertions,

f (., J)
J

is a nonincreasing function with respect to J, (5.7)

and 
x
J∗
<

f (S , x)
f (S , J∗)

< 1, for 0 < x < J∗,

1 <
f (S , x)
f (S , J∗)

<
x
J∗
, for x > J∗.

(5.8)

Now we focus on the uniform persistence of the solution of problem (4.10). We define,

θ̄(a) :=
∫ +∞

0
θ(a + t)

π(a + t)
π(a)

dt,
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and

β̄(a) :=
∫ +∞

0
β(a + t)

π(a + t)
π(a)

dt.

We set

X0 =

{
(S 0, i0(·), r0) ∈ X+ | r0 +

∫ ∞

0
i0(a)θ̄(a)da +

∫ ∞

0
i0(a)β̄(a)da > 0

}
.

Lemma 5.3. If (S 0, i0(·), r0) ∈ X0, then there exists t0 > 0 such that B(t) := i(t, 0) > 0 for all t > t0. If
(S 0, i0(·), r0) ∈ X+ \ X0, then B(t) = 0 for all t ≥ 0.

Proof. Recall that S (t) > 0 for all t > 0 and that

B(t) = f (S (t), J(t)) + k
∫ +∞

0
θ(a)i(t, a)da + δR(t).

The third equation of system (2.1) implies that, for t ≥ 0,

R(t) = r0e−(µ+δ)t + (1 − k)
∫ t

0
e−(µ+δ)(s−t)

∫ +∞

0
θ(σ)i(s, σ)dσds.

We can rewrite B as,

B(t) = f (S (t), J(t)) + k
∫ +∞

0
θ(a)i(t, a)da

+δr0e−(µ+δ)t + (1 − k)δ
∫ t

0
e−(µ+δ)(s−t)

∫ +∞

0
θ(σ)i(s, σ)dσds.

So, from (3.4),

B(t) = f (S (t), J(t)) + k
∫ t

0
θ(a)π(a)B(t − a)da

+k
∫ +∞

t
θ(a)

π(a)
π(a − t)

i0(a − t)da + δr0e−(µ+δ)t

+(1 − k)δ
∫ t

0
e−(µ+δ)(s−t)

(∫ s

0
θ(σ)π(σ)B(s − σ)dσ +

∫ +∞

s
θ(σ)

π(σ)
π(σ − s)

i0(σ − s)dσ
)

ds.

(5.9)
If r0 > 0 then we have B(t) > 0 for all t ≥ 0. Next, we suppose that

∫ +∞

0
i0(a)θ̄(a)da > 0, thus we set,

I0(t) :=
∫ +∞

t
θ(a)

π(a)
π(a − t)

i0(a − t)da =

∫ +∞

0
θ(a + t)

π(a + t)
π(a)

i0(a)da. (5.10)

By integrating I0 it yields,∫ +∞

0
I0(t)dt =

∫ +∞

0
i0(a)

∫ +∞

0
θ(a + t)

π(a + t)
π(a)

dtda =

∫ +∞

0
i0(a)θ̄(a)da.

In the following, we will use translations of solutions: for r ≥ 0, we define S r(t) = S (t + r) Jr(t) =

J(t + r), I0
r (t) = I0(t + r) and Br(t) = B(t + r). By (5.9), (5.10),

Br(t) ≥ k
∫ t

0
θ(a)π(a)Br(t − a)da + kI0

r (t).
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Since
∫ +∞

0
I0(t)dt > 0 then for some small r > 0, I0

r is not zero almost everywhere on [r,+∞).
Consequently, from Corollary B.6 in [37], there exists t0 > 0 such that B(t) > 0 for all t > t0. Using
the same arguments as above in the case where

∫ +∞

0
i0(a)β̄(a)da > 0.

Now, if (S 0, i0(·), r0) ∈ X+ \ X0, then according to (3.4), (5.9), we have

B(t) = f (S (t), J(t)) + k
∫ t

0
θ(a)π(a)B(t − a)da + k

∫ +∞

t
θ(a)

π(a)
π(a − t)

i0(a − t)da

+(1 − k)δ
∫ t

0
e−(µ+δ)(s−t)

( ∫ s

0
θ(σ)π(σ)B(s − σ)dσ +

∫ +∞

s
θ(σ)

π(σ)
π(σ − s)

i0(σ − s)dσ
)
ds.

(5.11)
From the definition of the space X+ \ X0 and the fact that the function f is locally Lipschitz and that
f (S , 0) = 0 for all S > 0, the equation (5.11) yields,

B(t) ≤ L
∫ t

0
β(a)π(a)B(t − a)da + k

∫ t

0
θ(a)π(a)B(t − a)da

+(1 − k)δ
∫ t

0
e−(µ+δ)(s−t)

∫ s

0
θ(σ)π(σ)B(s − σ)dσds.

We can apply the Fubini’s Theorem to the last term and using the assumptions on β and θ , we get

B(t) ≤
(
L‖β‖∞ +

(
k +

(1 − k)δ
µ + δ

)
‖θ‖∞

) ∫ t

0
B(a)da.

By Gronwall’s inequality, we obtain B(t) = 0 for all t ≥ 0. �

We define the persistence function ρ : X+ → R+ by

ρ(S 0, i0(·), r0) = f (S 0, J0) +

∫ +∞

0
θ(a)i0(a)da + r0.

By definition, we have,
ρ(Φ(t, (S 0, i0(·), r0))) = B(t),

Lemma 5.4. Assume that (5.7) holds. If x ∈ X0, then there exists some ε > 0 such that

lim sup
t→+∞

ρ(Φ(t, x)) > ε,

for all solutions of (2.1) provided that R0 > 1.

Proof. We suppose that the function ρ is not uniformly weakly persistent, so, there exists an arbitrarily
small ε > 0 such that

lim sup
t→+∞

ρ(Φ(t, x)) < ε.

By Theorem 2.1, we have S (t) > 0 for all t > 0, so, from the above expression there exists some small
ε0 > 0 such that

lim sup
t→+∞

J(t) < ε0.
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Let S∞ = lim inft→+∞ S (t). Then, there exists a sequence tk → +∞ such that S (tk)→ S∞ and S ′(tk)→
0 as tk → +∞ see ( [37], Lemma A.14) . Combining this with the continuity of the function f , we have
(for large t)

0 ≥ A − µS∞ − ε.

Therefore,

S∞ ≥
A
µ
− ψ(ε),

with ψ(ε) := ε/µ. By using the fact that R0 > 1, then we can choose a small ε1 > 0 such that

h(ε1) =
f
(

A
µ
− ψ(ε1), ε1

)
ε1

∫ +∞

0
β(a)π(a)da +

(
k +

(1 − k)δ
ε1 + µ + δ

) ∫ +∞

0
θ(a)π(a)da > 1. (5.12)

From system (2.1), we have, for all t ≥ 0,

R′(t) = (1 − k)
∫ +∞

0
θ(a)i(t, a)da − (µ + δ)R(t).

Therefore, for t ≥ 0,

R′(t) ≥ (1 − k)
∫ t

0
θ(a)π(a)B(t − a)da − (µ + δ)R(t).

Next, we introduce the Laplace transform to this inequality, which is given by, for λ > 0,

λR̂(λ) − R(0) ≥ (1 − k)θ̂(λ)B̂(λ) − (µ + δ)R̂(λ),

Thus, we get

R̂(λ) ≥
(1 − k)θ̂(λ)
λ + µ + δ

B̂(λ). (5.13)

where B̂ and θ̂ are respectively the Laplace transforms of B and θ, defined by, for λ > 0,

B̂(λ) =

∫ +∞

0
B(a)e−λada and θ̂(λ) =

∫ +∞

0
θ(a)π(a)e−λada.

Moreover, since there exists T > 0 such that J(t) < ε0 for all t ≥ T , then by (5.7), we obtain

f (S , J)
J

≥
f
(

A
µ
− ψ(ε0), J

)
J

≥
f
(

A
µ
− ψ(ε0), ε0

)
ε0

.

Then, for x ∈ X0, we write

B(t) ≥
f (S (t), J(t))

J(t)
J(t) + k

∫ t

0
θ(a)π(a)B(t − a)da + δR(t),

so, for t ≥ T ,

B(t) ≥
f
(

A
µ
− ψ(ε0), ε0

)
ε0

∫ t

0
β(a)π(a)B(t − a)da + k

∫ t

0
θ(a)π(a)B(t − a)da + δR(t).
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Similarly, we apply the Laplace transform to the last inequality, we get, for λ > 0,

B̂(λ) ≥ β̂(λ)B̂(λ)
f
(

A
µ
− ψ(ε0), ε0

)
ε0

+ kθ̂(λ)B̂(λ) + δR̂(λ),

where β̂ is the Laplace transform of β defined as

β̂(λ) =

∫ +∞

0
β(a)π(a)e−λada.

By using (5.13), we obtain

B̂(λ) ≥ β̂(λ)B̂(λ)
f
(

A
µ
− ψ(ε0), ε0

)
ε0

+

(
k +

δ(1 − k)
λ + µ + δ

)
θ̂(λ)B̂(λ).

Since, B̂(λ) > 0 (See, Lemma 5.3), then

1 ≥ β̂(λ)
f
(

A
µ
− ψ(ε0), ε0

)
ε0

+

(
k +

δ(1 − k)
λ + µ + δ

)
θ̂(λ).

We can choose λ = ε0 and we obtain
1 ≥ h(ε0).

which contradicts (5.12). This completes the proof. �

To prove the uniform strong ρ−persistence from Lemma 5.4, we will use Theorem 3.5 in [37]. To
this end, we need to prove that there exists no total trajectory φ : R → X+

0 , φ is defined in (4.10), such
that ρ(φ(0)) = 0 and ρ(φ(−r)) > 0 and ρ(φ(t)) > 0 for some r, t ∈ R+ (see (H1) in [37], Chapter 5).
Therefore, we next prove the following lemma.

Lemma 5.5. If ρ(φ(t)) = 0 for all t ≤ 0, then ρ(φ(t)) = 0 for all t > 0.

Proof. Assume that ρ(φ(t)) = B(t) = 0 for all t ≤ 0 with B(t) is defined in (4.10). Then, applying the
same arguments as in the proof of Lemma 5.3, we have

B(t) ≤ L
∫ +∞

0
β(a)i(t, a)da + k

∫ +∞

0
θ(a)i(t, a)da + δ

∫ t

0
e(µ+δ)(s−t)

∫ +∞

0
θ(σ)π(σ)B(s − σ)dσds,

thus since B(t) = 0 for t ≤ 0,

B(t) ≤ L‖β‖∞

∫ t

0
B(a)da + k‖θ‖

∫ t

0
B(a)da + δ

∫ t

0
e(µ+δ)(s−t)

∫ s

0
θ(s − σ)π(s − σ)B(σ)dσds.

So,

B(t) ≤ L‖β‖∞

∫ t

0
B(a)da + k‖θ‖

∫ t

0
B(a)da + δ

∫ t

0
θ(s − σ)π(s − σ)B(σ)e(µ+δ)(σ−t)dσ.

Finally, according to Fubini’s Theorem,

B(t) ≤
(
L‖β‖∞ + k‖θ‖∞ +

δ‖θ‖∞
µ + δ

) ∫ t

0
B(a)da.
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Applying the Gronwall’s inequality, we get

B(t) = 0, t > 0.

�

Lemma 5.6. The following alternative holds: either B is 0 everywhere on R or B is positive everywhere
on R.

Proof. From Lemma 5.5, we can deduce that for each r ∈ R, if B(t) = 0 for all t ≤ r then B(t) = 0 for
all t ≥ r. This means that either B(t) = 0 for all t ∈ R or there exists a sequence tn → −∞ as n → ∞
with B(tn) > 0. Let, Bn(t) := B(t + tn), by Lemma 4.2 and (5.9),

Bn(t) ≥ k
∫ ∞

0
θ(a)π(a)Bn(t − a)da.

After a change of variable,

Bn(t) ≥ k
∫ t

−∞

θ(t − s)π(t − s)Bn(s)ds,

where Bn(0) := B(tn) > 0, Now, suppose that there exists ε > 0 such that Bn(ε) = 0 and Bn(t) > 0 for
all t ∈ [0, ε), so, we obtain

0 = Bn(ε) ≥ k
∫ ε

−∞

θ(ε − s)π(ε − s)Bn(s)ds.

Then, Bn(s) = 0 for all s ∈ [0, ε), this leads to a contradiction. Then, Bn(t) > 0 for all t > 0 and since
tn → −∞ as n→ +∞, B(t) > 0 for all t ∈ R.

�

Now we are ready to prove the strong uniform persistence of the disease.

Theorem 5.7. Assume that R0 > 1, Then, each solution of systems (2.1)-(2.2) is strongly uniformly
ρ−persistent for initial data belonging to X0, that is there exists an ε > 0 such that lim inf

t→+∞
ρ(Φ(t)x0) > ε

provided x0 ∈ X0.

Proof. By Lemmas 5.4, 5.5 and 5.6, we can apply Theorem 5.2 in [37] to conclude that uniform weak
ρ−persistence implies the uniform strong ρ−persistence. The proof is completed. �

From Theorem 5.7 in [37], we have the following result.

Theorem 5.8. There exists a compact attractor A1 that attracts every solution with initial condition in
X0. Moreover A1 is uniformly ρ−positive, i.e there exists some positive constant Γ, such that

ρ(Φ(t, (S 0, i0(·), r0)) ≥ Γ, for all (S 0, i0(.), r0) ∈ A1. (5.14)

We will need the following estimates later.

Lemma 5.9. For all (S 0, i0(·), r0) ∈ A1, the following estimates hold

i(t, a)
i∗(a)

> Γ0, a > 0, t ∈ R and R(t) > η2, t ∈ R,

with Γ0 = ΓD/ f (S ∗, J∗) and η2 = ((1 − k)Γ
∫ +∞

0
θ(a)π(a)da)/(µ + δ).
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Proof. Recall that the compact attractor of bounded set is the union of bounded total trajectories, see
Proposition 2.34 in [37]. Thus, there exists a total trajectory Ψ : R → A1,
Ψ(t) = (S (t), i(t, ·),R(t)),S (0) = S 0, i(0, a) = i0(a). In view of (5.14), we get

i(t, a)
i∗(a)

=
π(a)B(t − a)
π(a) f (S ∗, J∗)

D >
ΓD

f (S ∗, J∗)
.

In addition, from the equation of R in (4.10), and Theorem 5.8,

R′(t) ≥ (1 − k)Γ
∫ +∞

0
θ(a)π(a)da − (µ + δ)R(t).

Finally, by a straightforward computation, we find

R(t) ≥ η2, t ∈ R,

with η2 := (1 − k)Γ
∫ +∞

0
θ(a)π(a)da/(µ + δ). �

Now, we are ready to prove the global asymptotic stability of the unique positive endemic
equilibrium.

Theorem 5.10. Suppose that R0 > 1. The problem (4.10) has a unique positive endemic equilibrium
(S ∗, i∗(.),R∗) which is globally asymptotically stable in X0.

Proof. Let Ψ : R → A1 be a total Φ−trajectory such that Ψ(t) = (S (t), i(t, .),R(t)), S (0) = S 0, i(0, .) =

i0(.), where (S (t), i(t, a),R(t)) is the solution of problem (4.10). Let, for a ≥ 0,

φ(a) =

∫ +∞

a


 δR∗∫ +∞

0
θ(a)i∗(a)da

+ k

 θ(σ) +
β(σ)

J∗
f (S ∗, J∗)

 i∗(σ)dσ, (5.15)

and, for y > 0,
H(y) = y − ln(y) − 1.

Then, for Ψ(t) = (S (t), i(t, .),R(t)) ∈ A1, t ∈ R, we consider the following Lyapunov functional
V(Ψ(t)) = V1(Ψ(t)) + V2(Ψ(t)) + V3(Ψ(t)) where

V1(Ψ(t)) = S (t) − S ∗ −
∫ S (t)

S ∗

f (S ∗, J∗)
f (η, J∗)

dη,

V2(Ψ(t)) =

∫ +∞

0
H

(
i(t, a)
i∗(a)

)
φ(a)da,

and

V3(Ψ(t)) = ΩH
(
R(t)
R∗

)
, with Ω :=

δR∗
2

(1 − k)
∫ +∞

0
θ(a)i∗(a)da

.

First, using the equation of S in (4.10), we get

d
dt

V1(Ψ(t)) =

(
1 −

f (S ∗, J∗)
f (S (t), J∗)

)
(A − f (S (t), J(t)) − µS (t)),

= µ(S ∗ − S (t))
(
1 −

f (S ∗, J∗)
f (S (t), J∗)

)
+

(
1 −

f (S ∗, J∗)
f (S (t), J∗)

)
( f (S ∗, J∗) − f (S (t), J(t))).
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By using the same arguments as in the proof of Lemma 9.18 in [37], we find

d
dt

V2(Ψ(t)) = H
(
i(t, 0)
i∗(0)

)
φ(0) +

∫ +∞

0
H

(
i(t, a)
i∗(0)

)
φ′(a)da,

= H

∆1
f (S (t), J(t))

f (S ∗, J∗)
+ ∆2

∫ +∞

0
θ(a)i(t, a)da∫ +∞

0
θ(a)i∗(a)da

+ ∆3
R(t)
R∗

 φ(0)

+

∫ +∞

0
H

(
i(t, a)
i∗(a)

)
φ′(a)da,

where

∆1 :=
f (S ∗, J∗)

i∗(0)
, ∆2 :=

k
∫ +∞

0
θ(a)i∗(a)da

i∗(0)
and ∆3 :=

δR∗

i∗(0)
.

In view of the third equation of (4.10), by

i∗(0) = f (S ∗, J∗) + k
∫ +∞

0
θ(a)i∗(a)da + δR∗,

we have ∆1 + ∆2 + ∆3 = 1. The convexity of the function H implies

d
dt

V2(Ψ(t)) ≤

∆1H
(

f (S (t), J(t))
f (S ∗, J∗)

)
+ ∆2H


∫ +∞

0
θ(a)i(t, a)da∫ +∞

0
θ(a)i∗(a)da

 + ∆3H
(
R(t)
R∗

) φ(0)

+

∫ +∞

0
H

(
i(t, a)
i∗(a)

)
φ′(a)da.

By adding V ′1 and V ′2 and using the expression of H, we have

(V1 + V2)′(Ψ(t)) ≤ µ(S ∗ − S (t))
(
1 −

f (S ∗, J∗)
f (S (t), J∗)

)
− f (S , J) + f (S ∗, J∗)

f (S , J)
f (S , J∗)

+ f (S ∗, J∗)
(
1 −

f (S ∗, J∗)
f (S , J∗)

)
+ f (S ∗, J∗)

(
f (S , J)

f (S ∗, J∗)
− ln

f (S , J)
f (S ∗, J∗)

− 1
)

+∆2i∗(0)H


∫ +∞

0
θ(a)i(t, a)da∫ +∞

0
θ(a)i∗(a)da

 + ∆3i∗(0)H
(
R(t)
R∗

)
+

∫ +∞

0
H

(
i(t, a)
i∗(a)

)
φ′(a)da.

We reorder these terms, and using the fact that

ln
f (S , J)

f (S ∗, J∗)
= ln

f (S , J)
f (S , J∗)

+ ln
f (S , J∗)
f (S ∗, J∗)

,
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we obtain

(V1 + V2)′(Ψ(t)) ≤ µ(S ∗ − S (t))
(
1 −

f (S ∗, J∗)
f (S (t), J∗)

)
+ f (S ∗, J∗)

(
− ln

f (S , J∗)
f (S ∗, J∗)

−
f (S ∗, J∗)
f (S , J∗)

+ 1
)

+ f (S ∗, J∗)H
(

f (S , J)
f (S , J∗)

)
+ ∆2i∗(0)H


∫ +∞

0
θ(a)i(t, a)da∫ +∞

0
θ(a)i∗(a)da


+∆3i∗(0)H

(
R(t)
R∗

)
+

∫ +∞

0
H

(
i(t, a)
i∗(a)

)
φ′(a)da.

On the other hand,

d
dt

V3(Ψ(t)) =
Ω

R∗
H′

(
R(t)
R∗

) (
(1 − k)

∫ +∞

0
θ(a)i(t, a)da − (µ + δ)R(t)

)
,

=
Ω(µ + δ)

R∗

(
1 −

R∗

R

)
(R∗ − R)

+
Ω(1 − k)

R∗
H′

(
R(t)
R∗

) (∫ +∞

0
θ(a)i(t, a)da −

∫ +∞

0
θ(a)i∗(a)da

)
.

By adding and subtracting the same term

Ω(1 − k)
R∗

H′
(
R(t)
R∗

) ∫ +∞

0
θ(a)i∗(a)da

R(t)
R∗

,

it yields,
d
dt

V3(Ψ(t)) =
Ω(µ + δ)

R∗

(
1 −

R∗

R

)
(R∗ − R)

+
Ω(1 − k)

R∗
H′

(
R(t)
R∗

) ∫ +∞

0
θ(a)i∗(a)

(
i(t, a)
i∗(a)

−
R(t)
R∗

)
da

+
Ω(1 − k)

R∗
H′

(
R(t)
R∗

) (
R(t)
R∗
− 1

) ∫ +∞

0
θ(a)i∗(a)da.

Next, by summing V ′ = V ′1 + V ′2 + V ′3, we get

V ′(Ψ(t)) ≤ µ(S ∗ − S (t))
(
1 −

f (S ∗, J∗)
f (S (t), J∗)

)
+ f (S ∗, J∗)

(
− ln

f (S , J∗)
f (S ∗, J∗)

−
f (S ∗, J∗)
f (S , J∗)

+ 1
)

+ f (S ∗, J∗)H
(

f (S , J)
f (S , J∗)

)
+

∫ +∞

0
H

(
i(t, a)
i∗(a)

)
φ′(a)da

+∆2i∗(0)H


∫ +∞

0
θ(a)i(t, a)da∫ +∞

0
θ(a)i∗(a)da

 + ∆3i∗(0)H
(
R(t)
R∗

)

+
Ω(1 − k)

R∗
H′

(
R(t)
R∗

) ∫ +∞

0
θ(a)i∗(a)

(
i(t, a)
i∗(a)

−
R(t)
R∗

)
da

+
Ω(µ + δ)

R∗

(
1 −

R∗

R

)
(R∗ − R) +

Ω(1 − k)
R∗

H′
(
R(t)
R∗

) (
R(t)
R∗
− 1

) ∫ +∞

0
θ(a)i∗(a)da.
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Using the fact (µ + δ)R∗ = (1 − k)
∫ +∞

0
θ(a)i∗(a)da, the addition of the two last terms of the above

expression vanishes. Moreover, by employing the Jensen inequality, we have

H


∫ +∞

0
θ(a)i(t, a)da∫ +∞

0
θ(a)i∗(a)da

 = H

∫ +∞

0

θ(a)i∗(a)∫ +∞

0
θ(a)i∗(a)da

i(t, a)
i∗(a)

da

 ,
≤

∫ +∞

0

θ(a)i∗(a)∫ +∞

0
θ(a)i∗(a)da

H
(
i(t, a)
i∗(a)

)
da.

Thus, by combining this with the fact that

Ω(1 − k)
R∗

=
δR∗∫ +∞

0
θ(a)i∗(a)da

,

we obtain

V ′(Ψ(t)) ≤ µ(S ∗ − S (t))
(
1 −

f (S ∗, J∗)
f (S (t), J∗)

)
+ f (S ∗, J∗)

(
− ln

f (S , J∗)
f (S ∗, J∗)

−
f (S ∗, J∗)
f (S , J∗)

+ 1
)

+ f (S ∗, J∗)H
(

f (S , J)
f (S , J∗)

)
+

∫ +∞

0
H

(
i(t, a)
i∗(a)

)
φ′(a)da

+∆2i∗(0)
∫ +∞

0

θ(a)i∗(a)∫ +∞

0
θ(a)i∗(a)da

H
(
i(t, a)
i∗(a)

)
da + ∆3i∗(0)H

(
R(t)
R∗

)

+
δR∗∫ +∞

0
θ(a)i∗(a)da

H′
(
R(t)
R∗

) ∫ +∞

0
θ(a)i∗(a)

(
i(t, a)
i∗(a)

−
R(t)
R∗

)
da.

Now, for the values of t such that J(t) < J∗. From Lemma 5.2 and Jensen inequality, we have

H
(

f (S , J)
f (S , J∗)

)
< H

(
J(t)
J∗

)
,

= H

∫ +∞

0

β(a)i∗(a)∫ +∞

0
β(a)i∗(a)da

i(t, a)
i∗(a)

da

 ,
≤

∫ +∞

0

β(a)i∗(a)∫ +∞

0
β(a)i∗(a)da

H
(
i(t, a)
i∗(a)

)
da,

=

∫ +∞

0

β(a)i∗(a)
J∗

H
(
i(t, a)
i∗(a)

)
da.

This implies that

V ′(Ψ(t)) ≤ µ(S ∗ − S (t))
(
1 −

f (S ∗, J∗)
f (S (t), J∗)

)
+ f (S ∗, J∗)

(
− ln

f (S , J∗)
f (S ∗, J∗)

−
f (S ∗, J∗)
f (S , J∗)

+ 1
)

+

∫ +∞

0
H

(
i(t, a)
i∗(a)

) [
φ′(a) +

f (S ∗, J∗)
J∗

β(a)i∗(a) + kθ(a)i∗(a)
]

da + δR∗H
(
R(t)
R∗

)
+

δR∗∫ +∞

0
θ(a)i∗(a)da

H′
(
R(t)
R∗

) ∫ +∞

0
θ(a)i∗(a)

(
i(t, a)
i∗(a)

−
R(t)
R∗

)
da.
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Finally, in view of the expression of φ′ in (5.15), we find

V ′(Ψ(t)) ≤ µ(S ∗ − S (t))
(
1 −

f (S ∗, J∗)
f (S (t), J∗)

)
+ f (S ∗, J∗)

(
− ln

f (S , J∗)
f (S ∗, J∗)

−
f (S ∗, J∗)
f (S , J∗)

+ 1
)

+

∫ +∞

0

[
H

(
R(t)
R∗

)
− H

(
i(t, a)
i∗(a)

)
+ H′

(
R(t)
R∗

) (
i(t, a)
i∗(a)

−
R(t)
R∗

)]
δR∗θ(a)i∗(a)∫ +∞

0
θ(a)i∗(a)da

da.

Since − ln (1/x) − x + 1 ≤ 0 and H(b) − H(a) + (a − b)H′(b) ≤ 0 then the second and the third terms
are negative. As a consequence,

V ′(Ψ(t)) ≤ 0.

By applying the same arguments for the values of t satisfying J(t) > J∗. we conclude that V ′(Ψ(t)) ≤ 0.
Now, since V is bounded on Ψ, the alpha limit and omega limit set of Ψ must be contained in M the
largest invariant subset of {V ′ = 0}. Notice that V ′(Ψ(t)) = 0 implies that S (t) = S ∗, and i(t, a)/i∗(a) =

R(t)/R∗. From (4.10) and the fact that i∗(a) = π(a)i∗(0), we have

i(t, a)
i∗(a)

=
B(t − a)

i∗(0)
=

R(t)
R∗

, ∀a ≥ 0, (5.16)

this implies that B(t − a) = B(t) for all a ≥ 0, and so i(t, a) = i(t, 0) for all a ≥ 0. Next, from the
equation of S in (4.10) and the fact that S (t) = S ∗, we have

A − µS ∗ = f (S ∗, J(t)).

Moreover, from equations of equilibrium we know that

A − µS ∗ = f (S ∗, J∗),

thus we obtain f (S ∗, J∗) = f (S ∗, J(t)). From the monotonicity of f and (4.10) we obtain
i(t, 0)

∫ +∞

0
β(a)π(a)da = i∗(0)

∫ +∞

0
β(a)π(a)da, and so, B(t) := i(t, 0) = i∗(0) for all t ∈ R. Finally, from

(5.16), we get R(t) = R∗ and i(t, .) = i∗(.) for all t ∈ R. Consequently, M consists of only the endemic
equilibrium.

Now, since A1 is compact, the omega limit and alpha limit are non-empty, compact, invariant and
attract Ψ(t) as t → ±∞, respectively. Since V(Ψ(t)) is nonincreasing on t, V is constant on the omega
and alpha limit and these both sets contain only the endemic equilibrium. Consequently Ψ(t) →
(S ∗, i∗(.),R∗) as t → ±∞, and hence

V(Ψ(t))→ V(S ∗, i∗(.),R∗), as t → ±∞.

On the other hand, we have

lim
t→+∞

V(Ψ(t)) ≤ V(Ψ(t)) ≤ lim
t→−∞

V(Ψ(t)),

for all t ∈ R, then V(Ψ(t)) = V(S ∗, i∗(.),R∗) for all t ∈ R and so Ψ(t) = (S ∗, i∗(.),R∗) for all t ∈ R.
Therefore the compact attractor A1 is reduced to the endemic equilibrium. In addition, by Theorem
2.39 in [37] the endemic equilibrium is also locally asymptotically stable. The theorem is proved. �
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6. Numerical simulation

In this section, the results of the previous sections are illustrated by numerical simulations. We
use the following numerical method: we discretize our problem by the upwind method for solving
hyperbolic partial differential equation. For instance, the approximation un

i = u(t, a) is given by(
∂u
∂t

)
n
'

un+1
i − un

i

∆t
,

(
∂u
∂a

)
i
'

un
i − un

i−1

∆a
.

The equations of susceptible and recover are solving by explicit Euler method for the ODE. The non-
local terms are approximated by one of the composite integration formulas.

Let’s consider the Beddington-Deangelis functional response defined by

f (S , J) =
S J

1 + α1S + α2J
.

We note that this function f satisfies all the assumption of the paper. The system (2.1) has two
equilibria and the condition of stability is given by the basic reproduction number R0. In the case of
the Beddington-Deangelis functional response, the basic reproduction number R0 is given by

R0 =
A

µ + α1A

∫ +∞

0
β(a)π(a)da +

(
(1 − k)δ
µ + δ

+ k
) ∫ +∞

0
θ(a)π(a)da.

We consider the following values of parameters

A = 2.10−3, µ = 1.10−2 and δ = 1.10−2,

with the initial conditions

S 0 = 1.10−3, r0 = 2.10−4 and i0(a) = 8.10−4e−0.1a.

The functions β and θ are chosen to be

β(a) =

 0, if a ≤ τ1,

56.10−3(a − τ1)2e−0.2(a−τ1), if a > τ1,

and

θ(a) =

 0, if a ≤ τ2,

3.10−2(a − τ2)2e−0.15(a−τ2); if a > τ2,

with τ1 = 10 and τ2 = 12. The parameter τ1 represents the end of the exposed period at a = τ1 (witch
means that the individual is infected but he does not transmit the disease from a = 0 to a = τ1), when
a ≥ τ1 the infectious period starts. The time required to leave the infected class is described by the
parameter τ2.
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Figure 1. The functions β and θ with respect to age a.

In first time, we choose k = 0.1. The basic reproduction number is computed and we have R0 =

0.8624 < 1. According to the result stated, the disease-free equilibrium is globally asymptotically
stable as illustrated in Figures 2 and 3.
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Figure 2. The evolution of solutions S (left) and R (right) with respect to time t are drawn. The case of
disease-free steady state with R0 = 0.8624 < 1.

Figure 3. The evolution of solution i with respect to time t and age a. The case of disease-free steady state
with R0 = 0.8624 < 1. As seen in the figure, the density of infected individuals disappear in large time.
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In second time, we take k = 0.9 and then the basic reproduction number R0 = 1.1849 > 1, that
mean that, the positive endemic equilibrium is globally asymptotically stable as illustrated in Figures
4, 5 and 6.
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Figure 4. The evolution of solutions S (left) and R (right) with respect to time t are drawn. The case of
endemic steady state with R0 = 1.1849 > 1.

Figure 5. The evolution of solution i with respect to time t and age a. The case of endemic steady state with
R0 = 1.1849 > 1. As seen in the figure, the density of infected individuals does not disappear in large time.

a
0 10 20 30 40 50 60 70 80 90 100

×10-4

0

1

2

3

4

5

i*(a)

i(t
f
,a)

Figure 6. The evolution of solution i(t f , a) and i∗(a) with respect to age a at fixed t f = 800.
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7. Summary

In this paper, we proposed and analyzed an infection age-structured SIR epidemic model with a
general incidence rate. We showed the basic characters of the solution including existence, uniqueness
and positivity. We obtained the basic reproduction number R0 by renewal process and showed that
the disease-free equilibrium E0 is globally asymptotically stable if R0 < 1. The main contribution of
this paper was devoted to the global asymptotic stability of the endemic equilibrium E∗. We prove
that the unique endemic equilibrium E∗ exists, the system is uniformly persistent and E∗ is globally
asymptotically stable if R0 > 1. Our results showed that the asymptotic behavior of the solution of our
model can be determined by the basic reproduction number R0, allowing to separate the situations into
the extinction and the persistence of diseases.

In this paper, we have not considered the case where R0 = 1. By some previous results on basic
epidemic models (see for instance [4, Section 5.5.2]), we can expect that the disease-free equilibrium
is globally asymptotically stable for R0 = 1. However, it is not trivial and a future work. From the
application viewpoint, our results for R0 , 1 are thought to be sufficient since R0 estimated by real
data unlikely to be just equal to 1.
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